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Motivation
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Nuclear reaction theory relies 
on reducing the many-body 

problem to a problem with 
few degrees of freedom:   

optical potentials.
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Nuclear reaction theory relies on reducing the many-body 
problem to a problem with few degrees of freedom:   
optical potentials.

Unfortunately, currently used 
optical potentials for low-
energy reactions are 
phenomenological, and 
primarily constrained by elastic 
scattering.  
Unreliable when extrapolated 
beyond their fitted range in 
energy and nuclei

Existing microscopic optical 
potentials are usually 
developed in an high-energy 
regime (≥ 100 MeV)  
and not applicable for lower 
energy reactions.  

No fitting

Phenomenological Microscopical

© F. Nunes and I. Thompson, Nuclear Reactions for Astrophysics
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Nuclear reaction theory relies on reducing the many-body 
problem to a problem with few degrees of freedom:   
optical potentials.

Unfortunately, currently used 
optical potentials for low-
energy reactions are 
phenomenological, and 
primarily constrained by elastic 
scattering.  
Unreliable when extrapolated 
beyond their fitted range in 
energy and nuclei

Phenomenological
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The optical potential has the form: U(r) = V(r) + iW(r) 

1. The real part of the optical potential explains the scattering 

(Woods‐Saxon form) 

2. The imaginary part provides absorption (stronger at the 

surface) 

3. The radial dependence is rather flat in the inner region 

of the nucleus, falls off rapidly at the nuclear surface 

4. A spin orbit term is also included which also peaks near   

the surface.   

5. For a charged projectile a Coulomb term is also necessary. 

© F. Nunes and I. Thompson, Nuclear Reactions for Astrophysics
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Nuclear reaction theory relies on reducing the many-body 
problem to a problem with few degrees of freedom:   
optical potentials.

Existing microscopic optical 
potentials are usually 
developed in an high-energy 
regime (≥ 100 MeV)  
and not applicable for lower 
energy reactions. No fitting

Microscopical

Optical potential
Radial shape of the volume term for 

p+A at different beam energies: 
folding using Paris potential

oExample of a microscopically derived optical 
potential: folding

oIn principle antisymmetrization need to be 
included:

direct exchange

free or medium NN interaction?
density dep?

Wong, Introduction to Nuclear Physics, Wiley
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Model
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T = V + V G0(E)T

The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
many-body transition amplitude T 

all two nucleon interactions

V =
AX

i=1

v0i

Green Function propagator

G0(E) =
1

E �H0 + i✏

where

H0 = h0 +HA

HA |�Ai = EA |�Ai

h0

target 
Hamiltonian

kinetic term 
of the projectile
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T = V + V G0(E)T

The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
many-body transition amplitude T 

Spectator expansion 
two nucleon interaction  
dominates the scattering  
process

T =
X

i=1

T0i

Watson multiple scattering
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T = V + V G0(E)T

The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
many-body transition amplitude T 

T = U + UG0(E)PT

U = V + V G0(E)QU

Let’s introduce the optical potential U

P +Q = 1

[G0, P ] = 0

P =
|�Ai h�A|
h�A|�Ai

In the case of elastic scattering, 

P projects onto the elastic channel 
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T = V + V G0(E)T

The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
many-body transition amplitude T 

Tel = PUP + PUPG0(E)Tel

transition amplitude T for elastic scattering

we need to calculate PUP
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The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
elastic amplitude T 

Tel = PUP + PUPG0(E)Tel

U =
AX

i=1

⌧i +
AX

i,j 6=i

⌧ij +
AX

i,j 6=i,k 6=i,j

h�A|⌧i|�Ai = h�A|⌧̂i|�Ai � h�A|⌧̂i|�Ai

⇥ 1

(E � EA)� h0 + i✏
h�A|⌧i|�Ai

⌧̂i = v0i + v0iG0(E)⌧̂i
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The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
elastic amplitude T 

Tel = PUP + PUPG0(E)Tel

U =
AX

i=1

⌧i +
AX

i,j 6=i

⌧ij +
AX

i,j 6=i,k 6=i,j

h�A|⌧i|�Ai = h�A|⌧̂i|�Ai � h�A|⌧̂i|�Ai

⇥ 1

(E � EA)� h0 + i✏
h�A|⌧i|�Ai

⌧̂i = v0i + v0iG0(E)⌧̂i

Expanding the propagator Gi(E) =
1

(E � Ei)� h0 � hi �Wi + i✏

⌧̂i = v0i + v0iGi(E)⌧̂i = t0i + t0igiWiGi(E)⌧̂i
t0i = v0i + v0igit0i

IMPULSE APPROXIMATION ⌧̂i ⇡ t0i

free NN t matrix
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Û(q,K;!) = Û c(q,K;!) +
i
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Û c(q,K;!) =
A� 1

A
⌘(q,K)

⇥
X

N=n,p

tcpN


q,

A+ 1

A
K;!

�
⇢N (q)
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NN transition matrix

M(0,,!) = h0|M(!)|i = �4⇡2µ h0|t(!)|i

M = a+ c(�1 + �2) · n̂+m(�1 · n̂)(�2 · n̂)
+ (g + h)(�1 · l̂)(�2 · l̂) + (g � h)(�1 · m̂)(�2 · m̂)

apN =

1

fpN⇡2

1X

L=0

PL(cos�)
h
(2L+ 1)ML,S=0

LL

+ (2L+ 1)ML,S=1
LL + (2L+ 3)ML+1,S=1

LL

+ (2L� 1)ML�1,S=1
LL

i

cpN =

i

fpN⇡2
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Matter densities 
Typel and Wolter , Nuc. Phys. A 656 (1999) 331

FIG. 4. Charge density distribution for 16O. The experimental curve is from [De87]. The

Dirac–Hartree calculations for parameter set L2 yield the long-dashed curve, while those from set
NLC yield the dot-dashed curve.

energy/nucleon (e0 = −15.75 MeV), and bulk symmetry energy (35 MeV) are reproduced.6

The empirical equilibrium density is determined here from the density in the interior of
208Pb and corresponds to k0

F = 1.30 fm−1. We also fit the empirical rms charge radius of
40Ca (rrms = 3.482 fm), which is determined primarily by ms. This procedure produces the
parameters in the row labeled L2 in Table I, which are taken from [Ho81]. This parameter
set yields the same values for C2

s and C2
v as in Eq. (2.21), so that M∗/M = 0.541 and

K ≈ 545 MeV at equilibrium.
Once the parameters have been specified, the properties of all closed-shell nuclei are

determined in this approximation. For example, Figs. 4 through 6 show the Dirac–Hartree
charge densities of 16O, 40Ca, and 208Pb compared with the empirical distributions deter-
mined from electron scattering [De87]. The empirical proton charge form factor has been
folded with the calculated “point proton” density to determine the charge density.

In Fig. 7, the predicted energy levels in 208Pb are compared with experimental values
derived from neighboring nuclei [Bo69,Ra79]. The relativistic calculations clearly reveal
a shell structure; the level orderings and major shell closures of the nuclear shell model
are correctly reproduced. This successful result arises from the spin-orbit interaction that
occurs naturally when a Dirac particle moves in large, spatially varying classical scalar and

6The number of significant digits in the empirical input values is not intended to indicate how
accurately these quantities are known. We are merely reporting the precise values used in [Ho81]

to determine the model parameters.
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334 S. Typel, H.H. Walter/Nuclear Physics A 656 (1999) 331-364 

(1) 
depends on the spinor (P = $i ), scalar (4) and vector fields (A?), A:), A:)), 

( > 
respectively, with the field tensors 

F::“’ =&A?’ - &,A;‘, 

F(O) = apAp) _ &A(Q) 
PL” P ’ 

F(r) = &Al” - &A(Y). P’” P (2) 

As usual, we assume minimal coupling of the baryons to the mesons and the photons. 
The parameters of the model are the masses of the baryon m and the mesons m,,, m,, 
mp, the electromagnetic coupling constant e, and the baryon-meson couplings r,, To, 
r(,, which are assumed to be dependent on a functional of the baryon field. We assume 
a dependence of the couplings on the vector density 

e = m with j, = qy,P. (3) 

The field equations for the mesons and the photons are obtained in the standard way 
from the Euler-Lagrange equations [ 331. The Dirac equation for the baryons reads 

[yP (idp - Sp) - (M - X)] P = 0 (4) 

with the scalar self-energy 

,c = r,+ 

and the vector self-energy 

(5) 

The latter contains, besides the usual contributions, a “rearrangement” term 

(6) 

(7) 

In principle a scalar isovector (or &)meson could also be considered in the model. 
Then the scalar self-energies of protons and neutrons and therefore their effective masses 
m* = m - ,C would be different leading to shifts of proton and neutron single particle 
states against each other. However, this shift can be partially compensated by a change 
in the e-meson coupling. We found no substantial improvement in our calculations 
including a &meson, thus we neglect it in order to reduce the degrees of freedom. Effects 
of the &meson in RMFI of asymmetric matter are discussed, e.g., in Refs. [ 54,601. 

-. rvpel, H.H. Walter/Nuclear Physics A 656 (1999) 331-364 3 
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Fig. I, Density dependence of the normalized couplings of the w-meson (top) and w-meson (bottom) in the 
density-dependent parametrization (solid line) compared to results of Dirac-Brueckner calculations (circles, 
Ref. 126 1. diamonds: Ref. 127 1. Bonn B potential). 

the “rearrangement” contributions become finite for zero density and do not diverge as in 
some other parametrizations. With these five restrictions there are only three independent 
parameters in our tit for the density dependence of the (T- and w-meson couplings. DB 
calculations for asymmetric nuclear matter indicate a strong density dependence of the 
e-meson coupling [54] with the couplings becoming very small at high densities. For 
simplicity we choose an exponential dependence 

I’!,(e) = r(,(esar) exp [-a,,(-~ - 1 I] (40) 

with only one parameter n,. In principle one can also think about a dependence of’ 
the couplings on the isospin density or the proton-to-neutron ratio but DB calculations 
of asymmetric nuclear matter show no strong dependence of the effective coupling 
constants on these quantities [54]. We also did some trial calculations within our model 
using these additional dependencies but found no substantial improvement of the results. 

In addition to the parameters for the density dependence the masses and coupling 
constants at saturation density enter our model. The nuclear mass is assumed to be 

DDME1 parametrization 
T. Nikšić, D. Vretenar, P. Finelli and P. Ring 

Phys. Rev. C 66 (2002) 024306

Density-dependent couplings
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Scattering observables

N δΩ

N ~ 
dσ
dΩ

δΩ
σ(θ) =

dσ
dΩ

∼ ⟨k′|U|ψk⟩

+θ

−θ

σ(+θ)=σ(−θ)

L

L
S

S

U (r) + L  S U (r)c so

σ(+θ)

σ(−θ)
L

L S<0−

+ S>0 Ay (θ) =
σ(+θ)−σ(−θ)

σ(+θ)+σ(−θ)

Arellano Bauge (U Chile & CEA/DAM/DIF) CNR*11 - The unabridged... 16 / 21

Scattering observables

It can be measured by sending a beam of polarised 
protons along +y and measure the total cross-section
 at angles θ and -θ in the scattering plane 
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M(k0, ✓) = A(k0, ✓) + � · N̂ C(k0, ✓)

Scattering observables

A(✓) =
1

2⇡2

1X

L=0

⇥
(L+ 1)F+

L (k0) + LF�
L (k0)

⇤
PL(cos ✓)

C(✓) =
i

2⇡2

1X

L=1

⇥
F+
L (k0)� F�

L (k0)
⇤
P 1
L(cos ✓)

FLJ(k0) = � A

A� 1
4⇡2µ(k0)T̂LJ(k0, k0;E)

d�

d⌦
(✓) = |A(✓)|2 + |C(✓)|2

Ay(✓) =
2Re[A⇤(✓)C(✓)]

|A(✓)|2 + |C(✓)|2

Q(✓) =
2Im[A(✓)C⇤(✓)]

|A(✓)|2 + |C(✓)|2

Differential cross section

Analyzing power

Spin rotation

Spin-flip amplitude

Rotation of the spin vector in the scattering plane, i.e. 
protons polarised along the +x axis have a finite 
probability of having the spin polarised along the ± z 
axis after the collision 
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Inclusion of the Coulomb potential

A(k0, ✓) = F c
pt(k0, ✓) +

1

2⇡2

1X

L=0

e2i�L
⇥
(L+ 1)

¯F+
L (k0) + L ¯F�

L (k0)
⇤
PL(cos ✓)

F c
pt(k0, ✓) =

�⌘(k0) exp
⇥
2i�0 � i⌘(k0) ln(1� cos ✓)

⇤

k0(1� cos ✓)
⌘(k) =

µZ↵

k

Ū(k0,k;!) = hk0|Ū(!)|ki = h (+)
c (k0)|Û(!)| (+)

c (k)i

�L = arg�
⇥
L+ 1 + i⌘(k0)

⇤
Combine phase shifts from Coulomb and nuclear

The central amplitude include a Coulomb component

Sommerfeld 
parameter

R

u
00

L(r) =


L(L+ 1)

r2
+

2µ

~2 (V (r)� E)

�
uL(r)

uL(r) ⇠ Cf(H�
L , H+

L ) Do not add 
nuclear and 
Coulomb 
separately!
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Numerical details

Partial waves of the NN potential 
used to construct the three-
dimensional NN t matrix

Gaussian quadrature

Z b

a
f(x)dx '

nX

i=1

wif(xi)

6

tS=0,T=1
L,LL : 1S0,

1D2,
1G4,

1I6,
1K8

tS=1,T=1
L�1,LL : 3P0,

3F2,
3H4,

3J6,
3L8

tS=1,T=1
L,LL : 3P1,

3F3,
3H5,

3J7

tS=1,T=1
L+1,LL : 3P2,

3F4,
3H6,

3J8

tS=0,T=0
L,LL : 1P1,

1F3,
1H5,

1J7

tS=1,T=0
L�1,LL : 3D1,

3G3,
3I5,

3K7

tS=1,T=0
L,LL : 3D2,

3G4,
3I6,

3K8

tS=1,T=0
L+1,LL : 3S1,

3D3,
3G5,

3I7

Table I. Partial waves of the NN potential used to construct
the three-dimensional NN t matrix tpN (0,;!).

tc
pn

=
1

8⇡2

1X

L=0

P
L

(cos�)
h
(2L+ 1) tS=0,T=0

L,LL

+ (2L+ 1) tS=1,T=0

L,LL

+ (2L� 1) tS=1,T=0

L�1,LL

+ (2L+ 3) tS=1,T=0

L+1,LL

+ (2L+ 1) tS=0,T=1

L,LL

+ (2L+ 1) tS=1,T=1

L,LL

+ (2L� 1) tS=1,T=1

L�1,LL

+ (2L+ 3) tS=1,T=1

L+1,LL

i
.

