Numerical studies of the Bethe–Salpeter equation in Minkowski space

M. Viviani

INFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

TNPI2016 XV Conference on Theoretical Nuclear Physics in Italy

April 20–22, 2016 Pisa, Italy

BS Amplitude and BS Equation for a two-fermion bound system

2 Eigenvalues in ladder approximations

3 Conclusions & Perspectives

In collaboration with

Wayne de Paula & Tobias Frederico (ITA - S. José dos Campos) Damaso Colasante (Un. of Rome) & Gianni Salmè (INFN - Roma)

PRD 85, 036009 (2012) - PRD 89, 016010 (2014) - EPJC 75, 398 (2015)

Motivations

- [Salpeter & Bethe, PR 84, 1232 (1951)]
- To achieve a fully covariant description for a few-body system, in Minkowski space, within a field-theoretical framework
- Applications for bound states of $\overline{q}q$ and qqq systems \rightarrow spectra & PDF
- $\bullet~$ Applications for nuclear systems \rightarrow solution for continuum states

Motivations

- [Salpeter & Bethe, PR 84, 1232 (1951)]
- To achieve a fully covariant description for a few-body system, in Minkowski space, within a field-theoretical framework
- Applications for bound states of $\overline{q}q$ and qqq systems \rightarrow spectra & PDF
- $\bullet~$ Applications for nuclear systems \rightarrow solution for continuum states

Solution in Euclidean space using the Wick rotation

- correct binding energy
- difficult to obtain other quantities, like EM form factors, etc
- Meson and baryon masses from QCD [Roberts *et al.*, EPJ Special Topics 140, 53 (2007)]
- Solution in Minkowsky space difficult due to the singularities of the kernel

Solution in Minkowski space

- [Kusaka, Simpson, & Williams, PRD 56, 5071 (1997)]
- [Sauli & Adam, PRD 67, 085007 (2003)]
- [Maris & Tandy, NPB 161, 136 (2006)]
- [Karmanov & Carbonell, EPJA 27, 1 (2006), PRD 90, 056002 (2014)]
- [Sauli, hep-th:1505.03778]
- We follow the prescription of Karmanov & Carbonell using a light-front projection

This contribution: direct solution of the BSE in Minkowski space for two fermion bound states Preliminary results – ladder approximation – no self-energy in the propagators Aim: extend our numerical treatment applied so far only for two boson bound and scattering states

The BS amplitude

Example: $q\overline{q}$ bound system in a $J^{\pi C} = 0^{-+}$ state of total momentum p

$$\Phi_{\alpha,\beta}(k,p) = \int d^4x_1 \ d^4x_2 e^{i(\frac{p}{2}+k)x_1+i(\frac{p}{2}-k)x_2} \langle 0|T\{\psi^H_{\alpha}(x_1)\overline{\psi}^H_{\beta}(x_2)\}|B,p,0^{-+}\rangle$$

- $\psi^{H}(x)$ field of the fermion
- |B, p, 0⁻⁺⟩ bound state of total momentum p
- α , β 4-spinor indeces
- The amplitude Φ is a 4 \times 4 matrix

- Under Lorentz $\Phi(p,k) = S(\Lambda)\Phi(\Lambda p,\Lambda k)S(\Lambda)^{-1}$
- Under parity $\Phi(p, k) = -\gamma_0 \Phi(\tilde{p}, \tilde{k}) \gamma^0$ $(\tilde{p} \equiv \{p^0, -\vec{p}\})$
- Under charge conjugation $\Phi(p,k) = C\Phi(p,-k)^{t}C^{t} \ (C = \gamma^{0}\gamma^{2})$

$$\Phi(k,p) = A + B\gamma^5 + C\gamma^{\mu}p_{\mu} + D\gamma^{\mu}k_{\mu} + E\gamma^{\mu}\gamma^5p_{\mu} + F\gamma^{\mu}\gamma^5k_{\mu} + G\sigma^{\mu\nu}p_{\mu}k_{\nu} + H\gamma^5\sigma^{\mu\nu}p_{\mu}k_{\nu}$$

$$A \equiv A(k^2, k \cdot p), \dots$$

$$A = C = D = G = 0 \qquad B, E, H (F) \text{ even (odd) under } k \rightarrow -k$$

[Llewellyn Smith, AP **53**, 521 (1969)]

The BS amplitude (2)

The BS Amplitude $\Phi(k, p)$ fulfills an homogeneous integral equation

$$\Phi(k,p) = S(k+rac{p}{2})\int rac{d^4k'}{(2\pi)^4} \, \Phi(k',p) \mathcal{I}(k,k',p) S(k-rac{p}{2})$$

 $I \equiv$ kernel given by the infinite sum of irreducible Feynmann graphs – Iterations produce all the expected contributions

Free propagator of a fermion

$$S(k) = i \frac{k+m}{k^2 - m^2 + i\epsilon}$$

Scalar kernel in ladder approximation

$$i\mathcal{I}_{S}^{(Ld)}(k,k') = \frac{i(-ig)^{2}}{(k-k')^{2} - \mu^{2} + i\epsilon}$$

