Microscopic optical potential from chiral forces

Paolo Finelli University of Bologna and INFN

Contacts: paolo.finelli@unibo.it www.fisicanucleare.it

in collaboration with M. Vorabbi and C. Giusti (Pavia) Phys. Rev. C 93 (2016) 034619

OPTICAL POTENTIALS FROM CHIRAL FORCES

Motivation

OPTICAL POTENTIALS FROM CHIRAL FORCES

OPTICAL POTENTIALS FROM CHIRAL FORCES

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: **optical potentials**.

Phenomenological

Unfortunately, currently used optical potentials for lowenergy reactions are phenomenological, and primarily constrained by elastic scattering. Unreliable when extrapolated beyond their fitted range in energy and nuclei

Microscopical

Existing microscopic optical potentials are *usually* developed in an high-energy regime (≥ 100 MeV) and not applicable for lower energy reactions.

No fitting

© F. Nunes and I. Thompson, *Nuclear Reactions for Astrophysics*

OPTICAL POTENTIALS FROM CHIRAL FORCES

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: **optical potentials**.

Phenomenological

Unfortunately, currently used optical potentials for lowenergy reactions are phenomenological, and primarily constrained by elastic scattering. Unreliable when extrapolated beyond their fitted range in energy and nuclei The optical potential has the form: U(r) = V(r) + iW(r)

- The real part of the optical potential explains the scattering (Woods-Saxon form)
- 2. The imaginary part provides absorption (stronger at the surface)
- 3. The radial dependence is rather flat in the inner region of the nucleus, falls off rapidly at the nuclear surface
- 4. A spin orbit term is also included which also peaks near the surface.
- 5. For a charged projectile a Coulomb term is also necessary.

$$V(r) = -V_R f_R(r) - iW_V f_V(r) + 4a_{VD} V_D \frac{d}{dr} f_{VD}(r) + 4ia_{WD} \frac{d}{dr} f_{WD}(r) + \frac{\lambda_\pi^2}{r} \left[V_{SO} \frac{d}{dr} f_{VSO}(r) + iW_{SO} \frac{d}{dr} f_{WSO}(r) \right] \vec{\sigma} \cdot \vec{l}$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: **optical potentials**.

OPTICAL POTENTIALS FROM CHIRAL FORCES

Microscopical

Existing microscopic optical potentials are usually developed in an high-energy regime (≥ 100 MeV) and not applicable for lower energy reactions. **No fitting**

© F. Nunes and I. Thompson, *Nuclear Reactions for Astrophysics*

Model

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

7

$$T = V + VG_0(E)T$$
Green Function propagator
$$G_0(E) = \frac{1}{E - H_0 + i\epsilon}$$
where
$$H_0 = h_0 + H_A$$

$$H_A |\Phi_A\rangle = E_A |\Phi_A\rangle \quad \begin{array}{c} \text{target} \\ \text{Hamiltoniar} \\ \text{Kinetic term} \end{array}$$

 h_0

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

of the projectile

$$T = V + VG_0(E)T$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

$$T = V + VG_0(E)T$$

stator overan

The product of expansion
$$T = \sum_{i=1}^{n} T_{0i}$$

The second commutation interaction dominates the scattering $T = \sum_{i=1}^{n} T_{0i}$
The second commutation $T = \sum_{i=1}^{n} T_{0i}$
The second commutation $T = \sum_{i=1}^{n} T_{0i}$
Single Scattering T_{0i}
Single Scattering T_{0i}
Sourcess
 $T_{0i} = v_{0i} + v_{0i}G_0(E)T,$
 $T_{0i} = v_{0i} + v_{0i}G_0(E)\sum_{j} T_{0j}$
 $T_{0i} = v_{0i} + v_{0i}G_0(E)\sum_{j\neq i} T_{0j}$
 $T_{0i} = t_{0i} + t_{0i}G_0(E)\sum_{j\neq i} T_{0j}$.
The scattering T_{0i}
Watson multiple scattering T_{0i}