(50)

and, similarly, for the spin-orbit part:

tls
pp

= � 1

2⇡2

1X

L=1

dP
L

(cos�)

d cos�

1

0


� 2L� 1

L
tS=1,T=1

L�1,LL

� 2L+ 1

L(L+ 1)
tS=1,T=1

L,LL

+
2L+ 3

L+ 1
tS=1,T=1

L+1,LL

�
,

(51)

tls
pn

= � 1

4⇡2

1X

L=1

dP
L

(cos�)

d cos�

1

0


� 2L� 1

L
tS=1,T=0

L�1,LL

� 2L+ 1

L(L+ 1)
tS=1,T=0

L,LL

+
2L+ 3

L+ 1
tS=1,T=0

L+1,LL

� 2L� 1

L
tS=1,T=1

L�1,LL

� 2L+ 1

L(L+ 1)
tS=1,T=1

L,LL

+
2L+ 3

L+ 1
tS=1,T=1

L+1,LL

�
.

(52)

The partial wave components tST

JLL

(0,;!) are com-
puted in the NN center-of-mass frame, from the NN
potential. In this work we use two di↵erent versions
of the chiral potential at the fourth order (N3LO) de-
veloped by Entem and Machleidt [39] and Epelbaum,
Glöckle, and Meißner [44] and the CD-Bonn [60] poten-
tial. The tST

JLL

(0,;!) matrices are computed for each
partial waves up to J = 8. The partial waves are col-
lected in the Tab. I.

C. The Transition Amplitude in the Partial Wave
Representation

The optimally factorized first-order KMT optical po-
tential as an operator in the spin space of the projectile
is given in Eq. (30) as

Û(k0,k;!) = Û c(k0,k;!) +
i

2
� · k0 ⇥ k Û ls(k0,k;!) .

(53)
From the conservation of the total angular momentum
and parity, this spin operator can be expanded as

Û(k0,k;!) =
2

⇡

X

JLM

Y
L

1
2

JM

(k̂0) Û
LJ

(k0, k;!)Y
L

1
2 †

JM

(k̂) ,

(54)

where J = L±1/2 and Y
L

1
2

JM

is the standard spin-angular
function of Eq. (43) Inserting the expansion in Eq. (54)
into the Eq. (24) we obtain the same decomposition for
the T matrix

T̂ (k0,k;E) =
2

⇡

X

JLM

Y
L

1
2

JM

(k̂0) T̂
LJ

(k0, k;E)Y
L

1
2 †

JM

(k̂) ,

(55)
where the partial-wave components of the transition op-
erator for the elastic scattering are given by

T̂
LJ

(k0, k;E) = Û
LJ

(k0, k;!)

+
2

⇡

Z 1

0

dp p2
Û
LJ

(k0, p;!) T̂
LJ

(p, k;E)

E(k
0

)� E(p) + i✏
,

(56)

where

E(k
0

) =
q

k2
0

+m2

proj

+
q

k2
0

+m2

targ

, (57)

E(p) =
q

p2 +m2

proj

+
q
p2 +m2

targ

, (58)

and m
proj

and m
targ

are the masses of the projectile
and of the target, respectively. In terms of the par-
tial wave components of the quantities Û c(k0,k;!) and
Û ls(k0,k;!), we have

Û
LJ

(k0, k;!) = Û c

L

(k0, k;!) + C
LJ

V̂ ls

L

(k0, k;!) , (59)

where

C
LJ

=
1

2


J(J + 1)� L(L+ 1)� 3

4

�
,

V̂ ls

L

(k0, k;!) =
k0k

2L+ 1

h
Û ls

L+1

(k0, k;!)� Û ls

L�1

(k0, k;!)
i
.

(60)

To obtain these results, the quantities Û c(k0,k;!)
and Û ls(k0,k;!) are expanded in a manner similar to
Eq. (54), with the di↵erence that the partial wave com-
ponents, Û c

L

and Û ls

L

, are independent of J .

150-200 points for tNN  and ~ 100 for tNA
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NN potential



OPTICAL POTENTIALS FROM CHIRAL FORCES DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

 25

Chiral potentials: why?

1. QCD symmetries are 
consistently respected 

Phenomen. potentialsChiral potentials

1. QCD symmetries are not 
respected 

1. Lorentz covariance 
2. Chiral symmetry 
3. Gauge invariance



O(kF /⇤�)
n
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Chiral potentials: why?

classification of Ref. [6]:

Class I: VI = ↵I + �I ⌧ 1 · ⌧ 2 ,

Class II: VII = ↵II ⌧31 ⌧
3
2 ,

Class III: VIII = ↵III (⌧31 + ⌧32 ) ,

Class IV: VIV = ↵IV (⌧31 � ⌧32 ) + �IV [⌧ 1 ⇥ ⌧ 2]3 .

(2.1)

Here, ↵i, �i are position-spin operators and ⌧ i are Pauli isospin matrices of a nucleon i. The operator
�IV has to be odd under a time reversal transformation. While class (I) forces are isospin-invariant, all
other classes (II), (III) and (IV) are isospin-breaking. Class (II) forces, VII, maintain charge symmetry
but break charge independence. They are usually referred to as charge independence breaking (CIB)
forces. Charge symmetry represents invariance under reflection about the 1-2 plane in charge space.
The charge symmetry operator Pcs transforms proton and neutron states into each other and is given
by Pcs = ei⇡T2 with T ⌘

P

i ⌧ i/2 being the total isospin operator. Class (III) forces break charge
symmetry but do not lead to isospin mixing in the NN system, i.e. they do not give rise to transitions
between isospin-singlet and isospin-triplet two-nucleon states. Finally, class (IV) forces break charge
symmetry and cause isospin mixing in the NN system.

Exercise: show that class-III two-nucleon forces do not lead to isospin mixing in the two-nucleon
system, i.e. they commute with the operator T 2. Does this still hold true for systems with three and
more nucleons?

Let us now discuss the position-spin structure of the potential. For the sake of simplicity, I restrict
myself to the isospin-invariant case. The available vectors are given by the position, momentum and spin
operators for individual nucleons: ~r1, ~r2, ~p1, ~p2, ~�1, ~�2. The translational and Galilean invariance of the
potential implies that it may only depend on the relative distance between the nucleons, ~r ⌘ ~r1 � ~r2,
and the relative momentum, ~p ⌘ (~p1 � ~p2)/2. Further constraints due to (i) rotational invariance,
(ii) invariance under a parity operation, (iii) time reversal invariance, (iv) hermiticity as well as (v)
invariance with respect to interchanging the nucleon labels, 1 $ 2, lead to the following operator form
of the potential [7]:

n

1spin, ~�1 · ~�2, S12(~r ), S12(~p ), ~L · ~S, (~L · ~S )2
o

⇥ {1isospin, ⌧ 1 · ⌧ 2} , (2.2)

where ~L ⌘ ~r ⇥ ~p, ~S ⌘ (~�1 + ~�2)/2 and S12(~x ) ⌘ 3~�1 · x̂~�2 · x̂� ~�1 · ~�2 with x̂ ⌘ ~x/|~x |. The operators
entering the above equation are multiplied by scalar operator-like functions that depend on r2, p2 and
L2.

Throughout this work, two-nucleon observables will be computed by solving the Lippmann-Schwinger
equation in momentum space. It is, therefore, instructive to look at the momentum-space representation
of the potential, V (~p 0, ~p ) ⌘ h~p 0|V |~p i, with ~p and ~p 0 denoting the two-nucleon center of mass momenta
before and after the interaction takes place. Following the same logic as above, the most general form
of the potential potential in momentum space can be shown to be:

n

1spin, ~�1 · ~�2, S12(~q ), S12(~k ), i~S · ~q ⇥ ~k, ~�1 · ~q ⇥ ~k ~�2 · ~q ⇥ ~k
o

⇥ {1isospin, ⌧ 1 · ⌧ 2} , (2.3)

4

Higher orders of
?

How to choose what 
to include?

Order by order in a power 
expansion, the 
uncertainties are of order 
of  

1. QCD symmetries are 
consistently respected 
2. Systematic expansion (order 
by order you know exactly the 
terms to be included)  
3. Theoretical errors

Phenomen. potentialsChiral potentials

1. QCD symmetries are not 
respected 
2. Expansion determined by 
phenomenology (add whatever 
you need). A lot of freedom  

3. Errors can’t be estimated
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Chiral potentials: why?

1. QCD symmetries are 
consistently respected 
2. Systematic expansion (order 
by order you know exactly the 
terms to be included) 
3. Theoretical errors 
4. Two- and three- body forces 
belong to the same framework

Phenomen. potentialsChiral potentials

1. QCD symmetries are not 
respected 
2. Expansion determined by 
phenomenology (add whatever 
you need). A lot of freedom  

3. Errors can’t be estimated 
4. Two- and three- body forces 
are not related one to each 
other

Many-body !
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Chiral potentials: why?

1. QCD symmetries are 
consistently respected 
2. Systematic expansion (order 
by order you know exactly the 
terms to be included)  
3. Theoretical errors 
4. Two- and three- body forces 
belong to the same framework 

Difficult (hard calculations)

Phenomen. potentialsChiral potentials

1. QCD symmetries are not 
respected 
2. Expansion determined by 
phenomenology (add whatever 
you need). A lot of freedom  

3. Errors can’t be estimated 
4. Two- and three- body forces 
are not related one to each 
other 

Easy (not always...)
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Chiral potentials: why?
Phenomen. potentialsChiral potentials

Two-body data may be 
sufficient; many-body forces 
as last resort

Many-body data needed and 
many-body forces inevitable

Exploit divergences (cutoff 
dependence as tool)

Power counting determines 
diagrams and truncation  
error

© Adapted from R. 
Furnstahl

Avoid (hide) divergences

Choose diagrams by  
intuition
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How to build a chiral potential 
Problems with nucleons: cutoffs

Usually one regulates the integrals and then removes the 
dependence on the regularization parameters (scales, cutoffs) by 
renormalization. In the end, the theory and its predictions do not 
depend on cutoffs or renormalization scales. 

In contrast, EFTs are renormalized by counter terms (contact 
terms) that are introduced order by order in increasing numbers. 
In the nuclear case the potential has validity only for momenta 
smaller than the chiral symmetry breaking scale Λχ ∼ 1GeV.  

The cutoff independence should be examined for cutoffs below 
the hard scale and not beyond. 



4 R. Machleidt

gluons, the nuclear force is a very complicated problem that, nevertheless, can be
attacked with brute computing power on a discretized, Euclidean space-time lattice
(known as lattice QCD). In a recent study [15], the neutron-proton scattering lengths
in the singlet and triplet S-waves have been determined in fully dynamical lattice
QCD. This result is then extrapolated to the physical pion mass with the help of
chiral perturbation theory. The pion mass of 354 MeV is still too large to allow for
reliable extrapolations, but the feasibility has been demonstrated and more progress
can be expected for the near future. In a lattice calculation of a very di↵erent kind,
the NN potential was studied [16]. The central part of the potential shows a repul-
sive core plus attraction of intermediate range. This is a very promising result, but it
must be noted that also in this investigation still rather large pion masses are being
used. In any case, advanced lattice QCD calculations are under way and continuously
improved. However, since these calculations are very time-consuming and expensive,
they can only be used to check a few representative key-issues. For everyday nuclear
structure physics, a more e�cient approach is needed.

The e�cient approach is an e↵ective field theory. For the development of an EFT,
it is crucial to identify a separation of scales. In the hadron spectrum, a large gap
between the masses of the pions and the masses of the vector mesons, like ⇢(770) and
!(782), can clearly be identified. Thus, it is natural to assume that the pion mass
sets the soft scale, Q ⇠ m⇡, and the rho mass the hard scale, ⇤� ⇠ m⇢, also known as
the chiral-symmetry breaking scale. This is suggestive of considering an expansion in
terms of the soft scale over the hard scale, Q/⇤�. Concerning the relevant degrees of
freedom, we noticed already that, for the ground state and the low-energy excitation
spectrum of an atomic nucleus as well as for conventional nuclear reactions, quarks and
gluons are ine↵ective degrees of freedom, while nucleons and pions are the appropriate
ones. To make sure that this EFT is not just another phenomenology, it must have a
firm link with QCD. The link is established by having the EFT observe all relevant
symmetries of the underlying theory. This requirement is based upon a ‘folk theorem’
by Weinberg [9]:

If one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix con-
sistent with analyticity, perturbative unitarity, cluster decomposition, and
the assumed symmetry principles.

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom (DOF) appropriate
for (low-energy) nuclear physics. Soft scale: Q ⇠ m⇡, hard scale: ⇤� ⇠ m⇢ ⇠ 1
GeV; DOF: pions and nucleons.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how
they are broken: explicitly and spontaneously broken chiral symmetry (sponta-
neous symmetry breaking generates the pions as Goldstone bosons).

3. Construct the most general Lagrangian consistent with those symmetries and
symmetry breakings, see Ref. [13].

4. Design an organizational scheme that can distinguish between more and less
important contributions: a low-momentum expansion, (Q/⇤�)⌫ , with ⌫ deter-
mined by ‘power counting’. For an irreducible diagram that involves A nucleons,
we have:

⌫ = �2 + 2A� 2C + 2L+
X

i

�i . (1)
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How to build a chiral potential
Following Machleidt

Figure 5: Leading pion loop contribution to the nucleon self energy. Solid line represents the nucleon.

and is sometimes referred to as chiral vielbein. The derivative of the nucleon field, @µN , does not
transform covariantly, i.e. @µN ! (@µN)0 6= h@µN since the compensator field h does, in general,
depend on space-time (through its dependence on U). The covariant derivative of the nucleon field
DµN , DµN ! (DµN)0 = hDµN , is given by

DµN ⌘ (@µ + �µ)N , with �µ ⌘ 1

2

⇣

u†@µu+ u@µu
†
⌘

=
i

4F 2
⌧ · ⇡ ⇥ @µ⇡ +O(⇡4) . (3.45)

The so-called connection �µ can be used to construct higher covariant derivatives of the pion field, for
example:

uµ⌫ ⌘ @µu⌫ + [�µ, u⌫ ] . (3.46)

To first order in the derivatives, the most general pion-nucleon Lagrangian takes the form [37]

L(1)
⇡N = N̄

⇣

i�µDµ �m+
gA
2
�µ�5uµ

⌘

N , (3.47)

where m and gA are the bare nucleon mass and the axial-vector coupling constant and the superscript
of L⇡N denotes the power of the soft scale Q. Contrary to the pion mass, the nucleon mass does
not vanish in the chiral limit and introduces an additional hard scale in the problem. Consequently,
terms proportional to D0 and m in Eq. (3.47) are individually large. It can, however, be shown that
(i�µDµ �m)N ⇠ O(Q) [38]. The appearance of the additional hard scale associated with the nucleon
mass invalidates the power counting for dimensionally regularized expressions since the contributions
from loop integrals involving nucleon propagators are not automatically suppressed. To see this consider
the correction to the nucleon mass mN due to the pion loop shown in Fig. 5. Assuming that the nucleon
and pion propagators scale as 1/Q and 1/Q2, respectively, and taking into account Q4 from the loop
integration and Q2 from the derivatives entering the gA-vertices, the pion loop contribution to the
nucleon self energy ⌃(p) is expected to be of the order ⇠ Q3. Consequently, the corresponding nucleon
mass shift �mN = ⌃(mN ) is expected to be / M3