Regularization of the vertices

$$g \rightarrow gF(k - k')$$
 $F(q) = \frac{\mu^2 - \Lambda^2}{q^2 - \Lambda^2 + i\epsilon}$

M. Viviani (INFN-Pisa)

The equation for the BS amplitude

Let us rewrite

$$\Phi(k,p) = S_1\phi_1(k,p) + S_2\phi_2(k,p) + S_3\phi_3(k,p) + S_4\phi_4(k,p)$$

$$S_1 = \gamma^5 \quad S_2 = \frac{1}{M}\not p\gamma^5 \quad S_3 = \frac{k \cdot p}{M^3}\not p\gamma^5 \quad S_4 = \frac{i}{M^2}\sigma_{\mu\nu}p_{\mu}k_{\nu}\gamma^5$$
Convenient decomposition

$$Tr(S_iS_j) = N_i\delta_{i,j}$$

$$M \text{ "mass" of the bound state} = 2m - B$$

$$\phi_1(k,p) = \phi_1(k^2,p \cdot k)$$

$$\phi_{1,2,4}(k,p) = \phi_{1,2,4}(-k,p)$$

$$\phi_3(k,p) = -\phi_3(-k,p)$$

Substituting this expression in the BSE in ladder approximation

$$\phi_i(k,p) = \sum_j \int \frac{d^4k'}{(2\pi)^4} \frac{c_{ij}(k,k',p)}{\left[\left(\frac{p}{2}+k\right)^2 - m^2 + i\epsilon\right] \left[\left(\frac{p}{2}-k\right)^2 - m^2 + i\epsilon\right]} \frac{g^2 F(k-k')^2}{(k-k')^2 - \mu^2 + i\epsilon} \phi_j(k',p)$$

$$c_{ij}(k,k',p) = \frac{1}{N_i} \operatorname{Tr} \left[S_i(\frac{p}{2} + k + m) \Gamma S'_j \Gamma(\frac{p}{2} - k - m) \right] \qquad \begin{array}{c} \Gamma = ig, -g\gamma^5, ig\gamma^{\mu} \text{ vertices for the} \\ \text{cases S, PS, and V} \\ S'_j \text{ constructed with } k' \end{array}$$

Nakanishi perturbation-theory integral representation (PTIR)

In the sixties, Nakanishi (PR 130, 1230 (1963)) proposed an integral representation for *N*-leg transition amplitudes, based on the parametric formula for the Feynman diagrams.

Generic contribution to the transition amplitude is given by

where one has n propagators and k loops

The sum over all Feynman diagram ${\mathcal G}$ for a full N-leg transition amplitude can be formally written as

$$f_N(s) = \sum_{\mathcal{G}} f_{\mathcal{G}}(s) \propto \prod_h \int_0^1 dz_h \int_0^\infty d\gamma \frac{\delta(1 - \sum_h z_h) \phi_N(z_1, z_2, \dots, \gamma)}{\gamma - \sum_h z_h s_h}$$

the dependence upon the external momenta, $p_1, p_2 \dots p_N, p'_1, p'_2 \dots p'_N$ traded off in favour of all the independent scalar products $s \equiv \{s_1, s_2, \dots, s_h, \dots\}$ one can construct.

M. Viviani (INFN-Pisa)

Nakanishi PTIR - II

In case of our "three-leg" functions

$$\phi_i(k,p) = \int_0^1 dz \int_0^\infty d\gamma rac{g_i(z,\gamma)}{\gamma - rac{p^2}{4} - k^2 - zk \cdot p - i\epsilon}$$

Projection of the BSE onto the null plane, i.e. integration of both sides over k⁻ = k⁰ + k_z [Karmanov & Carbonell, EPJA 27, 1 (2006)]

$$\int_0^\infty d\gamma' \, \frac{g_i(\gamma',z)}{(\gamma+\gamma'+m^2z^2+(1-z^2)\kappa^2)^2} = g^2 \int_0^\infty d\gamma' \int_{-1}^1 dz' \sum_j V_{ij}(\gamma,z,\gamma',z') g_j(\gamma',z')$$

Some of the $c_{ii} \sim (k^-)^4$, special care has to be taken in these cases

$$V_{ij}(\gamma, z, \gamma', z') \sim \delta(z - z') \mathcal{V}_{ij}(\gamma, z, \gamma') + \cdots$$

Carbonell & Karmanov included a regularizing factor to eliminate the contribution of the δ

Numerical results for the bound state in ladder approx.