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

2 Active

$$T = V + VG_0(E)T$$

Spectator expansion

two nucleon interaction dominates the scattering process

Watson multiple scattering

$$T_{0i} = t_{0i} + t_{0i}G_0(E)\sum_{j\neq i}T_{0j}$$

$$t_{0i} = v_{0i} + v_{0i}G_0(E)t_{0i}$$

$$T = \sum_{i=1}^{A} t_{0i} + \sum_{i < j} (t_{ij} - t_{0i} - t_{0j}) + \sum_{i < j < k} (t_{ijk} - t_{ij} - t_{ik} - t_{jk} + t_{0i} + t_{0j} + t_{0k}) +$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

$$T = V + VG_0(E)T$$

Let's introduce the **optical potential U**

 $T = U + UG_0(E)PT$

 $U = V + VG_0(E)QU$

P + Q = 1 $[G_0, P] = 0$

In the case of elastic scattering,

P projects onto the elastic channel

$$P = \frac{|\Phi_A\rangle \langle \Phi_A|}{\langle \Phi_A | \Phi_A \rangle}$$

transition amplitude T for <u>elastic scattering</u>

$$T_{el} = PUP + PUPG_{0}(E)T_{el}$$

$$U = \sum_{i=1}^{A} \tau_{ij} + \sum_{i,j \neq i, k \neq i,j}^{A} \tau_{ij} + \sum_{i,j \neq i,j}^{A} \tau_{ij} + \sum_$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

STL

$$T_{el} = PUP + PUPG_{0}(E)T_{el}$$

$$U = \sum_{i=1}^{A} \tau_{ij} + \sum_{i,j \neq i, k \neq i,j}^{A} \tau_{ij} + \sum_{i,j \neq i,j}^{A} \tau_{ij} + \sum_$$

STL

First-order optical potential

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

$$\begin{split} \hat{U}(\boldsymbol{k}',\boldsymbol{k};\omega) &= (A-1) \left\langle \boldsymbol{k}', \Phi_A | t(\omega) | \boldsymbol{k}, \Phi_A \right\rangle & \mathsf{N} \\ q &\equiv \boldsymbol{k}' - \boldsymbol{k}, \quad \boldsymbol{K} \equiv \frac{1}{2} (\boldsymbol{k}' + \boldsymbol{k}) \\ \hat{U}(\boldsymbol{q},\boldsymbol{K};\omega) &= \frac{A-1}{A} \eta(\boldsymbol{q},\boldsymbol{K}) & \overset{\boldsymbol{\theta}}{\overset{\boldsymbol{k}}{\overset{\boldsymbol{\theta}}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}\overset{\boldsymbol{\theta}}{\overset{\boldsymbol{\theta}}}}}\overset{\boldsymbol{\theta}}\overset{\boldsymbol{\theta}}}\overset{\boldsymbol{\theta}}}\overset{\boldsymbol{\theta}}\overset{\boldsymbol{\theta}}}\overset{\boldsymbol{\theta}}}\overset{\boldsymbol{\theta}}\overset{\boldsymbol$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

First-order optical potential

$$\begin{split} \hat{U}(\boldsymbol{q},\boldsymbol{K};\omega) &= \hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) + \frac{i}{2}\boldsymbol{\sigma}\cdot\boldsymbol{q}\times\boldsymbol{K}\hat{U}^{ls}(\boldsymbol{q},\boldsymbol{K};\omega) \\ &\hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K}) \\ \end{split} \\ \begin{aligned} &\hat{U}^{c}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K}) \\ & \hat{U}^{ls}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K})\left(\frac{A+1}{2A}\right) \\ \end{aligned} \\ \begin{aligned} &\hat{U}^{ls}(\boldsymbol{q},\boldsymbol{K};\omega) = \frac{A-1}{A}\eta(\boldsymbol{q},\boldsymbol{K})\left(\frac{A+1}{2A}\right) \\ \end{aligned} \\ \begin{aligned} & \text{Spin-orbit component} \\ & \times \sum_{N=n,p} t_{pN}^{ls}\left[\boldsymbol{q},\frac{A+1}{A}\boldsymbol{K};\omega\right]\rho_{N}(\boldsymbol{q}) \end{split}$$