⇡ (since no other soft scale is left). Explicit calculation,
however, shows that the resulting nucleon mass shift does not vanish in the chiral limit [37]:

�mN

�

�

loop, rel

M!0
= �3g2Am

3

F 2

✓

L(µ) +
1

32⇡2
ln

m2

µ2

◆

+O(d� 4) , (3.48)

where the quantity L(µ) is defined in Eq. (3.40). The result in Eq. (3.48) implies that the nucleon mass
receives a contribution which is formally of the order ⇠ m (m/4⇡F )2 and is not suppressed compared

to m. The bare nucleon mass m that enters the lowest-order Lagrangian L(1)
⇡N gets renormalized. This

is in contrast to the purely mesonic sector where loop contributions are always suppressed by powers of

20

Figure 5: Leading pion loop contribution to the nucleon self energy. Solid line represents the nucleon.

and is sometimes referred to as chiral vielbein. The derivative of the nucleon field, @µN , does not
transform covariantly, i.e. @µN ! (@µN)0 6= h@µN since the compensator field h does, in general,
depend on space-time (through its dependence on U). The covariant derivative of the nucleon field
DµN , DµN ! (DµN)0 = hDµN , is given by

DµN ⌘ (@µ + �µ)N , with �µ ⌘ 1

2

⇣

u†@µu+ u@µu
†
⌘

=
i

4F 2
⌧ · ⇡ ⇥ @µ⇡ +O(⇡4) . (3.45)

The so-called connection �µ can be used to construct higher covariant derivatives of the pion field, for
example:

uµ⌫ ⌘ @µu⌫ + [�µ, u⌫ ] . (3.46)

To first order in the derivatives, the most general pion-nucleon Lagrangian takes the form [37]

L(1)
⇡N = N̄

⇣

i�µDµ �m+
gA
2
�µ�5uµ

⌘

N , (3.47)

where m and gA are the bare nucleon mass and the axial-vector coupling constant and the superscript
of L⇡N denotes the power of the soft scale Q. Contrary to the pion mass, the nucleon mass does
not vanish in the chiral limit and introduces an additional hard scale in the problem. Consequently,
terms proportional to D0 and m in Eq. (3.47) are individually large. It can, however, be shown that
(i�µDµ �m)N ⇠ O(Q) [38]. The appearance of the additional hard scale associated with the nucleon
mass invalidates the power counting for dimensionally regularized expressions since the contributions
from loop integrals involving nucleon propagators are not automatically suppressed. To see this consider
the correction to the nucleon mass mN due to the pion loop shown in Fig. 5. Assuming that the nucleon
and pion propagators scale as 1/Q and 1/Q2, respectively, and taking into account Q4 from the loop
integration and Q2 from the derivatives entering the gA-vertices, the pion loop contribution to the
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At first order

Paolo Finelli Corso di Teoria delle Forze Nucleari (2012)

π π
N

� 1

4f2
⇡

( ̄�µ~⌧ ) ·
⇣

~�⇥ (@µ~�)
⌘

Weinberg-Tomozawa
coupling

π
N

+
1

2f⇡
( ̄�µ�5~⌧ )@µ~�

All interactions are switched off for vanishing momenta

expand to higher orders in the fields ~�, which then would lead to loops etc. This framework is

called chiral perturbation theory. We can also add an explicit symmetry breaking term to

introduce a mass term for the pion fields L
break

= �1/2m2
⇡

~�2. The correct combination of U

matrices is

� ⇠ q̄q

L
�SB

=
f2
⇡

m2
⇡

4
Tr

z }| {

⇣

U † + U
⌘

(2.65)

' f2
⇡

m2
⇡

4
Tr

 

1 �
~�2

f2
⇡

+ . . .

!

= �m2
⇡

2
~�2 . (2.66)

2.2.1 Summary

We have replaced the particle content in the linear representation, an isospin singlet � plus a

triplet ~⇡ transforming linearly as a bidoublet under the full chiral symmetry, with the one of the

non-linear representation, a singlet (under the full chiral symmetry), plus three scalars ~� which

transform non-linearly under the chiral symmetry (note that the quantity U transforms linearly

under the chiral symmetry, but the fields ~� transform non-linearly). In this situation, we can

actually decouple the singlet in a chirally invariant way. This can be done by simply freezing its

54 [27/04/2012]

between pions becomes weak at vanishingly low energies and would even completely disappear if chiral
symmetry were exact. This turns out to be a general feature of Goldstone bosons and is not restricted
to the SU(2)L⇥SU(2)R group. This allows to compute low-energy hadronic observables in a systematic
way via the chiral expansion, i.e. the dual expansion in powers of momenta and quark masses about
the kinematical point corresponding to the free theory (assuming that the actual quark masses in the
real world are low enough for such an expansion to converge).

3.4 Inclusion of nucleons

So far we only discussed interactions between Goldstone bosons. We now extend these considerations
to include nucleons. More precisely, we are interested in describing reactions involving pions with
external momenta of the order of M⇡ and (essentially) non-relativistic nucleons whose three-momenta
are of the order of M⇡. Similarly to the triplet of pion fields, the isospin doublet of the nucleon fields
should transform nonlinearly under the chiral SU(2)L⇥SU(2)R but linearly under the vector subgroup
SU(2)V . The unitary matrix U introduced in Eq. (3.26) is less useful when constructing the Lagrangian
involving the nucleons. It is more convenient to introduce its square root u, U = u2. The transformation
properties of u under chiral rotations can be read o↵ from Eq. (3.27):

u ! u0 =
p
LuR† ⌘ Luh�1 = huR† , (3.42)

where I have introduced the unitary matrix h = h(L,R,U) given by h =
p
LUR†�1

L
p
U which is

sometimes referred to as a compensator field. The last equality in Eq. (3.42) follows from U 0 = u0u0 =
Luh�1u0 = LuuR†. Notice that since pions transform linearly under isospin rotations corresponding to
L = R = V with U ! U 0 = V UV † and, accordingly, u ! u0 = V uV †, the compensator field in this
particular case becomes U -independent and coincides with V .

Exercise: calculate the explicit form of the compensator field h(L,R,⇡) for infinitesimal chiral
transformations using Eq. (3.32) and keeping only terms that are at most linear in the pion fields.
Verify that h indeed reduces to the isospin transformation for L = R = V .

It can be shown that {U, N} define a nonlinear realization of the chiral group if one demands that

N ! N 0 = hN . (3.43)

I do not give here the proof of this statement and refer the interesting reader to Ref. [23, 24]. Moreover,
this nonlinear realization obviously fulfills the desired feature that pions and nucleons transform linearly
under isospin rotations. Similarly to the purely Goldstone boson case, one can show that all other
possibilities to introduce the nucleon fields are identical with the above realization modulo nonlinear field
redefinitions. The most general chiral invariant Lagrangian for pions and nucleons can be constructed
from covariantly transforming building blocks, i.e. Oi ! O0

i = hOih�1, by writing down all possible
terms of the form N̄O1 . . . OnN . The covariant (first) derivative of the pion field is given by

uµ ⌘ iu†(@µU)u† = �⌧ · @µ⇡
F

+O(⇡3) ! u0µ = huµh
�1 , (3.44)

19



Q

⇤�

OPTICAL POTENTIALS FROM CHIRAL FORCES DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

 32

How to build a chiral potential
Following Machleidt

4 R. Machleidt

gluons, the nuclear force is a very complicated problem that, nevertheless, can be
attacked with brute computing power on a discretized, Euclidean space-time lattice
(known as lattice QCD). In a recent study [15], the neutron-proton scattering lengths
in the singlet and triplet S-waves have been determined in fully dynamical lattice
QCD. This result is then extrapolated to the physical pion mass with the help of
chiral perturbation theory. The pion mass of 354 MeV is still too large to allow for
reliable extrapolations, but the feasibility has been demonstrated and more progress
can be expected for the near future. In a lattice calculation of a very di↵erent kind,
the NN potential was studied [16]. The central part of the potential shows a repul-
sive core plus attraction of intermediate range. This is a very promising result, but it
must be noted that also in this investigation still rather large pion masses are being
used. In any case, advanced lattice QCD calculations are under way and continuously
improved. However, since these calculations are very time-consuming and expensive,
they can only be used to check a few representative key-issues. For everyday nuclear
structure physics, a more e�cient approach is needed.

The e�cient approach is an e↵ective field theory. For the development of an EFT,
it is crucial to identify a separation of scales. In the hadron spectrum, a large gap
between the masses of the pions and the masses of the vector mesons, like ⇢(770) and
!(782), can clearly be identified. Thus, it is natural to assume that the pion mass
sets the soft scale, Q ⇠ m⇡, and the rho mass the hard scale, ⇤� ⇠ m⇢, also known as
the chiral-symmetry breaking scale. This is suggestive of considering an expansion in
terms of the soft scale over the hard scale, Q/⇤�. Concerning the relevant degrees of
freedom, we noticed already that, for the ground state and the low-energy excitation
spectrum of an atomic nucleus as well as for conventional nuclear reactions, quarks and
gluons are ine↵ective degrees of freedom, while nucleons and pions are the appropriate
ones. To make sure that this EFT is not just another phenomenology, it must have a
firm link with QCD. The link is established by having the EFT observe all relevant
symmetries of the underlying theory. This requirement is based upon a ‘folk theorem’
by Weinberg [9]:

If one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix con-
sistent with analyticity, perturbative unitarity, cluster decomposition, and
the assumed symmetry principles.

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom (DOF) appropriate
for (low-energy) nuclear physics. Soft scale: Q ⇠ m⇡, hard scale: ⇤� ⇠ m⇢ ⇠ 1
GeV; DOF: pions and nucleons.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how
they are broken: explicitly and spontaneously broken chiral symmetry (sponta-
neous symmetry breaking generates the pions as Goldstone bosons).

3. Construct the most general Lagrangian consistent with those symmetries and
symmetry breakings, see Ref. [13].

4. Design an organizational scheme that can distinguish between more and less
important contributions: a low-momentum expansion, (Q/⇤�)⌫ , with ⌫ deter-
mined by ‘power counting’. For an irreducible diagram that involves A nucleons,
we have:

⌫ = �2 + 2A� 2C + 2L+
X

i

�i . (1)Soft scale (pπ, mπ)

Hard scale (Λ∼4πfπ, MN)
Contrary to the pion mass, the nucleon mass 
does not vanish in the chiral limit and introduces 
an additional hard scale in the problem 
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How to build a chiral potential
Following Machleidt

4 R. Machleidt

gluons, the nuclear force is a very complicated problem that, nevertheless, can be
attacked with brute computing power on a discretized, Euclidean space-time lattice
(known as lattice QCD). In a recent study [15], the neutron-proton scattering lengths
in the singlet and triplet S-waves have been determined in fully dynamical lattice
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If one writes down the most general possible Lagrangian, including all
terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation
theory, the result will simply be the most general possible S-matrix con-
sistent with analyticity, perturbative unitarity, cluster decomposition, and
the assumed symmetry principles.

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom (DOF) appropriate
for (low-energy) nuclear physics. Soft scale: Q ⇠ m⇡, hard scale: ⇤� ⇠ m⇢ ⇠ 1
GeV; DOF: pions and nucleons.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how
they are broken: explicitly and spontaneously broken chiral symmetry (sponta-
neous symmetry breaking generates the pions as Goldstone bosons).

3. Construct the most general Lagrangian consistent with those symmetries and
symmetry breakings, see Ref. [13].

4. Design an organizational scheme that can distinguish between more and less
important contributions: a low-momentum expansion, (Q/⇤�)⌫ , with ⌫ deter-
mined by ‘power counting’. For an irreducible diagram that involves A nucleons,
we have:

⌫ = �2 + 2A� 2C + 2L+
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i

�i . (1)

where ⇤+ = (p/ +m)/(2m) is a projection operator on the states of positive energy. The advantage of
the heavy-baryon formulation (HBChPT) compared to the relativistic one can be illustrated using the
previous example of the leading one-loop correction to the nucleon mass

�mN

�

�

loop,HB
= �3g2AM

3
⇡

32⇡F 2
. (3.55)

Contrary to the relativistic CHPT result in Eq. (3.48), the loop correction in HBChPT is finite (in DR)
and vanishes in the chiral limit. The parameters in the lowest-order Lagrangian do not get renormalized
due to higher-order corrections which are suppressed by powers of Q/⇤�. Notice further that Eq. (3.55)
represents the leading contribution to the nucleon mass which is nonanalytic in quark masses. It agrees
with the result obtained by Gasser et al. based on the relativistic Lagrangian in Eq. (3.47) [37]. In
general, the power ⌫ of a soft scale Q for connected contributions to the scattering amplitude can be
read o↵ from the extension of Eq. (3.41) to the single-nucleon sector which has the form:

⌫ = 1 + 2L+
X

i

Vi�i , with �i = �2 +
1

2
ni + di , (3.56)

with ni being the number of nucleon field operators at a vertex i with the chiral dimension �i. Notice
that no closed fermion loops appear in the heavy-baryon approach, so that exactly one nucleon line
connecting the initial and final states runs through all diagrams in the single-baryon sector.

The heavy-baryon formulation outlined above can be straightforwardly extended to higher orders in
the chiral expansion. At lowest orders in the derivative expansion, the e↵ective Lagrangian L�i for
pions and nucleons takes the form [44]:

L(0)
⇡N = N̄ [i v ·D + gA u · S]N ,

L(1)
⇡N = N̄

⇥

c1 h�+i+ c2 (v · u)2 + c3 u · u+ c4 [S
µ, S⌫ ]uµu⌫ + c5h�̂+i

⇤

N ,

L(2)
⇡N = N̄



1

2m
(v ·D)2 � 1

2m
D ·D + d16S · uh�+i+ id18S

µ[Dµ, ��] + . . .

�

N ,

L(0)
⇡NN = � 1

2
CS(N̄N)(N̄N) + 2CT (N̄SN) · (N̄SN) ,

L(1)
⇡NN =

D

2
(N̄N)(N̄S · uN) ,

L(2)
⇡NN = � C̃1

⇥

(N̄DN) · (N̄DN) + ((DN̄)N) · ((DN̄)N)
⇤

� 2(C̃1 + C̃2)(N̄DN) · ((DN̄)N)� C̃2(N̄N) ·
⇥

(D2N̄)N + N̄D2N
⇤

+ . . . ,

L(1)
⇡NNN = � E

2
(N̄N)(N̄⌧N) · (N̄⌧N) . (3.57)

Here, the ellipses refer to terms which do not contribute to the nuclear forces up to next-to-next-to-

leading order (N2LO) except for L(2)
⇡NN where I have shown only a few terms in order to keep the

presentation compact. Further, here and in what follows I omit the subscript v of the nucleon field
operators. The quantity �+ = u†�u† + u�†u with � = 2BM involves the explicit chiral symmetry
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Strong Inter-Nucleon Interactions 5

where
�i ⌘ di +

ni

2
� 2 , (2)

with C the number of separately connected pieces and L the number of loops
in the diagram; di is the number of derivatives or pion-mass insertions and ni

the number of nucleon fields (nucleon legs) involved in vertex i; the sum runs
over all vertices i contained in the diagram under consideration. Note that for
an irreducible NN diagram (A = 2, C = 1), the power formula collapses to the
very simple expression

⌫ = 2L+
X

i

�i . (3)

5. Guided by the expansion, calculate Feynman diagrams for the problem under
consideration to the desired accuracy (see next Section).