We have carried out a comprehensive investigation, in ladder approximation of the three interaction models

- In ladder approximation V_{ij} proportional to g^2
- Standard procedure: we fix M = 2m B, B = binding energy, and find the smallest eigenvalue (g^2)
- The eigenvector gives the Nakanishi functions g_i , from which we can compute ϕ_i
- Study for different binding energies 0 $< B/m \leq$ 2 and mass of the exchanged particle, μ/m

Method of solution

Expansion on a basis for the z and γ variables

$$g_i(\gamma, z) = \sum_{\ell=1}^{L_i} \sum_{m=1}^{M_i} A_{\ell m} F_\ell(z) G_m(\gamma)$$

$$g_i(\gamma, z) = \sum_{\ell=1}^{L_i} \sum_{m=1}^{M_i} A_{\ell m} F_\ell(z) G_m(\gamma)$$

 $\mu/m = 0.15, B/m = 0.01$

$\mu/m = 0.15$,	B/m = 0.50
------------------	------------

L_1, M_1	$L_2, M_2, L_3, M_3, L_4, M_4$	g ²	L_1, M_1	$L_2, M_2, L_3, M_3, L_4, M_4$	g ²
4		14.92	4		125.5
8		15.00	8		125.3
12		15.00	12		125.3
12	4	7.831	12	4	95.68
12	8	7.842	12	8	88.82
12	12	7.844	12	12	88.94
16	16	7.844	16	16	88.96

Comparison with other calculations

ļ	B/m	g^2 (CK)	g ²
	0.01	7.813	7.844
$\mu/m=0.15$	0.05	15.35	15.34
	0.10	23.12	23.12
	0.20	38.32	38.32
	0.50	86.95	88.96
	B/m	g ² (CK)	g ²
	B/m 0.01	g ² (CK) 25.23	g ² 25.32
//m 0.50	B/m 0.01 0.05	g ² (CK) 25.23 39.19	g ² 25.32 39.17
$\mu/m=0.50$	B/m 0.01 0.05 0.10	g ² (CK) 25.23 39.19 52.82	g ² 25.32 39.17 52.81
$\mu/m = 0.50$	B/m 0.01 0.05 0.10 0.20	g ² (CK) 25.23 39.19 52.82 78.25	<i>g</i> ² 25.32 39.17 52.81 78.26

Values of g^2 obtained by solving the eigenequation Gegenbauer × Laguerre expansion of the Nakanishi wf CK: from Carbonell & Karmanov, EPJA **46**, 387 (2010) (spline expansion of the Nakanishi wf).

CK: from Carbonell & Karmanov, EPJA 46, 387 (2010) (spline expansion of the Nakanishi wf).

Valence Probabilities and LF Distributions

Once the Nakanishi weight functions is evaluated, one can straightforwardly obtain the BS amplitude and normalize it.

$$\int \frac{d^4k}{(2\pi)^4} \,\bar{\Phi}^{(Ld)}(k,p) \left[M^2(\kappa^2 - k^2) + 2(k \cdot p)^2 \right] \Phi^{(Ld)}(k,p) = i2M^2$$

 \rightarrow valence wave function & LF distributions

Results for two scalar particles exchanging another massive scalar particles [PRD **89**, 016010 (2014)]

Valence wave function

$$\xi$$
 fraction of longitudinal momentum of
particle 1
 $\xi = \frac{1}{p^+}(\frac{1}{2}p^+ + k^+)$
 $\psi_{n=2}(\xi, k_{\perp}) = \frac{p^+}{\sqrt{2}} \xi (1-\xi) \int \frac{dk^-}{2\pi} \Phi(k, p)$
 $\mu/m = 0.50$
 $0.01 \quad 0.98$
 $0.01 \quad 0.96$
 $0.10 \quad 0.87$
 $0.20 \quad 0.83$
 $0.50 \quad 0.77$
 $1.00 \quad 0.74$
 $2.00 \quad 0.72$

Results for two scalar particles exchanging another massive scalar particles [PRD **89**, 016010 (2014)]

The longitudinal LF-distribution, $\phi(\xi) = \int dk_{\perp}^2 |\psi_{n=2}(\xi, k_{\perp})|^2$, vs the longitudinal-momentum fraction $\xi = k^+/M$. Dash-double-dotted line: B/m = 0.20. Dotted line: B/m = 0.50. Solid line: B/m = 1.0. Dashed line: B/m = 2.0. N.B. $\int_0^1 d\xi \ \phi(\xi) = P_{val}$

M. Viviani (INFN-Pisa)

BSE in Minkowski space

Results for two scalar particles exchanging another massive scalar particles [PRD **89**, 016010 (2014)]

The transverse LF-distribution $\mathcal{P}(\gamma) = \int d\xi |\psi_{n=2}(\xi, k_{\perp})|^2$ vs the adimensional variable γ/m^2 $(\gamma = k_{\perp}^2)$. Dash-double-dotted line: B/m = 0.20. Dotted line: B/m = 0.50. Solid line: B/m = 1.0. Dashed line: B/m = 2.0. N.B. $\int_0^\infty d\gamma \mathcal{P}(\gamma) = P_{val}$.

- The cross-fertilization between the Light-Front framework and the Nakanishi PTIR paves the path toward a new class of non perturbative calculations, within a rigorous field-theoretical framework (the Bethe-Salpeter Equation in Minkowski space)
- The LF framework has well-known advantages in performing analytical integrations, that within the canonical approach appear highly non trivial.
- Good preliminary results for a two-fermion systems interacting via S, PS, V couplings
- Calculations in progress for
 - energy > 0 (inhomogeneous BSE)
 - study of excited states (preprint 2016)
 - the crossed-box contribution (A. lannone, Master thesis)
 - Fermion+boson bound state (D. Colasante)
 - LF distribution for the two-fermion system