S

NN transition matrix

 $M(\boldsymbol{\kappa}',\boldsymbol{\kappa},\omega) = \langle \boldsymbol{\kappa}' | M(\omega) | \boldsymbol{\kappa} \rangle = -4\pi^2 \mu \left\langle \boldsymbol{\kappa}' | t(\omega) | \boldsymbol{\kappa} \right\rangle$

OPTICAL POTENTIALS FROM CHIRAL FORCES

STUDIC

Matter densities

Typel and Wolter , Nuc. Phys. A 656 (1999) 331

OPTICAL POTENTIALS FROM CHIRAL FORCES

$$A_y(heta) = rac{\sigma(+ heta) - \sigma(- heta)}{\sigma(+ heta) + \sigma(- heta)}$$

It can be measured by sending a beam of polarised protons along +y and measure the total cross-section at angles θ and $-\theta$ in the scattering plane

OPTICAL POTENTIALS FROM CHIRAL FORCES

Scattering observables

 ∞

Spin-flip amplitude

 $M(k_0, \theta) = A(k_0, \theta) + \boldsymbol{\sigma} \cdot \hat{\boldsymbol{N}} C(k_0, \theta)$

$$A(\theta) = \frac{1}{2\pi^2} \sum_{L=0}^{\infty} \left[(L+1)F_L^+(k_0) + LF_L^-(k_0) \right] P_L(\cos\theta)$$

 \mathbf{a}

$$F_{LJ}(k_0) = -\frac{A}{A-1} 4\pi^2 \mu(k_0 (\hat{T}_{LJ}) k_0, k_0; E)$$

$$C(\theta) = \frac{i}{2\pi^2} \sum_{L=1}^{\infty} \left[F_L^+(k_0) - F_L^-(k_0) \right] P_L^1(\cos\theta)$$

Differential cross section

$$\frac{d\sigma}{d\Omega}(\theta) = |A(\theta)|^2 + |C(\theta)|^2$$

Spin rotation
$$Q(\theta) = \frac{2 \text{Im}[A(\theta) C^*(\theta)]}{|A(\theta)|^2 + |C(\theta)|^2}$$

Analyzing power
$$A_{y}(\theta) = \frac{2\text{Re}[A^{*}(\theta) C(\theta)]}{|A(\theta)|^{2} + |C(\theta)|^{2}}$$

Rotation of the spin vector in the scattering plane, i.e. protons polarised along the +x axis have a finite probability of having the spin polarised along the $\pm z$ axis after the collision

OPTICAL POTENTIALS FROM CHIRAL FORCES

Inclusion of the Coulomb potential

Combine phase shifts from Coulomb and nuclear

$$\sigma_L = \arg \Gamma [L + 1 + i\eta(k_0)]$$

The central amplitude include a Coulomb component

OPTICAL POTENTIALS FROM CHIRAL FORCES

Numerical details

NN potential

OPTICAL POTENTIALS FROM CHIRAL FORCES

Chiral potentials

I. QCD symmetries are consistently respected

Phenomen. potentials

I. QCD symmetries are not respected

Lorentz covariance
 Chiral symmetry
 Gauge invariance

Chiral potentials

 QCD symmetries are consistently respected
 Systematic expansion (order by order you know exactly the terms to be included)
 Theoretical errors

Phenomen. potentials

 QCD symmetries are not respected
 Expansion determined by phenomenology (add whatever you need). A lot of freedom

3. Errors can't be estimated

Order by order in a power expansion, the uncertainties are of order

STUDIO POP

Higher orders of

 $\vec{\sigma}_1 \cdot \vec{\sigma}_2, \ S_{12}(\vec{r}), \ S_{12}(\vec{p}), \ \vec{L} \cdot \vec{S}, \ (\vec{L} \cdot \vec{S})^2$

How to choose what to include?