3 The hierarchy of nuclear forces in chiral EFT

Chiral perturbation theory and power counting imply that nuclear forces emerge as
a hierarchy controlled by the power ⌫, Fig. 1.

In lowest order, better known as leading order (LO, ⌫ = 0), the NN amplitude is
made up by two momentum-independent contact terms (⇠ Q0), represented by the
four-nucleon-leg graph with a small-dot vertex shown in the first row of Fig. 1, and
static one-pion exchange (1PE), second diagram in the first row of the figure. This is,
of course, a rather rough approximation to the two-nucleon force (2NF), but accounts
already for some important features. The 1PE provides the tensor force, necessary
to describe the deuteron, and it explains NN scattering in peripheral partial waves
of very high orbital angular momentum. At this order, the two contacts which con-
tribute only in S-waves provide the short- and intermediate-range interaction which
is somewhat crude.

In the next order, ⌫ = 1, all contributions vanish due to parity and time-reversal
invariance.

Therefore, the next-to-leading order (NLO) is ⌫ = 2. Two-pion exchange (2PE)
occurs for the first time (“leading 2PE”) and, thus, the creation of a more sophis-
ticated description of the intermediate-range interaction is starting here. Since the
loop involved in each pion-diagram implies already ⌫ = 2 [cf. Eq. (3)], the vertices
must have �i = 0. Therefore, at this order, only the lowest order ⇡NN and ⇡⇡NN
vertices are allowed which is why the leading 2PE is rather weak. Furthermore, there
are seven contact terms of O(Q2), shown by the four-nucleon-leg graph with a solid
square, which contribute in S and P waves. The operator structure of these con-
tacts include a spin-orbit term besides central, spin-spin, and tensor terms. Thus,
essentially all spin-isospin structures necessary to describe the two-nucleon force phe-
nomenologically have been generated at this order. The main deficiency at this stage
of development is an insu�cient intermediate-range attraction.

This problem is finally fixed at order three (⌫ = 3), next-to-next-to-leading order
(NNLO). The 2PE involves now the two-derivative ⇡⇡NN seagull vertices (propor-
tional to the ci LECs) denoted by a large solid dot in Fig. 1. These vertices represent
correlated 2PE as well as intermediate �(1232)-isobar contributions. It is well-known
from the meson phenomenology of nuclear forces [7, 8] that these two contributions
are crucial for a realistic and quantitative 2PE model. Consequently, the 2PE now
assumes a realistic size and describes the intermediate-range attraction of the nuclear
force about right. Moreover, first relativistic corrections come into play at this order.
There are no new contacts.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-
nucleon forces are created on an equal footing and emerge in increasing number as we
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the soft scale and the parameters F and B in the lowest-order Lagrangian L(2)
⇡ remain unchanged by

higher-order corrections (if mass-independent regularization is used). I emphasize, however, that even
though DR expressions do not automatically obey the dimensional power counting with nucleons being
treated relativistically, the proper scaling in agreement with naive dimensional analysis can be restored
via appropriately chosen renormalization conditions [39]. Stated di↵erently, one can (and should in
order for the EFT to be useful) choose renormalization conditions in such a way, that all momenta
flowing through diagrams are e↵ectively of the order of Q. Another, simpler way to ensure the proper
power counting exploits the so-called heavy-baryon formalism [40, 41] which is closely related to the
nonrelativistic expansion due to Foldy and Wouthuysen [42] and is also widely used in heavy-quark
e↵ective field theories. The idea is to decompose the nucleon four-momentum pµ according to

pµ = mvµ + kµ , (3.49)

with vµ the four-velocity of the nucleon satisfying v2 = 1 and kµ its small residual momentum, v ·k ⌧ m.
One can thus decompose the nucleon field N in to the velocity eigenstates

Nv = eimv·xP+
v N , hv = eimv·xP�

v N , (3.50)

where P±
v = (1 ± �µvµ)/2 denote the corresponding projection operators. In the nucleon rest-frame

with vµ = (1, 0, 0, 0), the quantities Nv and hv coincide with the familiar large and small components
of the free positive-energy Dirac field (modulo the modified time dependence). One, therefore, usually

refers to Nv and hv as to the large and small components of N . The relativistic Lagrangian L(1)
⇡N in

Eq. (3.47) can be expressed in terms of Nv and hv as:

L(1)
⇡N = N̄vANv + h̄vBNv + N̄v�0B†�0hv � h̄vChv , (3.51)

where

A = i(v ·D) + gA(S · u) , B = ��5
h

2i(S ·D) +
gA
2
(v · u)

i

, C = 2m+ i(v ·D) + gA(S · u) , (3.52)

and Sµ = i�5�µ⌫v⌫ is the nucleon spin operator. One can now use the equations of motion for the
large and small component fields to completely eliminate hv from the Lagrangian. Utilizing the more
elegant path integral formulation [43], the heavy degrees of freedom can be integrated out performing
the Gaussian integration over the (appropriately shifted) variables hv, h̄v. This leads to the e↵ective
Lagrangian of the form [41]

L⇡N = N̄v

h

A+ (�0B†�0)C�1B
i

Nv = N̄v [i(v ·D) + gA(S · u)]Nv +O
✓

1

m

◆

. (3.53)

Notice that the (large) nucleon mass term has disappeared from the Lagrangian, and the dependence on
m in Le↵

⇡N resides entirely in new vertices suppressed by powers of 1/m. The heavy-baryon propagator of
the nucleon is simply 1/(v ·k+ i✏) and can be obtained from the 1/m expansion of the Dirac propagator
using Eq. (3.49) and assuming v · k ⌧ m:

p/ +m

p2 �m2 + i✏
=

⇤+

v · k + i✏
+O

�

m�1
�

, (3.54)
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The nuclear force at large distances is governed by the exchange 
of one or multiple pions. In the chiral limit of vanishing quark 
masses one is expanding around, these contributions would have 
an infinitely long range. This long-range part of the nuclear force 
is strongly constrained by the chiral symmetry of QCD and can 
be rigorously derived in chiral perturbation theory.

,UUHGXFLEOH�FRQWULEXWLRQV�FDQ�EH�FDOFX�
ODWHG��XVLQJ�&K37

5HGXFLEOH�FRQWULEXWLRQV�HQKDQFHG�DQG�
VKRXOG�EH�VXPPHG�XS�WR�LQILQLWH�RUGHU

Weinberg‘s approach

Nuclear chiral EFT à la Weinberg
Weinberg ‘90,‘91 

LQ
WH
UQ
XF
OH
RQ

SR
WH
QW
LD
O��
>0
H9

@

VHSDUDWLRQ EHWZHHQ WKH QXFOHRQV >IP@

chiral expansion of 
multi-pion exchange

zero-range operators

˴-symm. constrainedparametrized

Structure of chiral nuclear forces

ಧ KRZ�WR�GHULYH�QXFOHDU�IRUFHV�IURP��������"



OPTICAL POTENTIALS FROM CHIRAL FORCES DIP. FISICA ED ASTRONOMIA - UNIVERSITÀ DI BOLOGNA

 35

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N3LO
(Q/Λχ)4

…

+... +... +...

+...

2N Force 3N Force 4N Force

LO

(Q/Λχ)0

NLO

(Q/Λχ)2

NNLO

(Q/Λχ)3

N3LO
(Q/Λχ)4

…

Medium-range

Long-range

r

Po
te

nt
ia

l

The short-range part of the 
nuclear force is driven by 
physics not resolved 
explicitly in reactions with 
typical nucleon momenta 
of the order of Mπc. It can 
be mimicked by zero-range 
contact interactions with 
an increasing number of 
derivatives. Chiral 
symmetry of QCD does not 
provide any constraints for 
contact interactions except 
for their quark mass 
dependence.
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Short-range

The nuclear force at large distances is governed by the exchange 
of one or multiple pions. In the chiral limit of vanishing quark 
masses one is expanding around, these contributions would have 
an infinitely long range. This long-range part of the nuclear force 
is strongly constrained by the chiral symmetry of QCD and can 
be rigorously derived in chiral perturbation theory.
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4.4 Chiral EFT for two nucleons with perturbative pions

We have seen in the previous section how the EFT without explicit pions can be organized to describe
strongly interacting nucleons at low energy. The limitation in energy of this approach, cf. the discussion
in section 4.2, appears to be too strong for most nuclear physics applications. To go to higher energies
it is necessary to include pions as explicit degrees of freedom. I have already outlined in section 4.1 one
possible way to extend ChPT to the few-nucleon sector following Weinberg’s original proposal [4, 5].
In this approach, the nonperturbative dynamics is generated by iterating the lowest-order two-nucleon

potential V (0)
2N which subsumes irreducible (i.e. non-iterative) contributions from tree diagrams with the

leading vertices (i.e. �i = 0), see Eq. (4.58). The only possible contributions are due to derivative-less
contact interaction and the static 1⇡-exchange, so that the resulting potential reads:

V (0)
2N = � g2A

4F 2
⇡

~�1 · ~q ~�2 · ~q
~q 2 +M2

⇡

⌧ 1 · ⌧ 2 + CS + CT~�1 · ~�2 . (4.85)

Here, ~�i (⌧ i) are the Pauli spin (isospin) matrices of the nucleon i, ~q = ~p 0�~p is the nucleon momentum
transfer and ~p (~p 0) refers to initial (final) nucleon momenta in the CMS. As pointed out in section

4.1, the justification for resumming V (0)
2N to all orders in the LS equation is achieved in the Weinberg

approach via a fine tuning of the nucleon mass, see Eq. (4.63). With this counting rule, it follows

immediately that every iteration of V (0)
2N in Eq. (4.64) generates a contribution of the order Q0/⇤�. On

the other hand, in the pionless EFT with unnaturally large scattering length outlined in section 4.3, the
non-perturbative resummation of the amplitude was enforced by fine-tuning the LECs accompanying
the contact interactions while treating the nucleon mass on the same footing as all other hard scales.
While these two scenarios are essentially equivalent in the pionless case, they lead to an important
di↵erence in organizing EFT with explicit pions. The approach due to Kaplan, Savage and Wise
(KSW) [61, 62] represents a straightforward generalization of the pionless EFT to perturbatively include
diagrams with exchange of one or more pions. The scaling of the contact interactions is assumed to be
the same as in pionless EFT (provided one uses DR with PDS or an equivalent scheme to regularize
divergent loop integrals). Notice that in contrast to pionless EFT, the pion mass is treated as a soft
scale with Q ⇠ M⇡ ⇠ a�1. The only new ingredients in the calculation of the amplitude up to next-to-
leading order in the KSW expansion are given by the dressed 1⇡-exchange potential and derivative-less
interaction / M2

⇡ , see Fig. 10. 2⇡-exchange is suppressed and starts to contribute at N2LO. At each
order in the perturbative expansion, the amplitude is made independent on the renormalization scale
by an appropriate running of the LECs.9 Compact analytic expressions for the scattering amplitude
represent another nice feature of the KSW approach.

As explained in section 4.2, the appearance of a long-range interaction implies strong constraints on
the energy dependence of the amplitude and imposes certain correlations between the coe�cients in
the ERE (LETs). EFT with explicit pions aims at a correct description of non-analyticities in the scat-
tering amplitude associated with exchange of pions which in this framework represent truly long-range
phenomena. Thus, the correct treatment of the long-range interaction by including pions perturbatively

9Strictly speaking, an exact scale independence of the NLO amplitude in the KSW approach with explicit pions is
achieved at the cost of resumming a certain class of higher-order terms, see the discussion in Ref. [67].
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Fig. 3. Leading two-pion-exchange contributions to the NN interaction. Notation as in Fig. 1.

Munich [55,60,61] groups use covariant perturbation theory and dimensional regularization, but nevertheless, their works
differ substantially in detail. We will follow here the method chosen by the Munich group since we believe it to be the most
efficient and elegant one. In this approach, one starts with the relativistic versions of the ⇡N Lagrangians (cf. Section 2.2)
and sets up four-dimensional (covariant) loop integrals. Relativistic vertices and nucleon propagators are then expanded in
powers of 1/MN . The divergences that occur in conjunction with the four-dimensional loop integrals are treated by means
of dimensional regularization, a prescription which is consistent with chiral symmetry and power counting. The results de-
rived in this way are the same obtained when starting right away with the HB versions of the ⇡N Lagrangians. However,
as it turns out, the method used by the Munich group is more efficient in dealing with the rather tedious calculations and
particularly useful in conjunction with the planar box diagram. To give the reader a taste of the rather involved calculations,
we present in Appendix B the explicit evaluation of the NLO diagrams shown in Fig. 3.

The results will be stated in terms of contributions to the momentum-space NN amplitude in the CMS, which takes the
general form

V (Ep 0, Ep) = VC + ⌧1 · ⌧2 WC + [ VS + ⌧1 · ⌧2 WS] E�1 · E�2 + [ VLS + ⌧1 · ⌧2 WLS] (�iES · (Eq ⇥ Ek))
+ [VT + ⌧1 · ⌧2 WT ] E�1 · Eq E�2 · Eq + [ V� L + ⌧1 · ⌧2 W� L ] E�1 · (Eq ⇥ Ek)E�2 · (Eq ⇥ Ek), (4.7)

where Ep 0 and Ep denote the final and initial nucleon momenta in the CMS, respectively; moreover,

Eq ⌘ Ep 0 � Ep is the momentum transfer,

Ek ⌘ 1
2
(Ep 0 + Ep) the average momentum,

ES ⌘ 1
2
(E�1 + E�2) the total spin,

(4.8)

and E�1,2 and ⌧1,2 are the spin and isospin operators, respectively, of nucleon 1 and 2. For on-energy-shell scattering, V↵ and
W↵ (↵ = C, S, LS, T , � L) can be expressed as functions of q and k (with q ⌘ |Eq| and k ⌘ |Ek|), only.

Our notation and conventions are similar to the ones used by the Munich group [55,60,61] except for two differences:
our spin–orbit potentials, VLS and WLS , differ by a factor of (+2) and all other potentials differ by a factor of (�1) from the
Munich amplitudes. Our definitions are more in tune with what is commonly used in nuclear physics.

In all expressions given below, we will state only the nonpolynomial contributions to the NN amplitude. Note, however,
that dimensional regularization typically generates also polynomial terms which are, in part, infinite or scale dependent
(cf. Appendix B). These polynomials are absorbed by the contact interactions to be discussed in a later section.