Chiral potentials

 QCD symmetries are consistently respected
 Systematic expansion (order by order you know exactly the terms to be included)
 Theoretical errors
 Two- and three- body forces belong to the same framework

Many-body!

Phenomen. potentials

 QCD symmetries are not respected
 Expansion determined by phenomenology (add whatever you need). A lot of freedom

3. Errors can't be estimated
4. Two- and three- body forces
are not related one to each
other

OPTICAL POTENTIALS FROM CHIRAL FORCES

Chiral potentials

 QCD symmetries are consistently respected
 Systematic expansion (order by order you know exactly the terms to be included)
 Theoretical errors
 Two- and three- body forces belong to the same framework

Difficult (hard calculations)

Phenomen. potentials

 QCD symmetries are not respected
 Expansion determined by phenomenology (add whatever you need). A lot of freedom

3. Errors can't be estimated
4. Two- and three- body forces
are not related one to each
other

Easy (not always...)

ST

Chiral potentials

Many-body data needed and many-body forces inevitable Phenomen. potentials

Two-body data may be sufficient; many-body forces as last resort

Exploit divergences (cutoff dependence as tool)

Avoid (hide) divergences

Power counting determines diagrams and truncation

Choose diagrams by intuition

© Adapted from R.

OPTICAL POTENTIALS FROM CHIRAL FORCES

error

ST

How to build a chiral potential Problems with nucleons: cutoffs

Usually one regulates the integrals and then removes the dependence on the regularization parameters (scales, cutoffs) by *renormalization*. In the end, the theory and its predictions do not depend on cutoffs or renormalization scales.

In contrast, EFTs are renormalized by **counter terms** (contact terms) that are introduced order by order in increasing numbers. In the nuclear case the potential has validity only for momenta smaller than the chiral symmetry breaking scale **Λχ** ~ **1GeV**.

The cutoff independence should be examined for cutoffs below the hard scale and not beyond.

Following Machleidt

- 1. Identify the soft and hard scales, and the degrees of freedom (DOF) appropriate for (low-energy) nuclear physics. Soft scale: $Q \sim m_{\pi}$, hard scale: $\Lambda_{\chi} \sim m_{\rho} \sim 1$ GeV; DOF: pions and nucleons.
- 2. Identify the relevant symmetries of low-energy QCD and investigate if and how they are broken: explicitly and spontaneously broken chiral symmetry (spontaneous symmetry breaking generates the pions as Goldstone bosons).
- 3. Construct the most general Lagrangian consistent with those symmetries and symmetry breakings, see Ref. [13].

At first order

$$\mathcal{L}_{\pi N}^{(1)} = \bar{N} \left(i \gamma^{\mu} D_{\mu} - m + \frac{g_A}{2} \gamma^{\mu} \gamma_5 u_{\mu} \right) N$$

$$4f_{\pi}^{2}$$

Weinberg-Tomozawa $u_{\mu} \equiv i u^{\dagger} (\partial_{\mu} U) u^{\dagger} = -\frac{\boldsymbol{\tau} \cdot \partial_{\mu} \boldsymbol{\pi}}{F} + \mathcal{O}(\boldsymbol{\pi}^3)$ coupling $D_{\mu}N \equiv (\partial_{\mu} + \Gamma_{\mu})N$, with $\Gamma_{\mu} \equiv \frac{1}{2} \left(u^{\dagger}\partial_{\mu}u + u\partial_{\mu}u^{\dagger} \right) = \frac{i}{4E^{2}} \boldsymbol{\tau} \cdot \boldsymbol{\pi} \times \partial_{\mu}\boldsymbol{\pi} + \mathcal{O}(\boldsymbol{\pi}^{4})$

OPTICAL POTENTIALS FROM CHIRAL FORCES

Following Machleidt

4. Design an organizational scheme that can distinguish between more and less important contributions: a low-momentum expansion, $(Q/\Lambda_{\chi})^{\nu}$, with ν determined by 'power counting'.

Q Soft scale (p_π, m_π) Λ_{χ} Hard scale (Λ~4πf_π, M_N)

> Contrary to the pion mass, the nucleon mass does not vanish in the chiral limit and introduces an additional hard scale in the problem

OPTICAL POTENTIALS FROM CHIRAL FORCES

Following Machleidt

4. Design an organizational scheme that can distinguish between more and less important contributions: a low-momentum expansion, $(Q/\Lambda_{\chi})^{\nu}$, with ν determined by 'power counting'.

OPTICAL POTENTIALS FROM CHIRAL FORCES

The nuclear force at large distances is governed by the exchange of one or multiple pions. In the chiral limit of vanishing quark masses one is expanding around, these contributions would have an infinitely long range. This long-range part of the nuclear force is strongly constrained by the chiral symmetry of QCD and can be rigorously derived in chiral perturbation theory.

OPTICAL POTENTIALS FROM CHIRAL FORCES

STUD

The nuclear force at large distances is governed by the exchange of one or multiple pions. In the chiral limit of vanishing quark masses one is expanding around, these contributions would have an infinitely long range. This long-range part of the nuclear force is strongly constrained by the chiral symmetry of QCD and can be rigorously derived in chiral perturbation theory.

The short-range part of the nuclear force is driven by physics not resolved explicitly in reactions with typical nucleon momenta of the order of $M_{\pi}c$. It can be mimicked by zero-range contact interactions with an increasing number of derivatives. Chiral symmetry of QCD does not provide any constraints for contact interactions except for their quark mass dependence.

...

 \mathbf{LO}

 $(Q/\Lambda_{\chi})^0$

NL(

 (Q/Λ)

OPTICAL POTENTIALS FROM CHIRAL FORCES

OPTICAL POTENTIALS FROM CHIRAL FORCES

 $V(\vec{p}',\vec{p}) = V_{C} + \tau_{1} \cdot \tau_{2} W_{C} + [V_{S} + \tau_{1} \cdot \tau_{2} W_{S}]\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} + [V_{LS} + \tau_{1} \cdot \tau_{2} W_{LS}] (-i\vec{S} \cdot (\vec{q} \times \vec{k}))$ + $[V_T + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 W_T] \vec{\sigma}_1 \cdot \vec{q} \vec{\sigma}_2 \cdot \vec{q} + [V_{\sigma L} + \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 W_{\sigma L}] \vec{\sigma}_1 \cdot (\vec{q} \times \vec{k}) \vec{\sigma}_2 \cdot (\vec{q} \times \vec{k}),$

$$W_{C} = -\frac{L(q)}{384\pi^{2}f_{\pi}^{4}} \left[4m_{\pi}^{2}(5g_{A}^{4} - 4g_{A}^{2} - 1) + q^{2}(23g_{A}^{4} - 10g_{A}^{2} - 1) + \frac{48g_{A}^{4}m_{\pi}^{4}}{w^{2}} \right]$$
$$V_{T} = -\frac{1}{q^{2}}V_{S} = -\frac{3g_{A}^{4}L(q)}{64\pi^{2}f_{\pi}^{4}},$$
$$L(q) \equiv \frac{w}{q} \ln \frac{w + q}{2m}, \qquad w \equiv \sqrt{4m_{\pi}^{2} + q^{2}}$$

q

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

V

 $2m_{\pi}$

OPTICAL POTENTIALS FROM CHIRAL FORCES

OPTICAL POTENTIALS FROM CHIRAL FORCES

STU

OPTICAL POTENTIALS FROM CHIRAL FORCES

How to build a chiral potential ρ, σ, ω

OPTICAL POTENTIALS FROM CHIRAL FORCES

STUD

OPTICAL POTENTIALS FROM CHIRAL FORCES

STUL

© E. Epelbaum, Lectures at Ecole Juliot Curie

OPTICAL POTENTIALS FROM CHIRAL FORCES

How to build a chiral potential Three-body

NLO: does not contribute Weinberg '91; Coon & Friar '94; van Kolck '94; E.E. et al., '98; ...