Next-to-leading order (NLO). The leading two-pion exchange appears at second order (⌫ = 2, next-to-leading order, NLO)
and is shown in Fig. 3. Since a loop creates already ⌫ = 2 [cf. Eq. (3.5)], the vertices involved at this order have index
�i = 0, i.e., they are from the leading order Lagrangian bL�=0, Eq. (2.65), where the ⇡N vertices carry only one derivative.
These vertices are denoted by small dots in the figures. The rather complicated evaluation of these diagrams is presented in
Appendix B.

Concerning the planar box diagram in Fig. 3, we should note that we include only the non-iterative part of this diagram
which is obtained by subtracting the iterated 1PE contribution Eq. (4.25) or (4.26), below, but usingM2

N/Ep ⇡ M2
N/Ep00 ⇡ MN

at this order (NLO). Summarizing all contributions from irreducible two-pion exchange at second order, one obtains:
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where
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q
ln

w + q
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(4.11)

and

w ⌘
q

4m2
⇡ + q2. (4.12)

As will be demonstrated in Section 4.2, below; this part of the 2PE is rather weak and insufficient to properly describe
the NN interaction at intermediate range.
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Due to parity, only even powers of Q are allowed. Thus, the expansion of the contact potential is formally given by

Vct = V (0)
ct + V (2)

ct + V (4)
ct + · · · , (4.37)

where the superscript denotes the power or order.
We will now present, one by one, the various orders of NN contact terms which result from the contact Lagrangians

presented in Section 2.3.

4.3.1. Zeroth order (LO)
The contact Lagrangian bL(0)

NN , Eq. (2.61), which is part of bL�=0, Eq. (2.65), leads to the following NN contact potential,

V (0)
ct (Ep0, Ep) = CS + CT E�1 · E�2, (4.38)

and, in terms of partial waves, we have

V (0)
ct (1S0) =eC1S0 = 4⇡ (CS � 3 CT )

V (0)
ct (3S1) =eC3S1 = 4⇡ (CS + CT ). (4.39)

4.3.2. Second order (NLO)
The contact Lagrangian bL(2)

NN , Eq. (2.62), which is part of bL�=2, Eq. (2.67), generates the following NN contact potential

V (2)
ct (Ep0, Ep) = C1 q2 + C2 k2 +

�

C3 q2 + C4 k2
�

E�1 · E�2 + C5

⇣

�iES · (Eq ⇥ Ek)
⌘

+ C6 (E�1 · Eq) (E�2 · Eq) + C7 (E�1 · Ek) (E�2 · Ek). (4.40)
The coefficients Ci used here in the contact potential are, of course, related to the coefficients C 0

i that occur in the Lagrangian
bL(2)
NN , Eq. (2.62). The relation, which is unimportant for our purposes, can be found in Refs. [54,64].
There are many ways to perform the partial-wave decomposition of the above potential. We perceive the method

presented by Erkelenz et al. [142] as the most elegant one. Thus, one obtains

V (2)
ct (1S0) = C1S0(p

2 + p02)

V (2)
ct (3P0) = C3P0 pp

0

V (2)
ct (1P1) = C1P1 pp

0

V (2)
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0
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2 + p02)

V (2)
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p2

V (2)
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p02

V (2)
ct (3P2) = C3P2 pp

0 (4.41)
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Contact terms
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Fig. 4. Two-pion-exchange contributions to the NN interaction at order three in small momenta (NNLO). Basic notation as in Fig. 1. Large solid dots denote
vertices from the Lagrangian bL�=1, Eq. (2.66), proportional to the LECs ci . Symbols with an open circles are relativistic 1/MN corrections which are also
part of bL�=1. Only a few representative examples of 1/MN corrections are shown. Note that all football diagrams shown in this figure vanish.

Next-to-next-to-leading order (NNLO). The two-pion-exchange diagrams of order three (⌫ = 3, next-to-next-to-leading
order, NNLO) are very similar to the ones of order two, except that they contain one insertion from bL�=1, Eq. (2.66). The
resulting contributions are typically either proportional to one of the low-energy constants ci or they contain a factor 1/MN .
Notice that relativistic 1/MN corrections derive from vertices and nucleon propagators. In Fig. 4, we show in row one the
diagrams with one vertex proportional to ci (large solid dot), and in row two and three a few representative graphs with a
1/MN correction (symbols with an open circle). The number of 1/MN correction graphs is large and not all are shown. Note
that all football diagrams vanish at this order, because the loop integrals involve odd powers of the time component of the
loop momentum. Again, the planar box diagram is corrected for a contribution from the iterated 1PE. If the iterative 2PE of
Eq. (4.25), below, is used, the expansion of the factorM2

N/Ep = MN � p2/2MN + · · · is applied and the term proportional to
(�p2/2MN) is subtracted from the third order box diagram contribution. Then, one obtains for the full third order [55]:
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This contribution to the 2PE is the crucial one, because it provides an intermediate-range attraction of proper strength
(Section 4.2). The isoscalar central potential, VC , is strong and attractive due to the LEC c3, which is negative and of large
magnitude (cf. Table 2). Via resonance saturation, c3 is associated with ⇡–⇡ correlations (‘� meson’) and virtual �-isobar
excitations, which create themost crucial contributions to 2PE in the framework of conventional meson theory [11,20]. The
configuration-space expressions, which correspond to the above momentum-space potentials, are given in Ref. [55], where
also a detailed comparison with meson-exchange potentials is conducted.
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Fig. 4. Two-pion-exchange contributions to the NN interaction at order three in small momenta (NNLO). Basic notation as in Fig. 1. Large solid dots denote
vertices from the Lagrangian bL�=1, Eq. (2.66), proportional to the LECs ci . Symbols with an open circles are relativistic 1/MN corrections which are also
part of bL�=1. Only a few representative examples of 1/MN corrections are shown. Note that all football diagrams shown in this figure vanish.

Next-to-next-to-leading order (NNLO). The two-pion-exchange diagrams of order three (⌫ = 3, next-to-next-to-leading
order, NNLO) are very similar to the ones of order two, except that they contain one insertion from bL�=1, Eq. (2.66). The
resulting contributions are typically either proportional to one of the low-energy constants ci or they contain a factor 1/MN .
Notice that relativistic 1/MN corrections derive from vertices and nucleon propagators. In Fig. 4, we show in row one the
diagrams with one vertex proportional to ci (large solid dot), and in row two and three a few representative graphs with a
1/MN correction (symbols with an open circle). The number of 1/MN correction graphs is large and not all are shown. Note
that all football diagrams vanish at this order, because the loop integrals involve odd powers of the time component of the
loop momentum. Again, the planar box diagram is corrected for a contribution from the iterated 1PE. If the iterative 2PE of
Eq. (4.25), below, is used, the expansion of the factorM2

N/Ep = MN � p2/2MN + · · · is applied and the term proportional to
(�p2/2MN) is subtracted from the third order box diagram contribution. Then, one obtains for the full third order [55]:
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Fig. 18. The three-nucleon force at NNLO. From left to right: 2PE, 1PE, and contact diagrams. Notation as in Fig. 1.

a b c d e

Fig. 19. Leading one-loop 3NF diagrams at N3LO. We show one representative example for each of five topologies, which are: (a) 2PE, (b) 1PE–2PE, (c)
ring, (d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.

Notice that Eq. (5.3) does not include a c2-term. Due to two time-derivatives, the contribution from the c2 vertex is
(Q/MN)2 suppressed and demoted by two orders. Note also that the 2PE 3NF does not contain any new parameters, because
the LECs c1, c3, and c4 appear already in the 2PE 2NF (Section 4.1.2) and are fixed by ⇡N and/or NN data.

The other two 3NF contributions shown in Fig. 18 are easily derived by taking the last two terms of the� = 1 Lagrangian,
Eq. (2.66), into account. The 1PE contribution is
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1PE = �D
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X
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q2j + m2
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and the 3N contact potential reads

V 3NF
ct = E

1
2

X

j6=k

⌧ j · ⌧k. (5.5)

These 3NF terms involve the two new parameters D and E, which do not appear in the 2N problem. There are many ways to
pin these two parameters down. In Ref. [71], the triton binding energy and the nd doublet scattering length 2and were used.
One may also choose the binding energies of 3H and 4He [98] or an optimal over-all fit of the properties of light nuclei [99].
Exploiting the consistency of interactions and currents in ChPT [207], the parameter D of the ⇡NNNN vertex involved in the
1PE 3NF can be constrained by p-wave pion-production data [208] or electroweak processes like the tritium �-decay [209]
or proton–proton fusion (p p ! d e+ ⌫e) [210]. Once D and E are fixed, the results for other 3N, 4N, etc. observables are
predictions.

The 3NF at NNLO has been applied in calculations of few-nucleon reactions [71,89–97], structure of light- and medium-
mass nuclei [98–101], and nuclear and neutron matter [102,103] with a good deal of success. Yet, the famous ‘Ay puzzle’ of
nucleon–deuteron scattering is not resolved [71,94]. When only 2NFs are applied, the analyzing power in p–3He scattering
is even more underpredicted than in p–d [74,211]. However, when the NNLO 3NF is added, the p–3He Ay substantially
improves (more than in p–d) [97]—but a discrepancy remains. Furthermore, the spectra of light nuclei leave room for
improvement [99].

We note that there are further 3NF contributions at NNLO, namely, the 1/MN corrections of the NLO 3NF diagrams
(Fig. 17). Some of these terms involve the vertices equations (A.49) and (A.50), and the 1/MN correction of the c4 vertex,
Eq. (A.52); others are due to higher order recoil corrections. Several of those contributions have been calculated by Coon
and Friar in 1986 [128]. These corrections are believed to be very small.

To summarize, the 3NF at NNLO is a remarkable contribution: It represents the leading many-body force within the
scheme of ChPT; it includes terms thatwere advocated already some 50 years ago; and it produces noticeable improvements
in few-nucleon reactions and the structure of light nuclei. But unresolved problems remain.Moreover, in the case of the 2NF,
we have seen that one has to proceed to N3LO to achieve sufficient accuracy. Therefore, the 3NF at N3LO is needed for at
least two reasons: for consistency with the 2NF and to hopefully resolve outstanding problems inmicroscopic structure and
reactions.

5.1.3. Next-to-next-to-next-to-leading order
According to Eq. (5.1), the value ⌫ = 4, which corresponds to N3LO, is obtained for the following classes of diagrams.

3NF loop diagrams at N3LO. For this group of graphs, we have L = 1 and, therefore, all �i have to be zero to ensure ⌫ = 4.
Thus, these one-loop 3NF diagrams can include only leading vertices, the parameters of which are fixed from ⇡N and NN
analysis. We show five representative examples of this very large class of diagrams in Fig. 19. One sub-group of these
diagrams (2PE graphs) has been calculated by Ishikawa and Robilotta [72], and two other topologies (1PE–2PE and ring

Contact 
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a b c

Fig. 17. Three-nucleon force diagrams at NLO. Notation as in Fig. 1.

5. Nuclear many-body forces

The chiral 2NF discussed in the previous section has been applied inmicroscopic calculations of nuclear structurewith, in
general, a great deal of success [75–88]. However, from high-precision studies conducted in the 1990s, it is well known that
certain few-nucleon reactions and nuclear structure issues require 3NFs for their microscopic explanation. Outstanding
examples are the Ay puzzle of N–d scattering [198,199] and the ground state of 10B [200]. As noted before, an important
advantage of the EFT approach to nuclear forces is that it creates two- and many-nucleon forces on an equal footing (cf. the
overview given in Fig. 1). In this section, we will explain in some detail chiral three- and four-nucleon forces. We will limit
our presentation to the isospin-symmetric case; isospin violating 3NFs are discussed in Ref. [201].

5.1. Three-nucleon forces

Nuclear three-body forces in ChPT were initially discussed by Weinberg [52] and the 3NF at NNLO was first derived by
van Kolck [70].

For a 3NF, we have A = 3 and C = 1 and, thus, Eq. (3.4) implies

⌫ = 2 + 2L +
X

i

�i. (5.1)

We will use this equation to analyze 3NF contributions order by order.

5.1.1. Next-to-leading order
The lowest possible power is obviously ⌫ = 2 (NLO), which is obtained for no loops (L = 0) and only leading vertices

(
P

i �i = 0). We display typical graphs in Fig. 17. As discussed by Weinberg [52], the contributions from these diagrams
vanish at NLO. To see this, let us first look at graph (a),which contains aWeinberg–Tomozawa vertex, Eq. (A.43), that includes
a time-derivative of a pion field. Since this diagram does not involve reducible topologies, it can be treated as a Feynman
diagram in which energy is conserved at each vertex, so that the time-derivative yields a difference of nucleon kinetic
energies ⇠Q 2/MN instead of ⇠Q . Thus, the contribution from this graph is suppressed by a factor Q/MN and demoted
to NNLO. Graphs (b) and (c) of Fig. 17 are best discussed in terms of time-ordered perturbation theory. Weinberg [52] and
van Kolck [70] showed that, at NLO, the irreducible topologies of these graphs cancel against the recoil corrections from the
reducible ones, leaving no net irreducible 3N contribution. What remains is just the iteration of the static 2N potentials. In
fact, this had been pointed out already by Yang and Glöckle [127] and Coon and Friar [128] in the 1980’s.

The bottom line is that there is no genuine 3NF contribution at NLO. The first non-vanishing 3NF appears at NNLO.

5.1.2. Next-to-next-to-leading order
The power ⌫ = 3 (NNLO) is obtained when there are no loops (L = 0) and

P

i �i = 1, i.e., �i = 1 for one vertex while
�i = 0 for all other vertices. There are three topologies which fulfill this condition, known as the two-pion exchange (2PE),
1PE, and contact graphs [70,71] (Fig. 18).

Using the subleading vertices equations (A.51) and (A.52), it is straightforward to derive the 2PE 3N potential to be
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with Eqi ⌘ Epi0 � Epi, where Epi and Epi0 are the initial and final momenta of nucleon i, respectively, and
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There are great similarities between this force and earlier derivations of 2PE 3NFs, notably the 50-year-old Fujita–
Miyazawa [202], the Tucson-Melbourne (TM) [203], and the Brazil [204] forces. A thorough comparison between various
2PE 3NFs is conducted in Ref. [205] resulting in the recommendation to drop the so-called ‘‘c-term’’ from the TM force, since
it does not have an equivalent in the ChPT derived force, Eqs. (5.2) and (5.3), giving rise to the construction of the TM’ (or
TM99) force [206].
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Fig. 17. Three-nucleon force diagrams at NLO. Notation as in Fig. 1.

5. Nuclear many-body forces

The chiral 2NF discussed in the previous section has been applied inmicroscopic calculations of nuclear structurewith, in
general, a great deal of success [75–88]. However, from high-precision studies conducted in the 1990s, it is well known that
certain few-nucleon reactions and nuclear structure issues require 3NFs for their microscopic explanation. Outstanding
examples are the Ay puzzle of N–d scattering [198,199] and the ground state of 10B [200]. As noted before, an important
advantage of the EFT approach to nuclear forces is that it creates two- and many-nucleon forces on an equal footing (cf. the
overview given in Fig. 1). In this section, we will explain in some detail chiral three- and four-nucleon forces. We will limit
our presentation to the isospin-symmetric case; isospin violating 3NFs are discussed in Ref. [201].