- N²LO: first nonvanishing contributions van Kolck '94; E.E. et al. '02
- N³LO: Work in progress Bernard, E.E., Krebs, Meißner '07 Ishikawa, Robilotta '07
 - no free parameters
 - chiral symmetry plays essential role

OPTICAL POTENTIALS FROM CHIRAL FORCES

	NUN	MBER OF P	ARAMET	TERS		
	for the np potential					
	Nijmegen	CD-Bonn	NLO	N ³ LO	N ⁵ LO	
	PWA93	"high	Q^2	Q^4	Q^6	
		precision"	(NNLO)	(N^4LO)		
$^{1}S_{0}$	3	4	2	4	6	
3S_1	3	4	2	4	6	
${}^{3}S_{1} {}^{-3}D_{1}$	2	2	1	3	6	
$^{-1}P_{1}$	3	3	1	2	4	
${}^{3}P_{0}$	3	2	1	2	4	
${}^{3}P_{1}$	2	2	1	2	4	
$^{3}P_{2}$	3	3	1	2	4	
3P_2 - 3F_2	2	1	0	1	3	
$^{-1}D_2$	2	3	0	1	2	
$^{3}D_{1}$	2	1	0	1	2	
$^{3}D_{2}$	2	2	0	1	2	
$^{3}D_{3}$	1	2	0	1	2	
${}^{\overline{3}}D_3$ - ${}^{\overline{3}}G_3$	1	0	0	0	1	
$^{1}F_{3}$	1	1	0	0	1	
3F_2	1	2	0	0	1	
3F_3	1	2	0	0	1	
3F_4	2	1	0	0	1	Then add
3F_4 - 3H_4	0	0	0	0	0	three
1G_4	1	0	0	0	0	
3G_3	0	1	0	0	0	C_2,C_3
3G_4	0	1	0	0	0	
3G_5	0	1	0	0	0	
Total	35	38	9	24	50	

Then add parameters for three-body forces:

C_2, C_3, C_4, C_E, C_D

© R. Machleidt

OPTICAL POTENTIALS FROM CHIRAL FORCES

How to build a chiral potential Phase shifts & potential

TUDIO PU

A free available code to solve the phase-shifts problem can be found http://folk.uio.no/mhjensen/manybody/phase.tar.gz

OPTICAL POTENTIALS FROM CHIRAL FORCES

				-40 0
$Q^{ u}$	1π	2π	4 <i>N</i>	80
				40 -
				0 🕸 🗞 👌
				_ 0
				6
				0 *** * *
				-6
		1	1	-12

© R. Furnstahl, talk at Schladming,

OPTICAL POTENTIALS FROM CHIRAL FORCES

© R. Furnstahl, talk at Schladming,

OPTICAL POTENTIALS FROM CHIRAL FORCES

© R. Furnstahl, talk at Schladming,

OPTICAL POTENTIALS FROM CHIRAL FORCES

CTUT

OPTICAL POTENTIALS FROM CHIRAL FORCES

Machleidt (N3LO)

Epelbaum (N3LO)

Lippmann-Schwinger cutoff

$$V(\boldsymbol{k}, \boldsymbol{k}') \to V(\boldsymbol{k}, \boldsymbol{k}') f^{\Lambda}(k, k')$$
$$f^{\Lambda} = \exp\left(-(k'/\Lambda)^{2n} - (k/\Lambda)^{2n}\right) \quad \text{with} \quad n = 2, 3$$

cutoff the short-range part of the 2PE contribution

dimensional regularization

spectral function

 $\Lambda = 450, 500, 600$

 $\{\Lambda, \tilde{\Lambda}\} = \{450, 500\}, \{450, 700\}, \\ \{550, 600\}, \{600, 600\}, \\ \{600, 700\}$

Phase shifts

Phase shifts of np scattering as calculated from NN potentials at different orders of ChPT.