5.1. Three-nucleon forces

Nuclear three-body forces in ChPT were initially discussed by Weinberg [52] and the 3NF at NNLO was first derived by
van Kolck [70].

For a 3NF, we have A = 3 and C = 1 and, thus, Eq. (3.4) implies

⌫ = 2 + 2L +
X

i

�i. (5.1)

We will use this equation to analyze 3NF contributions order by order.

5.1.1. Next-to-leading order
The lowest possible power is obviously ⌫ = 2 (NLO), which is obtained for no loops (L = 0) and only leading vertices

(
P

i �i = 0). We display typical graphs in Fig. 17. As discussed by Weinberg [52], the contributions from these diagrams
vanish at NLO. To see this, let us first look at graph (a),which contains aWeinberg–Tomozawa vertex, Eq. (A.43), that includes
a time-derivative of a pion field. Since this diagram does not involve reducible topologies, it can be treated as a Feynman
diagram in which energy is conserved at each vertex, so that the time-derivative yields a difference of nucleon kinetic
energies ⇠Q 2/MN instead of ⇠Q . Thus, the contribution from this graph is suppressed by a factor Q/MN and demoted
to NNLO. Graphs (b) and (c) of Fig. 17 are best discussed in terms of time-ordered perturbation theory. Weinberg [52] and
van Kolck [70] showed that, at NLO, the irreducible topologies of these graphs cancel against the recoil corrections from the
reducible ones, leaving no net irreducible 3N contribution. What remains is just the iteration of the static 2N potentials. In
fact, this had been pointed out already by Yang and Glöckle [127] and Coon and Friar [128] in the 1980’s.

The bottom line is that there is no genuine 3NF contribution at NLO. The first non-vanishing 3NF appears at NNLO.

5.1.2. Next-to-next-to-leading order
The power ⌫ = 3 (NNLO) is obtained when there are no loops (L = 0) and

P

i �i = 1, i.e., �i = 1 for one vertex while
�i = 0 for all other vertices. There are three topologies which fulfill this condition, known as the two-pion exchange (2PE),
1PE, and contact graphs [70,71] (Fig. 18).

Using the subleading vertices equations (A.51) and (A.52), it is straightforward to derive the 2PE 3N potential to be

V 3NF
2PE =

✓

gA
2f⇡

◆2 1
2

X

i6=j6=k

(E�i · Eqi)(E�j · Eqj)
(q2i + m2

⇡ )(q2j + m2
⇡ )

Fab
ijk ⌧ a

i ⌧ b
j (5.2)

with Eqi ⌘ Epi0 � Epi, where Epi and Epi0 are the initial and final momenta of nucleon i, respectively, and

Fab
ijk = �ab



�4c1m2
⇡

f 2⇡
+ 2c3

f 2⇡
Eqi · Eqj

�

+ c4
f 2⇡

X

c
✏abc ⌧ c

k E�k · [Eqi ⇥ Eqj] . (5.3)

There are great similarities between this force and earlier derivations of 2PE 3NFs, notably the 50-year-old Fujita–
Miyazawa [202], the Tucson-Melbourne (TM) [203], and the Brazil [204] forces. A thorough comparison between various
2PE 3NFs is conducted in Ref. [205] resulting in the recommendation to drop the so-called ‘‘c-term’’ from the TM force, since
it does not have an equivalent in the ChPT derived force, Eqs. (5.2) and (5.3), giving rise to the construction of the TM’ (or
TM99) force [206].
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Fig. 18. The three-nucleon force at NNLO. From left to right: 2PE, 1PE, and contact diagrams. Notation as in Fig. 1.
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Fig. 19. Leading one-loop 3NF diagrams at N3LO. We show one representative example for each of five topologies, which are: (a) 2PE, (b) 1PE–2PE, (c)
ring, (d) contact-1PE, (e) contact-2PE. Notation as in Fig. 1.

Notice that Eq. (5.3) does not include a c2-term. Due to two time-derivatives, the contribution from the c2 vertex is
(Q/MN)2 suppressed and demoted by two orders. Note also that the 2PE 3NF does not contain any new parameters, because
the LECs c1, c3, and c4 appear already in the 2PE 2NF (Section 4.1.2) and are fixed by ⇡N and/or NN data.

The other two 3NF contributions shown in Fig. 18 are easily derived by taking the last two terms of the� = 1 Lagrangian,
Eq. (2.66), into account. The 1PE contribution is

V 3NF
1PE = �D

gA
8f 2⇡

X

i6=j6=k

E�j · Eqj
q2j + m2

⇡

(⌧ i · ⌧ j)(E�i · Eqj) (5.4)

and the 3N contact potential reads

V 3NF
ct = E

1
2

X

j6=k

⌧ j · ⌧k. (5.5)

These 3NF terms involve the two new parameters D and E, which do not appear in the 2N problem. There are many ways to
pin these two parameters down. In Ref. [71], the triton binding energy and the nd doublet scattering length 2and were used.
One may also choose the binding energies of 3H and 4He [98] or an optimal over-all fit of the properties of light nuclei [99].
Exploiting the consistency of interactions and currents in ChPT [207], the parameter D of the ⇡NNNN vertex involved in the
1PE 3NF can be constrained by p-wave pion-production data [208] or electroweak processes like the tritium �-decay [209]
or proton–proton fusion (p p ! d e+ ⌫e) [210]. Once D and E are fixed, the results for other 3N, 4N, etc. observables are
predictions.

The 3NF at NNLO has been applied in calculations of few-nucleon reactions [71,89–97], structure of light- and medium-
mass nuclei [98–101], and nuclear and neutron matter [102,103] with a good deal of success. Yet, the famous ‘Ay puzzle’ of
nucleon–deuteron scattering is not resolved [71,94]. When only 2NFs are applied, the analyzing power in p–3He scattering
is even more underpredicted than in p–d [74,211]. However, when the NNLO 3NF is added, the p–3He Ay substantially
improves (more than in p–d) [97]—but a discrepancy remains. Furthermore, the spectra of light nuclei leave room for
improvement [99].

We note that there are further 3NF contributions at NNLO, namely, the 1/MN corrections of the NLO 3NF diagrams
(Fig. 17). Some of these terms involve the vertices equations (A.49) and (A.50), and the 1/MN correction of the c4 vertex,
Eq. (A.52); others are due to higher order recoil corrections. Several of those contributions have been calculated by Coon
and Friar in 1986 [128]. These corrections are believed to be very small.

To summarize, the 3NF at NNLO is a remarkable contribution: It represents the leading many-body force within the
scheme of ChPT; it includes terms thatwere advocated already some 50 years ago; and it produces noticeable improvements
in few-nucleon reactions and the structure of light nuclei. But unresolved problems remain.Moreover, in the case of the 2NF,
we have seen that one has to proceed to N3LO to achieve sufficient accuracy. Therefore, the 3NF at N3LO is needed for at
least two reasons: for consistency with the 2NF and to hopefully resolve outstanding problems inmicroscopic structure and
reactions.

5.1.3. Next-to-next-to-next-to-leading order
According to Eq. (5.1), the value ⌫ = 4, which corresponds to N3LO, is obtained for the following classes of diagrams.

3NF loop diagrams at N3LO. For this group of graphs, we have L = 1 and, therefore, all �i have to be zero to ensure ⌫ = 4.
Thus, these one-loop 3NF diagrams can include only leading vertices, the parameters of which are fixed from ⇡N and NN
analysis. We show five representative examples of this very large class of diagrams in Fig. 19. One sub-group of these
diagrams (2PE graphs) has been calculated by Ishikawa and Robilotta [72], and two other topologies (1PE–2PE and ring
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How to build a chiral potential

LO:

NLO:

N2LO:

N3LO:

Two-nucleon force
Ordonez et al. ’94; Friar & Coon ’94; Kaiser et al. ’97; E.E. et al. ’98,‘03; Kaiser ’99-’01; Higa et al. ’03; …

V2N = V2N +V2N+ V2N + V2N + …Chiral expansion of the 2N force: (0) (2) (3) (4)

renormalization of 1ʌ-exchange renormalization of contact terms7 LECs leading 2ʌ-exchange

2 LECs

subleading 2ʌ-exchangerenormalization of 1ʌ-exchange

sub-subleading 2ʌ-exchange 3ʌ-exchange (small)

15 LECs renormalization of contact termsrenormalization of 1ʌ-exchange

�� LVRVSLQ�EUHDNLQJ FRUUHFWLRQVಹ
van Kolck et al. ’93,’96; Friar et al. ’99,’03,’04; Niskanen ’02; Kaiser ’06;  E.E. et al. ’04,’05,’07;  …

5HVXOWV EDVHG RQ�()7�ZLWK H[SOLFLW�˂�������GHJUHHV RI IUHHGRP DYDLODEOH XS WR 1�/2
Ordonez, Ray, van Kolck ’96;  Kaiser, Gerstendorfer, Weise ‘98;  Krebs, E.E., Meißner ’07,‘08

© E. Epelbaum, Lectures at Ecole Juliot Curie 
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N2LO: ILUVW�QRQYDQLVKLQJ�FRQWULEXWLRQV

D E

NLO: GRHV�QRW�FRQWULEXWH

1/m corrections reducible

Weinberg ’91; Coon & Friar ’94; van Kolck ’94;  
E.E. et al.,’98; …

van Kolck ’94;  E.E. et al. ’02

N3LO: ZRUN�LQ�SURJUHVV
Bernard, E.E., Krebs, Meißner ’07
Ishikawa, Robilotta ‘07

ಧ QR�IUHH�SDUDPHWHUV

ಧ FKLUDO�V\PPHWU\�SOD\V
HVVHQWLDO�UROH

Three-nucleon force
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How to build a chiral potential 
Three-body
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How to build a chiral potential

© R. Machleidt

Then add parameters for 
three-body forces: 

c2,c3,c4,cE,cD
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How to build a chiral potential 
Phase shifts & potential

T

V

28 R. Machleidt, D.R. Entem / Physics Reports 503 (2011) 1–75

As discussed, the irreducible 2PE, V 0
2⇡ , is organized according to increasing orders,

V 0
2⇡ = V 0(2)

2⇡ + V 0(3)
2⇡ + V 0(4)

2⇡ + · · · , (4.52)

and was calculated in Section 4.1.2: V 0(2)
2⇡ is given by the contributions of Eqs. (4.9) and (4.10), V 0(3)

2⇡ is made up from
Eqs. (4.13)–(4.24), and V 0(4)

2⇡ is contained in Appendix D.
The contact potentials come in even orders,

Vct = V (0)
ct + V (2)

ct + V (4)
ct + · · · , (4.53)

and were presented in Section 4.3.
In summary, the NN potential V , calculated to certain orders, is given by:

VLO = V1⇡ + V (0)
ct (4.54)

VNLO = VLO + V 0(2)
2⇡ + V (2)

ct (4.55)

VNNLO = VNLO + V 0(3)
2⇡ (4.56)

VN3LO = VNNLO + V 0(4)
2⇡ + V (4)

ct . (4.57)

The potential V satisfies the relativistic BbS equation, Eq. (4.45), which reads explicitly,

T (Ep 0, Ep) = V (Ep 0, Ep) +
Z

d3p00

(2⇡)3
V (Ep 0, Ep 00)

M2
N

Ep00

1
p2 � p002 + i✏

T (Ep 00, Ep) (4.58)

with Ep00 ⌘
q

M2
N + p002. The advantage of using a relativistic scattering equation is that it automatically includes relativistic

corrections to all orders. Thus, in the scattering equation, no propagator modifications are necessary when raising the order
to which the calculation is conducted.

Defining

bV (Ep 0, Ep) ⌘ 1
(2⇡)3

s

MN

Ep0
V (Ep 0, Ep)

s

MN

Ep
(4.59)

and

bT (Ep 0, Ep) ⌘ 1
(2⇡)3

s

MN

Ep0
T (Ep 0, Ep)

s

MN

Ep
, (4.60)

where the factor 1/(2⇡)3 is added for convenience, the BbS equation collapses into the usual, nonrelativistic Lippmann–
Schwinger (LS) equation,

bT (Ep 0, Ep) = bV (Ep 0, Ep) +
Z

d3p00
bV (Ep 0, Ep 00)

MN

p2 � p002 + i✏
bT (Ep 00, Ep). (4.61)

SincebV satisfies Eq. (4.61), it can be used like a usual nonrelativistic potential, andbT may be perceived as the conventional
nonrelativistic T -matrix. In applications, it is more convenient to use the K -matrix instead of the T -matrix and to have the LS
equation decomposed into partial waves: all these technical issues are explained in detail in Appendix A of Ref. [13] where
also the formulas for the calculation of np and pp (the latter with Coulomb) phase shifts are provided. The partial-wave
decomposition of the operators by which the potential is represented can be found in Section 4 of Ref. [142], and numerical
methods for solving the LS equation are explained in Ref. [144].

4.5. Renormalization

4.5.1. Regularization and nonperturbative renormalization
Iteration ofbV in the LS equation, Eq. (4.61), requires cuttingbV off for high momenta to avoid infinities. This is consistent

with the fact that ChPT is a low-momentum expansion which is valid only for momenta Q ⌧ ⇤� ⇡ 1 GeV. Therefore, the
potentialbV is multiplied with the regulator function f (p0, p),

bV (Ep 0, Ep) 7�! bV (Ep 0, Ep) f (p0, p) (4.62)

with

f (p0, p) = exp[�(p0/⇤)2n � (p/⇤)2n], (4.63)

such that

A free available code to solve the phase-shifts problem can be found 
http://folk.uio.no/mhjensen/manybody/phase.tar.gz
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Lippmann-Schwinger cutoff
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Figure 1. (Color online) Real (left panel) and Imaginary (right
panel) parts of pp and pn Wolfenstein amplitudes (a and c)
as functions of the center-of-mass NN angle �. All the am-
plitudes are computed at 100 MeV using the EM potentials
[39–41, 43] with a LS cuto↵ ranging between 450 and 600
MeV. Data (black squares) are taken from Ref. [62].
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Figure 2. (Color online) The same as in Fig. 1 using EGM
potentials [44] with a LS cuto↵ ranging between 450 and 600
MeV. In two cases (⇤ = 450 and 600 MeV) we show uncer-
tainty bands produced by changing ⇤̃ according to Eq. (91).
Data (black squares) are taken from Ref. [62].

where

f⇤ = exp
�
�(k0/⇤)2n � (k/⇤)2n

�
with n = 2, 3 .

(90)
While Entem and Machleidt present results for three

choices of the cuto↵ necessary to regulate the high-
momentum components in the LS equation (⇤ = 450,
500, and 600 MeV), Epelbaum et al. [44] allow also to
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Figure 3. (Color online) The same as in Fig. 1 but for an
energy of 200 MeV. Data (black squares) are taken from
Ref. [62].
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Figure 4. (Color online) The same as is Fig. 2 but for an
energy of 200 MeV. Data (black squares) are taken from
Ref. [62].

study variations of the cuto↵ ⇤̃ that regulates the 2PE
contribution. In fact, in the latter approach one can
choose between the following cuto↵ combinations:

{⇤, ⇤̃} = {450, 500}, {450, 700}, {550, 600},
{600, 600}, {600, 700} . (91)

In the following figures all the results are labelled by
an acronym (to distinguish the authors) followed by the
value of the LS cuto↵ (⇤). In the EGM case, for ⇤ = 450
and 600 MeV we plot bands that show how calculations
can change respect to variations of the SFR cuto↵ ⇤̃.
In Fig. 1 the theoretical results for the real and imag-

cutoff the short-range part of the 2PE contribution

8

is the Sommerfeld parameter, µ is the reduced mass
of Eq. (67), and ↵ is the fine structure constant. The
Coulomb phase shifts �

L

are given by

�
L

= arg�
⇥
L+ 1 + i⌘(k

0

)
⇤
. (76)

The partial wave scattering amplitudes F̄±
L

are ob-
tained from the solution of the Coulomb distorted T̄ ma-
trix

T̄ (k0,k;E) = Ū(k0,k;!) +

Z
d3p

Ū(k0,p;!) T̄ (p,k;E)

E(k
0

)� E(p) + i✏
,

(77)
where

Ū(k0,k;!) = hk0|Ū(!)|ki = h (+)

c

(k0)|Û(!)| (+)

c

(k)i ,
(78)

and  (+)

c

(k) is the Coulomb distorted wave function.
In order to solve Eq. (77), we need to be able to gen-

erate the momentum space matrix element Ū(k0,k;!)
as given in Eq. (78). We begin with the potential
Û(k0,k;!), discussed in Section IIA, and we transform
it into the coordinate space through the double Fourier
transform

Û(r0, r;!) =

Z
d3k0d3k hr0|k0i Û(k0,k;!) hk|ri (79)

and then we construct the matrix element of Eq. (78) by
folding Û(r0, r;!) with coordinate space Coulomb wave
functions

Ū(k0,k;!) =

Z
d3r0d3r h (+)

c

(k0)|r0i

⇥ Û(r0, r;!) hr| (+)

c

(k)i .
(80)

In the partial wave representation, Eq. (79) for the cen-
tral and spin-orbit parts becomes

Ûa

L

(r0, r;!) =
4

⇡2

Z 1

0

dk0 k0 2

⇥
Z 1

0

dk k2j
L

(k0r0)Ûa

L

(k0, k;!)j
L

(kr) ,

(81)

where j
L

(kr) are the spherical Bessel functions. Simi-
larly, Eq. (80) becomes

Ūa

L

(k0, k;!) =
1

k0k

Z 1

0

dr0 r0

⇥
Z 1

0

dr rF
L

(⌘, k0r0)Ûa

L

(r0, r;!)F
L

(⌘, kr) ,

(82)

where F
L

is the regular Coulomb function. The poten-
tial Ū(k0,k;!) can be expanded in partial waves as in
Eq. (54)

Ū(k0,k;!) =
2

⇡

X

JLM

Y
L

1
2

JM

(k̂0) Ū
LJ

(k0, k;!)Y
L

1
2 †

JM

(k̂) ,

(83)

where

Ū
LJ

(k0, k;!) = Ū c

L

(k0, k;!) + C
LJ

V̄ ls

L

(k0, k;!) , (84)

and

C
LJ

=
1

2


J(J + 1)� L(L+ 1)� 3

4

�
,

V̄ ls

L

(k0, k;!) =
k0k

2L+ 1

⇥
Ū ls

L+1

(k0, k;!)� Ū ls

L�1

(k0, k;!)
⇤
,

(85)

Likewise, we can expand the T̄ matrix in Eq. (77) as

T̄ (k0,k;E) =
2

⇡

X

JLM

Y
L

1
2

JM

(k̂0) T̄
LJ

(k0, k;E)Y
L

1
2 †

JM

(k̂) ,

(86)
where the partial wave components are

T̄
LJ

(k0, k;E) = Ū
LJ

(k0, k;!)

+
2

⇡

Z 1

0

dp p2
Ū
LJ

(k0, p;!) T̄
LJ

(p, k;E)

E(k
0

)� E(p) + i✏
.

(87)

The partial wave scattering amplitudes F̄±
L

entering
Eqs. (72) and (73) are given by

F̄
LJ

(k
0

) = � A

A� 1
4⇡2µ(k

0

)T̄
LJ

(k
0

, k
0

;E) . (88)

III. THE NN AMPLITUDES

In this section we present and discuss the theoretical
results for the pp and pn Wolfenstein amplitudes which
are used to compute the central a (45) and the spin-
orbit part c (46) of the three-dimensional NN t matrix.
Calculations are performed using two di↵erent versions
of the chiral potential at fourth order (N3LO) based on
the works of Entem and Machleidt [39–41, 43] and Epel-
baum et al. [44]. The performance of our code has been
tested against the CD-Bonn potential [60] reproducing
well known results [63, 64] in order to check its numeri-
cal correctness.
Entem and Machleidt (EM), who first presented a chi-

ral potential at the fourth order, treat divergent terms
in the two-pion exchange (2PE) contributions with di-
mensional regularization (DR), while Epelbaum, Glöckle,
and Meißner (EGM) employ a spectral function regular-
ization (SFR). In both cases the goal is to cut out the
short-range part of the 2PE contribution that, as shown
in Ref. [40], has unphysically strong attraction, particu-
larly at N2LO (for a comprehensive discussion about dif-
ferent regularization schemes we refer the reader to Sect.
3.2.1 of Ref. [44]). As a usual procedure, the nucleon-
nucleon potential entering the LS equation is multiplied
by a regulator function f⇤

V (k,k0) ! V (k,k0)f⇤(k, k0) (89)

Machleidt (N3LO) Epelbaum (N3LO)

dimensional 
regularization

spectral 
function

⇤ = 450, 500, 600 {⇤, ⇤̃} = {450, 500}, {450, 700},
{550, 600}, {600, 600},
{600, 700}
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Go to N4LOPhase shifts and mixing angles
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FIG. 2: Predictions for the np total cross section based on the
improved chiral NN potentials at NLO (filled squares, color
online: orange), N2LO (solid diamonds, color online: green),
N3LO (filled triangles, color online: blue) and N4LO (filled
circles, color online: red) at the laboratory energies of 50,
96, 143 and 200 MeV for the di↵erent choices of the cuto↵:
R1 = 0.8 fm, R2 = 0.9 fm, R3 = 1.0 fm, R4 = 1.1 fm and
R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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bands of increasing width show estimated theoretical uncer-
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see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at
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R5 = 1.2 fm. The horizontal band refers to the result of the
NPWA with the uncertainty estimated as explained in the
text. Also shown are experimental data of Ref. [29].
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For the breakdown scale, we use the same values as in
Ref. [1], namely ⇤b = 600 MeV, 500 MeV and 400 MeV
for R = 0.8 . . . 1.0 fm, R = 1.1 fm and R = 1.2 fm, re-
spectively. The theoretical uncertainty at lower orders
is estimated in a similar way as described in detail in
[1]. Fig. 2 shows the resulting predictions for the np
total cross section at di↵erent energies and for all cut-
o↵ choices. First, we observe that the predictions based
on di↵erent values of the cuto↵ R are consistent with
each other with results corresponding to larger values
of R being less accurate due to a larger amount of cut-
o↵ artefacts. Secondly, our N4LO predictions provide
strong support for the new approach of error estimation.
In particular, the actual size of the N4LO corrections is
in a good agreement with the estimated uncertainty at
N3LO [1]. The somewhat larger N4LO contributions at
the lowest energy is to be expected and can be traced
back to the adopted fitting strategy in the 1S0 channel,
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FIG. 3: Results for the np S-, P- and D- waves and the
mixing angles ✏1, ✏2 up to N4LO based on the cuto↵ of
R = 0.9 fm in comparison with the NPWA [21] (solid dots)
and the GWU single-energy PWA [30] (open triangles). The
bands of increasing width show estimated theoretical uncer-
tainty at N4LO (color online: red), N3LO (color online: blue),
N2LO (color online: green) and NLO (color online: yellow).

see Ref. [1] for more details. Finally, our N4LO results
are in a very good agreement both with the NPWA and
with the experimental data.
The above error analysis can be carried out for any

observable of interest. Fig. 3 shows the estimated un-
certainty of the S-, P- and D-wave phase shifts and the
mixing angles ✏1 and ✏2 at NLO and higher orders in
the chiral expansion based on R = 0.9 fm. The various
bands result by adding/subtracting the estimated theo-
retical uncertainty, ±��(Elab) and ±�✏(Elab), to/from
the calculated results. Similarly, we show in Fig. 4 our
predictions for the various NN scattering observables at

R = 0.9 fm NLO N2LO N3LO N4LO

Good convergence of chiral expansion

Excellent agreement with NPWA data

Error bands are consistent with each other            strong support of chiral uncertainty estimation 

Epelbaum, HK, Meißner, arXiv: 1412.4623

New renormalisation technique in the coordinate space 
with the cutoff R being chosen in the range of R = 0.8 . . . 1.2 fm.  
For contact interactions, they use a non- local Gaussian  
regulator in momentum space with the cutoff Λ = 2R-1 
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TABLE II: �2/datum for the description of the Nijmegen np
and pp phase shifts [21] at di↵erent orders in the chiral ex-
pansion for the cuto↵ R = 0.9 fm. Only those channels are in-
cluded which have been used in the N3LO/N4LO fits, namely
the S-, P- and D-waves and the mixing angles ✏1 and ✏2.

Elab bin LO NLO N2LO N3LO N4LO

neutron-proton phase shifts
0–100 360 31 4.5 0.7 0.3
0–200 480 63 21 0.7 0.3

proton-proton phase shifts
0–100 5750 102 15 0.8 0.3
0–200 9150 560 130 0.7 0.6

function

f
⇣ r

R

⌘
=


1� exp

✓
� r2

R2

◆�6
, (1)

with the cuto↵ R being chosen in the range of R =
0.8 . . . 1.2 fm. For contact interactions, we use a non-
local Gaussian regulator in momentum space with the
cuto↵ ⇤ = 2R�1, see [1] for more details. We also adopt
the same treatment of electromagnetic e↵ects and rela-
tivistic corrections and employ the same fitting strategy
to determine the values of the LECs accompanying con-
tact interactions as done in [1]. In particular, we use np
and pp phase shifts and mixing angles of the NPWA as
input in our fits and define their error via

�X = max
⇣
�NPWA

X , |�NijmI
X � �NPWA

X |, (2)

|�NijmII
X � �NPWA

X |, |�Reid93
X � �NPWA

X |
⌘
,

where �X denotes a given phase shift (or mixing angle)
in the channel X, �NPWA

X is the corresponding statistical

error of the NPWA [21], while �NijmI
X , �NijmI

X and �Reid93
X

denote the results based on the Nijmegen I, II and Reid93
NN potentials of Ref. [28] which can be regarded as al-
ternative PWA. While �2/datum for the description of
the Nijmegen phase shifts calculated using the errors �X

defined above does, clearly, not allow for statistical inter-
pretation, see Ref. [1] for more details, it provides a useful
tool to quantify the accuracy of the fits.

For all considered values of the cuto↵, namely R = 0.8,
0.9, 1.0, 1.1 and 1.2 fm, the resulting LECs are found to
be natural and comparable in size with their N3LO val-
ues given in Ref. [1]. We found that the inclusion of the
fifth-order TPEP leads to a substantial improvement in
the description of np and pp phase shifts (for hard cuto↵
choices). As an example, we show in table II the result-
ing �2/datum for the description of the Nijmegen np and
pp phase shifts using the cuto↵ R = 0.9 fm, which was
found in Ref. [1] to yield most accurate results for NN
observables. Notice that the additional IB N4LO con-

TABLE III: Deuteron binding energy B
d

(in MeV), asymp-
totic S state normalization A

S

(in fm�1/2) , asymptotic D/S
state ratio ⌘, radius r

d

(in fm) and quadrupole moment Q
(in fm2) at various orders in the chiral expansion based on
the cuto↵ R = 0.9 fm in comparison with empirical infor-
mation. Also shown is the D-state probability P

D

(in %).
Notice that r

d

and Q are calculated without taking into ac-
count meson-exchange current contributions and relativistic
corrections. The star indicates an input quantity. References
to experimental data can be found in Ref. [1].

LO NLO N2LO N3LO N4LO Empirical

B
d

2.0235 2.1987 2.2311 2.2246? 2.2246? 2.224575(9)
A

S

0.8333 0.8772 0.8865 0.8845 0.8844 0.8846(9)
⌘ 0.0212 0.0256 0.0256 0.0255 0.0255 0.0256(4)
r
d

1.990 1.968 1.966 1.972 1.972 1.97535(85)
Q 0.230 0.273 0.270 0.271 0.271 0.2859(3)
P
D

2.54 4.73 4.50 4.19 4.29

tact term a↵ects only np results. Switching it o↵ leads
to �2/datum = 0.5 for the description of the np phase
shifts in both energy bins. Further, the residual cuto↵ de-
pendence of the phase shifts appears, as expected, to be
very similar at N4LO and N3LO. Also the error plots at
N4LO reveal a similar behavior to those at N3LO shown
in Fig. 5 of that work, so that the estimation of the break-
down scale of ⇤b = 600 MeV for R = 0.8 . . . 1.0 fm made
in the N3LO analysis of Ref. [1] remains valid at N4LO.

For the deuteron properties, the N4LO predictions are
very close to those at N3LO (except for PD which is
not observable), see table III, indicating a good conver-
gence of the chiral expansion. This feature holds true
for all choices of the cuto↵ R. For rd and Q, the N4LO
predictions are in the range of rd = 1.970 . . . 1.981 fm
and Q = 0.270 . . . 0.281 fm2 for the cuto↵ variation of
R = 0.8 . . . 1.2 fm. Taking into account the estimated
size of the relativistic corrections and long-range meson-
exchange current contributions, the observed spread in
the values of rd and Q is consistent with the estimated
size of the corresponding short-range NN currents, see
Ref. [1] and references therein.

We now address the question of the theoretical uncer-
tainty of our calculations due to the truncation of the
chiral expansion. To this aim, we employ the approach
proposed in Ref. [1] which is based on estimating the
size of neglected higher-order contributions and does not
rely on a cuto↵ variation. Specifically, the uncertainty
�XN4LO(p) of a N4LO prediction XN4LO(p) for an ob-
servable X(p), with p referring to the center of mass mo-
mentum, is estimated via

�XN4LO(p) = max

✓
Q6 ⇥

���XLO(p)
���, (3)

Q4 ⇥
���XLO(p)�XNLO(p)

���,
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SRG - Similarity Renormalization Group
• Unitary transformation designed to decouple 
low- and high-energy states  

• All observables preserved  

• No relevant changes to low energy observables 
even when high momenta are removed  
  
• Natural hierarchy of many-body forces 
maintained
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Medium effects - G matrix

IN-MEDIUM FULL-FOLDING OPTICAL MODEL FOR. . . 307

U(k', k;R) = dRe' 'ep(R) ( dP8(k(R) —P) (x' g (R+e) x) ) .