..... LO NLO NNLO N3LO R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

OPTICAL POTENTIALS FROM CHIRAL FORCES

<u>Phase shifts</u>

R. Machleidt et al, Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

OPTICAL POTENTIALS FROM CHIRAL FORCES

Phase shifts

Phase shifts of np scattering as calculated from NN potentials at different orders of ChPT.

LO NLO NNLO N3LO R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

OPTICAL POTENTIALS FROM CHIRAL FORCES

<u>Phase shifts</u>

R. Machleidt et al, Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

OPTICAL POTENTIALS FROM CHIRAL FORCES

E. Epelbaum et al, *Modern Theory of Nuclear Forces*, Rev. Mod. Phys. 81 (2009) 1773-1825

OPTICAL POTENTIALS FROM CHIRAL FORCES

CTUD

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

Exploit the cutoffs

E. Epelbaum et al, *Modern Theory of Nuclear Forces*, Rev. Mod. Phys. 81 (2009) 1773-1825

OPTICAL POTENTIALS FROM CHIRAL FORCES

Results

OPTICAL POTENTIALS FROM CHIRAL FORCES

NN amplitudes - 100 MeV

$$M(\kappa', \kappa, \omega) = \langle \kappa' | M(\omega) | \kappa \rangle = -4\pi^2 \mu \langle \kappa' | t(\omega) | \kappa \rangle$$

$$a_{pN} = \frac{1}{f_{pN}\pi^2} \sum_{L=0}^{\infty} P_L(\cos\phi) \left[(2L+1) M_{LL}^{L,S=0} \qquad c_{pN} = \frac{i}{f_{pN}\pi^2} \sum_{L=1}^{\infty} P_L^1(\cos\phi) \left[\left(\frac{2L+3}{L+1} \right) M_{LL}^{L+1,S=1} + (2L+1) M_{LL}^{L,S=1} + (2L+3) M_{LL}^{L+1,S=1} - \left(\frac{2L+1}{L(L+1)} \right) M_{LL}^{L,S=1} - \left(\frac{2L-1}{L} \right) M_{LL}^{L-1,S=1} \right]$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

NN amplitudes - 200 MeV

$$M(\kappa', \kappa, \omega) = \langle \kappa' | M(\omega) | \kappa \rangle = -4\pi^2 \mu \langle \kappa' | t(\omega) | \kappa \rangle$$

$$a_{pN} = \frac{1}{f_{pN}\pi^2} \sum_{L=0}^{\infty} P_L(\cos\phi) \left[(2L+1) M_{LL}^{L,S=0} \qquad c_{pN} = \frac{i}{f_{pN}\pi^2} \sum_{L=1}^{\infty} P_L^1(\cos\phi) \left[\left(\frac{2L+3}{L+1} \right) M_{LL}^{L+1,S=1} + (2L+1) M_{LL}^{L,S=1} + (2L+3) M_{LL}^{L+1,S=1} - \left(\frac{2L+1}{L(L+1)} \right) M_{LL}^{L,S=1} - \left(\frac{2L-1}{L} \right) M_{LL}^{L-1,S=1} \right]$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

NN amplitudes - convergence (200 MeV)

STUD

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

62

OPTICAL POTENTIALS FROM CHIRAL FORCES

Scattering observable - convergence

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

64

Oxygen 16

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

65

Future

OPTICAL POTENTIALS FROM CHIRAL FORCES

Go to N4LO

Epelbaum, HK, Meißner, arXiv: 1412.4623

R = 0.9 fm — NLO — N²LO ·

---- N⁴LO

N³LO

New renormalisation technique in the coordinate space with the cutoff *R* being chosen in the range of $R = 0.8 \dots 1.2$ fm. For contact interactions, they use a non- local Gaussian regulator in momentum space with the cutoff $\Lambda = 2R^{-1}$