In actual calculations Eq. (43) separates into proton and
neutron contributions. For example, for proton scatter-
ing we have the schematic form U kg"" + p g"
It is interesting to note from Eq. (43) how the approx-

imate mixed density naturally suggests a nuclear matter
approach for calculating the effective force. This is made
explicit with the introduction of the Wigner transform
which provides a representation where at each point B
in the nucleus the momentum of the target nucleons is
uniformly distributed up to a value k(R). Indeed, in the
Slater prescription for the local momentum function we
have k(B) = ky (R), with the Fermi momentum k~ given
in terms of the local density p by Eq. (18). Then, at each
point Bin the nucleus the Pauli blocking forces the inter-
acting nucleons to propagate, on average, with momenta
above k~(B) in the intermediate states and generates a
particular B dependence for the effective force. However,
as it has been stressed earlier, the B dependence of the
force could be determined in more detail for each tar-
get provided a more realistic model is used to calculate
the particle spectral functions (Eq. 15) leading to the
construction of the reduced A propagator in Eq. (7).
A final point remains to be clarified regarding the

choice of the average energy ~ of the nucleons in the tar-
get. Following the nuclear matter model used in con-
structing the two-nucleon propagator A [Eqs. (24)—(27)]
which determines the effective interaction, we consider
the most consistent deBnition for the nucleon average
binding energy to be

O[kp (B)—k ]e(k; k~(R))
8[kg(R) —k ]

with e(k; k~) the single-particle energy in nuclear mat-
ter given by Eq. (6). An alternative approach is to calcu-
late e &om realistic single-particle energies in the target
nucleus [20], but we find that the different prescriptions
make no major differences in the calculated observables
as will be discussed in the next section.

IV. RESULTS

In this section we report results obtained &om the the-
ory developed in Secs. II and III. The full-folding optical
potentials given by Eq. (43) were calculated following
the general procedure outlined elsewhere [4]. The effec-
tive internucleon force, the g matrix, was calculated using
correlations obtained &om infinite nuclear matter. Ap-
plications have been made for proton elastic scattering
on Ca and Pb in the 30—400 MeV energy range. By
considering two targets of very different size we expect
to have a stringent test on the theory. Also, we have
included calculations of total cross sections for neutron
scattering &om different targets.

A. Calculation of the efFective interaction

The two-body effective interaction for the NN pair
can be expressed in terms of a reduced effective force as
shown in Eq. (5) or (14) which reduces the problem to
calculating either the f or g matrix depending on the
level of approximations introduced in the two-body A
propagator. In the context of Sec. II, where we use
symmetric nuclear matter information to construct the
reduced A propagator (Eq. 28), the g matrix as expressed
by Eq. (13) satisfies a Bethe-Goldstone integral equation
[16],

I7;' g ~ ~ = K' V~ + dK, " ~' V~"
xA- (K";~;k~(R))
X K g & K (45)

NMwith A defined by Eq. (26) and the Bdependence spec-
ified through the relationship between the target density
p and the Fermi momentum k~ in Eq. (18).
The g matrix was calculated using the Paris [22] poten-

tial V by solving the integral equation [Eq. (45)] using
standard matrix inversion methods [23]. Both central
and spin-orbit parts of the g matrix were used to cal-
culate the NA optical potential. The R dependence was
obtained by calculating the g matrix at different densities
corresponding to k~ values in the 0—1.4 fm range. The
real mean field, U„M (k; k~) in Eq. (17), was determined
self-consistently &om

U„(k; kp) = ) (g'(k —k ) g (e(k)+e(k ))
CX(E'y

x -'(k —k )), (46)

using the continuous prescription [16] for Re[U„M] at the
Fermi energy. The Pauli blocking effect represented by
Q in Eq. (26) was simplified to its angle-averaged form.
Since we emphasize an accurate off-shell sampling of the
NN effective interaction, the g matrix was calculated at
several (over 16) values of the total NN c.m. momentum
in the 0 —7 fm interval. Higher densities of mesh points
were used in regions where the g matrix, as a functiori of
the NN c.m. momentum, varies most rapidly.
In Figs. 1 and 2 we show, for reference, the results

of symmetric nuclear matter calculations we have per-
formed for the mean Beld U . In Fig. 1 we present the
real part of UNM as a function of the momentum k for
several values of k~. In Fig. 2 we show the correspond-
ing imaginary part of U„. Our results for the Paris
potential agree with other similar calculations [24,25].
Another consideration in the present calculations was

the treatment of the deuteron singularity in both the g
and the t matrix. As discussed recently [5], a correct cal-
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medium when integrating over the spatial coordinates,

k~ B+ 2r -k~ B (23)

we obtain for the A propagator, expressed in the c.m. (Q) and relative momentum (q) coordinates for the nucleon
pair [Eq. (2)],

q' AM;q =bq-q' XA 21 + '; — ';q ~ (24)

with

+I —,'(Q+Q');(Q —Q');q;~
I =, dRe* (~ ~ ) A, (g(u;k~(R)),l (2~)' (25)

NMand A is the nuclear matter single-particle propagator
[16] at the Fermi momentum k~

NM i Q(P+ i P kji' )(q) M ) k~)
u) +i@—e(P+., k~) —e(P; k~)

with P~ = z P + j and Q the Pauli blocking function

Q(P+; P; kp ) = O[e(P+; k~) —ep ]
xO[c(P;k~) —e~] .

q' A ~ q =bq —q'A q~kp B . 28

This result completes our scheme for calculating the in-
ternucleon effective force E which, in the g-matrix ap-
proximation, is given by Eq. (14). It is interesting to note
that although we use a local density ansatz to construct
the single-particle spectral function in the quasiparticle
approximation, the resulting effective force P only dis-
plays a functional dependence on the density of the target
nucleus. Indeed, the density only enters in determining
the radial (R) dependence of the g matrix in Eq. (13).

Equations (24)—(26) for A(u) represent a particular
two-body propagator for nucleons in a finite nucleus.
The interacting Fermi gas used to calculate this prop-
agator averages the effect of the gas throughout the nu-
cleus via the local density ansatz used to construct the
single-particle spectral function in Eq. (22). We remark,
however, that the local density ansatz expressed by Eqs.
(16)—(1S) need not be used as a means of modeling the
two-body propagator in a finite nucleus and therefore for
calculating the effective force E. Other more realistic
models could be used to account for this effect. In this
sense the present approach is general and departs notably
from more intuitive ways used to define an effective force
[7-10].
The reduced A propagator required to calculate either

the f or the g matrix, Eq. (10) or (13), respectively, is
obtained directly from Eqs. (7) and (24),

III. THE OPTICAL POTENTIAL

In this work we focus on investigating the role of
medium effects in the leading term of the optical po-
tential. The NA optical potential for a nucleon of en-
ergy E can be cast, in momentum space, as the antisym-
metrized matrix elements of the NN effective interaction
[1—4,14,18,19],

U(k, k;E) = ) (k if ~E(E + E )~ k;q4), (29)
cx(eF

with (P, e ) the single-particle wave functions and en-
ergies of the target ground state; k and k' are momenta
associated with the scattered nucleon. Using the two-
body force F(ur), as expressed in Eq. (5), we obtain

U(k' k E) = ) dRdP dye' (' ~C (P+ 'S»P —-p)-
(22r) s a(ep
x K ——p —q E+e K+4 p —q (30)

where we have denoted

K' = 2 (K —P —qj, K = 2 (K —P + q),
with K and q defined by

K = —,
' (k+ k '), (32a)

(32b)
corresponding to the average and transferred momentum

I

of the projectile, respectively; the ground state density
p associated with the state o. is given by

&-(P+ »P —-R = ~- @-(P+ R~-(P —-R (3-3)

with n the occupancy of level o..
Equation (30) represents the most general expression

for the leading term of the optical potential when the ef-
fective interaction is calculated taking into account finite
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U(k', k;R) = dRe' 'ep(R) ( dP8(k(R) —P) (x' g (R+e) x) ) .

In actual calculations Eq. (43) separates into proton and
neutron contributions. For example, for proton scatter-
ing we have the schematic form U kg"" + p g"
It is interesting to note from Eq. (43) how the approx-

imate mixed density naturally suggests a nuclear matter
approach for calculating the effective force. This is made
explicit with the introduction of the Wigner transform
which provides a representation where at each point B
in the nucleus the momentum of the target nucleons is
uniformly distributed up to a value k(R). Indeed, in the
Slater prescription for the local momentum function we
have k(B) = ky (R), with the Fermi momentum k~ given
in terms of the local density p by Eq. (18). Then, at each
point Bin the nucleus the Pauli blocking forces the inter-
acting nucleons to propagate, on average, with momenta
above k~(B) in the intermediate states and generates a
particular B dependence for the effective force. However,
as it has been stressed earlier, the B dependence of the
force could be determined in more detail for each tar-
get provided a more realistic model is used to calculate
the particle spectral functions (Eq. 15) leading to the
construction of the reduced A propagator in Eq. (7).
A final point remains to be clarified regarding the

choice of the average energy ~ of the nucleons in the tar-
get. Following the nuclear matter model used in con-
structing the two-nucleon propagator A [Eqs. (24)—(27)]
which determines the effective interaction, we consider
the most consistent deBnition for the nucleon average
binding energy to be

O[kp (B)—k ]e(k; k~(R))
8[kg(R) —k ]

with e(k; k~) the single-particle energy in nuclear mat-
ter given by Eq. (6). An alternative approach is to calcu-
late e &om realistic single-particle energies in the target
nucleus [20], but we find that the different prescriptions
make no major differences in the calculated observables
as will be discussed in the next section.

IV. RESULTS

In this section we report results obtained &om the the-
ory developed in Secs. II and III. The full-folding optical
potentials given by Eq. (43) were calculated following
the general procedure outlined elsewhere [4]. The effec-
tive internucleon force, the g matrix, was calculated using
correlations obtained &om infinite nuclear matter. Ap-
plications have been made for proton elastic scattering
on Ca and Pb in the 30—400 MeV energy range. By
considering two targets of very different size we expect
to have a stringent test on the theory. Also, we have
included calculations of total cross sections for neutron
scattering &om different targets.

A. Calculation of the efFective interaction

The two-body effective interaction for the NN pair
can be expressed in terms of a reduced effective force as
shown in Eq. (5) or (14) which reduces the problem to
calculating either the f or g matrix depending on the
level of approximations introduced in the two-body A
propagator. In the context of Sec. II, where we use
symmetric nuclear matter information to construct the
reduced A propagator (Eq. 28), the g matrix as expressed
by Eq. (13) satisfies a Bethe-Goldstone integral equation
[16],

I7;' g ~ ~ = K' V~ + dK, " ~' V~"
xA- (K";~;k~(R))
X K g & K (45)

NMwith A defined by Eq. (26) and the Bdependence spec-
ified through the relationship between the target density
p and the Fermi momentum k~ in Eq. (18).
The g matrix was calculated using the Paris [22] poten-

tial V by solving the integral equation [Eq. (45)] using
standard matrix inversion methods [23]. Both central
and spin-orbit parts of the g matrix were used to cal-
culate the NA optical potential. The R dependence was
obtained by calculating the g matrix at different densities
corresponding to k~ values in the 0—1.4 fm range. The
real mean field, U„M (k; k~) in Eq. (17), was determined
self-consistently &om

U„(k; kp) = ) (g'(k —k ) g (e(k)+e(k ))
CX(E'y

x -'(k —k )), (46)

using the continuous prescription [16] for Re[U„M] at the
Fermi energy. The Pauli blocking effect represented by
Q in Eq. (26) was simplified to its angle-averaged form.
Since we emphasize an accurate off-shell sampling of the
NN effective interaction, the g matrix was calculated at
several (over 16) values of the total NN c.m. momentum
in the 0 —7 fm interval. Higher densities of mesh points
were used in regions where the g matrix, as a functiori of
the NN c.m. momentum, varies most rapidly.
In Figs. 1 and 2 we show, for reference, the results

of symmetric nuclear matter calculations we have per-
formed for the mean Beld U . In Fig. 1 we present the
real part of UNM as a function of the momentum k for
several values of k~. In Fig. 2 we show the correspond-
ing imaginary part of U„. Our results for the Paris
potential agree with other similar calculations [24,25].
Another consideration in the present calculations was

the treatment of the deuteron singularity in both the g
and the t matrix. As discussed recently [5], a correct cal-
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2 Expansion series for the optical potential

Inserting Eq. (5) into Eq. (3) and defining the operators

Ui ⌘ v0i + v0iG0(E)QU , (13)

Uij ⌘ v0ij + v0ijG0(E)QU , (14)

we can express the operator U for the optical potential as

U =
AX

i=1

Ui +
1

2

AX

i=1

AX

j=1
j 6=i

Uij . (15)

Inserting Eq. (15) into Eq. (13) and introducing the operator

⌧i = v0i + v0iG0(E)Q⌧i , (16)

we can express Eq (13) as

Ui = ⌧i + ⌧iG0(E)Q
AX

j=1
j 6=i

Uj + ⌧iG0(E)Q
1

2

AX

j=1

AX

k=1
k 6=j

Ujk . (17)

At the same way, introducing the operator

✓ij = v0ij + v0ijG0(E)Q✓ij , (18)

and inserting Eq. (15) into Eq. (14) it is possible to express Eq. (14) as

Uij = ✓ij + ✓ijG0(E)Q
1

2

AX

k=1
k 6=i

AX

l=1
l 6=k
l 6=j

Ukl + ✓ijG0(E)Q
AX

k=1

Uk . (19)

At the first order in the expansion, the operator U becomes

U =
AX

i=1

⌧i +
1

2

AX

i=1

AX

j=1
j 6=i

✓ij . (20)

The first term on the right-hand side of Eq. (20) corresponds to the first-order term of the spectator expansion of Ref. [1]
and can be treated in the impulse approximation as pointed out in Refs. [1, 2]. The problem is now to find a suitable way
to treat the operator ✓ij in the impulse approximation.
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Isotope chains - micro vs. pheno
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T = V + V G0(E)T

The general goal when solving the scattering problem of a nucleon from a 
nucleus is to solve the corresponding Lippmann-Schwinger equation for the 
many-body transition amplitude T 

P +Q = 1

[G0, P ] = 0

P =
|�Ai h�A|
h�A|�Ai

| i = |�Ai+ | ini

H(P +Q)| i = E(P +Q)| i

[E � PHP ]|�Ai = PHQ| ini

P Q
|�Ai | ini

HPP HQQ

HPQ

HQP

T = U + UG0(E)PT

U = V + V G0(E)QU