OPTICAL POTENTIALS FROM CHIRAL FORCES

 $f\left(\frac{r}{R}\right) = \left[1 - \exp\left(-\frac{r^2}{R^2}\right)\right]^6$

SRG - Similarity Renormalization Group[®]

- Unitary transformation designed to decouple low- and high-energy states
- All observables preserved
- No relevant changes to low energy observables even when high momenta are removed
- Natural hierarchy of many-body forces maintained

OPTICAL POTENTIALS FROM CHIRAL FORCES

Medium effects - G matrix

$$egin{aligned} U_{_{\mathbf{N}\mathbf{M}}}(k;\,k_F) &= \sum_{oldsymbol{lpha}\leq \epsilon_F} \left\langle \left. rac{1}{2} (ec{k} - ec{k}_{oldsymbol{lpha}})
ight| g_{_{\left[ec{k} + ec{k}_{oldsymbol{lpha}}
ight]}}(\epsilon(k) + \epsilon(k_{oldsymbol{lpha}})) \ & imes \left| rac{1}{2} (ec{k} - ec{k}_{oldsymbol{lpha}})
ight
angle, & \left\langle ec{\kappa}' \left| g_{_{\left[ec{p}\,;\,ec{k}
ight]}}(\omega)
ight| ec{\kappa}
ight
angle = \langle ec{\kappa}' \left| V
ight| ec{\kappa} + \int dec{\kappa}'' \left\langle ec{\kappa}' \left| V
ight| ec{\kappa}''
ight
angle \\ & imes \lambda^{^{\mathrm{NM}}}_{ec{p}}(ec{\kappa}'';\omega;k_F(R)) \ & imes \langle ec{\kappa}'' \left| g_{_{\left[ec{p}\,;\,ec{k}
ight]}}(\omega)
ight| ec{\kappa}
ight
angle, \end{aligned}$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

$$\lambda_{\vec{P}}^{^{\rm NM}}(\vec{q}\,;\,\omega\,;\,k_F) = \frac{\mathcal{Q}(P_+\,;P_-\,;k_F\,)}{\omega + i\eta - \epsilon(P_+;k_F) - \epsilon(P_-;k_F)} \ ,$$

...could be easily extended with the inclusion of three-body force (with equivalent two-body density dependent)

Arellano, Brieva and Love, Phys. Rev. C 52 (1995) 301

Include three-body forces

Isotope chains - micro vs. pheno

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

71

Thanks

OPTICAL POTENTIALS FROM CHIRAL FORCES
The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding **Lippmann-Schwinger equation** for the many-body transition amplitude T

$$T = V + VG_{0}(E)T$$

$$|\Psi\rangle = |\phi_{A}\rangle + |\Psi_{in}\rangle$$

$$P = \frac{|\Phi_{A}\rangle \langle \Phi_{A}|}{\langle \Phi_{A}|\Phi_{A}\rangle}$$

$$H(P+Q)|\Psi\rangle = E(P+Q)|\Psi\rangle$$

$$P = \frac{|\Phi_{A}\rangle \langle \Phi_{A}|}{\langle \Phi_{A}|\Phi_{A}\rangle}$$

$$|\phi_{A}\rangle \xrightarrow{H_{QP}} \xrightarrow{H_{QP}} \xrightarrow{H_{QQ}} \Psi_{in}\rangle$$

$$F = U + UG_{0}(E)PT$$

$$H_{PP} \xrightarrow{H_{PQ}} \xrightarrow{H_{QQ}} \Psi_{in}\rangle$$

$$[E - PHP]|\phi_{A}\rangle = PHQ|\Psi_{in}\rangle$$

OPTICAL POTENTIALS FROM CHIRAL FORCES

DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA