Microscopic optical potential from chiral forces
Paolo Finelli
University of Bologna and INFN
paolo.finelli@unibo.it www.fisicanucleare.it

in collaboration with M. Vorabbi and C. Giusti (Pavia)
Phys. Rev. C 93 (2016) 034619

Motivation

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: optical potentials.

Phenomenological

Unfortunately, currently used optical potentials for lowenergy reactions are phenomenological, and primarily constrained by elastic scattering.
Unreliable when extrapolated beyond their fitted range in energy and nuclei

Microscopical

Existing microscopic optical potentials are usually developed in an high-energy regime ($\geq 100 \mathrm{MeV}$) and not applicable for lower energy reactions.

No fitting

© F. Nunes and I. Thompson, Nuclear Reactions for Astrophysics

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: optical potentials.

Phenomenological

Unfortunately, currently used optical potentials for lowenergy reactions are phenomenological, and primarily constrained by elastic scattering.
Unreliable when extrapolated beyond their fitted range in energy and nuclei

The optical potential has the form: $U(r)=V(r)+i W(r)$

1. The real part of the optical potential explains the scattering (Woods-Saxon form)
2. The imaginary part provides absorption (stronger at the surface)
3. The radial dependence is rather flat in the inner region of the nucleus, falls off rapidly at the nuclear surface
4. A spin orbit term is also included which also peaks near the surface.
5. For a charged projectile a Coulomb term is also necessary.

$$
\begin{aligned}
V(r) & =-V_{R} f_{R}(r)-i W_{V} f_{V}(r) \\
& +4 a_{V D} V_{D} \frac{d}{d r} f_{V D}(r)+4 i a_{W D} \frac{d}{d r} f_{W D}(r) \\
& +\frac{\lambda_{\pi}^{2}}{r}\left[V_{S O} \frac{d}{d r} f_{V S O}(r)+i W_{S O} \frac{d}{d r} f_{W S O}(r)\right] \vec{\sigma} \cdot \vec{l}
\end{aligned}
$$

Nuclear reaction theory relies on reducing the many-body problem to a problem with few degrees of freedom: optical potentials.

Microscopical

> Existing microscopic optical potentials are usually developed in an high-energy regime ($\geq 100 \mathrm{MeV}$) and not applicable for lower energy reactions. No fitting

© F. Nunes and I.Thompson, Nuclear Reactions for Astrophysics

Model

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

Green Function propagator

$$
G_{0}(E)=\frac{1}{E-H_{0}+i \epsilon}
$$

where

$$
\begin{gathered}
H_{0}=h_{0}+H_{A} \\
H_{A}\left|\Phi_{A}\right\rangle=E_{A}\left|\Phi_{A}\right\rangle \begin{array}{c}
\text { target } \\
\text { Hamiltonian }
\end{array} \\
h_{0} \quad \begin{array}{c}
\text { kinetic term } \\
\text { of the projectile }
\end{array}
\end{gathered}
$$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

Spectator expansion

 two nucleon interaction dominates the scattering process

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

Spectator expansion

two nucleon interaction
dominates the scattering process

Watson multiple scattering

$$
T_{0 i}=t_{0 i}+t_{0 i} G_{0}(E) \sum_{j \neq i} T_{0 j}
$$

$$
t_{0 i}=v_{0 i}+v_{0 i} G_{0}(E) t_{0 i}
$$

$T=\sum_{i=1}^{A} t_{0 i}+\sum_{i<j}\left(t_{i j}-t_{0 i}-t_{0 j}\right)$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

Let's introduce the optical potential U

$$
T=U+U G_{0}(E) P T
$$

$$
\begin{array}{r}
P+Q=1 \\
{\left[G_{0}, P\right]=0}
\end{array}
$$

In the case of elastic scattering,
P projects onto the elastic channel

$$
P=\frac{\left|\Phi_{A}\right\rangle\left\langle\Phi_{A}\right|}{\left\langle\Phi_{A} \mid \Phi_{A}\right\rangle}
$$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

transition amplitude T for elastic scattering

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the elastic amplitude T

$$
\begin{aligned}
& \begin{aligned}
U= & \underbrace{A}_{i=1} \tau_{i})+\sum_{i, j \neq i}^{A} \tau_{i j}+\sum_{i, j \neq i, k \neq i, j}^{A} \\
& \left\langle\Phi_{A}\right| \tau_{i}\left|\Phi_{A}\right\rangle=\left\langle\Phi_{A}\right| \hat{\tau}_{i}\left|\Phi_{A}\right\rangle-\left\langle\Phi_{A}\right| \hat{\tau}_{i}\left|\Phi_{A}\right\rangle
\end{aligned} \\
& \times \frac{1}{\left(E-E_{A}\right)-h_{0}+i \epsilon}\left\langle\Phi_{A}\right| \tau_{i}\left|\Phi_{A}\right\rangle \\
& \hat{\tau}_{i}=v_{0 i}+v_{0 i} G_{0}(E) \hat{\tau}_{i} \\
& =\tau_{0 i}+\tau_{0 i} G_{0}(E) P \hat{\tau}_{0 i}
\end{aligned}
$$

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the elastic amplitude T

$$
\begin{aligned}
& T_{\mathrm{el}}=P U P+P U P G_{0}(E) T_{\mathrm{el}} \\
& \begin{aligned}
U= & \left.\sum_{i=1}^{A} \tau_{i}\right)+\sum_{i, j \neq i}^{A} \tau_{i j}+\sum_{i, j \neq i, k \neq i, j}^{A} \\
& \left\langle\Phi_{A}\right| \tau_{i}\left|\Phi_{A}\right\rangle=\left\langle\Phi_{A}\right| \hat{\tau}_{i}\left|\Phi_{A}\right\rangle-\left\langle\Phi_{A}\right| \hat{\tau}_{i}\left|\Phi_{A}\right\rangle
\end{aligned} \\
& \times \frac{1}{\left(E-E_{A}\right)-h_{0}+i \epsilon}\left\langle\Phi_{A}\right| \tau_{i}\left|\Phi_{A}\right\rangle \\
& \begin{aligned}
\hat{\tau}_{i} & =v_{0 i}+v_{0 i} G_{0}(E) \hat{\tau}_{i} \\
& =\tau_{0 i}+\tau_{0 i} G_{0}(E) P \hat{\tau}_{0 i} .
\end{aligned}
\end{aligned}
$$

Expanding the propagator $\quad G_{i}(E)=\frac{1}{\left(E-E^{i}\right)-h_{0}-h_{i}-W_{i}+i \epsilon}$

$$
\hat{\tau}_{i}=v_{0 i}+v_{0 i} G_{i}(E) \hat{\tau}_{i}=t_{0 i}+t_{0 i} g_{i} W_{i} G_{i}(E) \hat{\tau}_{i}
$$

First-order optical potential

Kerman, McManus and Thaler, Ann. Phys. 8 (1959) 551 and many others

$$
\begin{aligned}
& \hat{U}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k} ; \omega\right)=(A-1)\left\langle\boldsymbol{k}^{\prime}, \Phi_{A}\right| t(\omega)\left|\boldsymbol{k}, \Phi_{A}\right\rangle \\
& \boldsymbol{q} \equiv \boldsymbol{k}^{\prime}-\boldsymbol{k}, \quad \boldsymbol{K} \equiv \frac{1}{2}\left(\boldsymbol{k}^{\prime}+\boldsymbol{k}\right) \\
& \hat{U}(\boldsymbol{q}, \boldsymbol{K} ; \omega)=\frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K}) \\
& \times \sum_{N=n, p} t_{p N}\left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K} ; \omega\right] \rho_{N}(q) \quad \begin{array}{l}
\text { Optimum } \\
\text { factorization } \\
\text { factor }
\end{array}
\end{aligned}
$$

Møller factor $\quad \eta(\boldsymbol{q}, \boldsymbol{K})=$

$$
\left[\frac{E_{\text {proj }}\left(\boldsymbol{\kappa}^{\prime}\right) E_{\text {proj }}\left(-\boldsymbol{\kappa}^{\prime}\right) E_{\text {proj }}(\boldsymbol{\kappa}) E_{\text {proj }}(-\boldsymbol{\kappa})}{E_{\text {proj }}\left(\boldsymbol{k}^{\prime}\right) E_{\text {proj }}\left(-\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right) E_{\text {proj }}(\boldsymbol{k}) E_{\text {proj }}\left(\frac{\boldsymbol{q}}{2}-\frac{\boldsymbol{K}}{A}\right)}\right]^{\frac{1}{2}}
$$

First-order optical potential

$\hat{U}(\boldsymbol{q}, \boldsymbol{K} ; \omega)=\hat{U}(\boldsymbol{q}, \boldsymbol{K} ; \omega)+\frac{i}{2} \boldsymbol{\sigma} \cdot \boldsymbol{q} \times \boldsymbol{K} \hat{U}^{\tau v}(\boldsymbol{q}, \boldsymbol{K} ; \omega)$

$$
\hat{U}^{c}(\boldsymbol{q}, \boldsymbol{K} ; \omega)=\frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K})
$$

Central component

$$
\times \sum_{N=n, p} t_{p N}^{c}\left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K} ; \omega\right] \rho_{N}(q)
$$

$$
\hat{U}^{l s}(\boldsymbol{q}, \boldsymbol{K} ; \omega)=\frac{A-1}{A} \eta(\boldsymbol{q}, \boldsymbol{K})\left(\frac{A+1}{2 A}\right)
$$

Spin-orbit component

$$
\times \sum_{N=n, p} t_{p N}^{l s}\left[\boldsymbol{q}, \frac{A+1}{A} \boldsymbol{K} ; \omega\right] \rho_{N}(q)
$$

NN transition matrix

$$
M\left(\boldsymbol{\kappa}^{\prime}, \boldsymbol{\kappa}, \omega\right)=\left\langle\boldsymbol{\kappa}^{\prime}\right| M(\omega)|\boldsymbol{\kappa}\rangle=-4 \pi^{2} \mu\left\langle\boldsymbol{\kappa}^{\prime}\right| t(\omega)|\boldsymbol{\kappa}\rangle
$$

$$
\begin{array}{r}
M=\boldsymbol{a}+c\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right) \cdot \hat{\boldsymbol{n}}+m\left(\boldsymbol{\sigma}_{1} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\sigma}_{2} \cdot \hat{\boldsymbol{n}}\right) \\
+(g+\hat{k})\left(\boldsymbol{\sigma}_{1} \cdot \hat{\boldsymbol{l}}\right)\left(\boldsymbol{\sigma}_{2} \cdot \hat{\boldsymbol{l}}\right)+(g-h)\left(\boldsymbol{\sigma}_{1} \cdot \hat{\boldsymbol{m}}\right)\left(\boldsymbol{\sigma}_{2} \cdot \hat{\boldsymbol{m}}\right) \\
\begin{array}{r}
c_{p N}=\frac{i}{f_{p N} \pi^{2}} \sum_{L=1}^{\infty} P_{L}^{1}(\cos \phi)\left[\left(\frac{2 L+3}{L+1}\right) M_{L L}^{L+1, S=1}\right. \\
\left.-\left(\frac{2 L+1}{L(L+1)}\right) M_{L L}^{L, S=1}-\left(\frac{2 L-1}{L}\right) M_{L L}^{L-1, S=1}\right]
\end{array}
\end{array}
$$

$$
\begin{aligned}
a_{p N} & =\frac{1}{f_{p N} \pi^{2}} \sum_{L=0}^{\infty} P_{L}(\cos \phi)\left[(2 L+1) M_{L L}^{L, S=0}\right. \\
& +(2 L+1) M_{L L}^{L, S=1}+(2 L+3) M_{L L}^{L+1, S=1} \\
& \left.+(2 L-1) M_{L L}^{L-1, S=1}\right]
\end{aligned}
$$

Relevant components for 0^{+}nuclei

Matter densities

Typel and Wolter , Nuc. Phys. A 656 (1999) 331

Scattering observables

$$
\dot{N} \sim\left(\frac{d \sigma}{d \Omega}\right) \delta \Omega
$$

$$
\sigma(\theta)=\frac{d \sigma}{d \Omega} \sim\left\langle\mathbf{k}^{\prime}\right| U\left|\psi_{k}\right\rangle
$$

$$
\sigma(+\theta) \neq \sigma(-\theta)
$$

$$
U_{c}(r)+L S U_{s}(r)
$$

$$
A_{y}(\theta)=\frac{\sigma(+\theta)-\sigma(-\theta)}{\sigma(+\theta)+\sigma(-\theta)}
$$

It can be measured by sending a beam of polarised protons along $\boldsymbol{+ y}$ and measure the total cross-section at angles $\boldsymbol{\theta}$ and $\boldsymbol{\theta} \boldsymbol{\theta}$ in the scattering plane

Scattering observables

Spin-flip amplitude
$M\left(k_{0}, \theta\right)=A\left(k_{0}, \theta\right)+\boldsymbol{\sigma} \cdot \hat{\boldsymbol{N}} C\left(k_{0}, \theta\right)$
$F_{L J}\left(k_{0}\right)=-\frac{A}{A-1} 4 \pi^{2} \mu\left(k_{0} \widehat{T_{L J}} k_{0}, k_{0} ; E\right)$

$$
C(\theta)=\frac{i}{2 \pi^{2}} \sum_{L=1}^{\infty}\left[F_{L}^{+}\left(k_{0}\right)-F_{L}^{-}\left(k_{0}\right)\right] P_{L}^{1}(\cos \theta)
$$

Differential cross section

$$
\frac{d \sigma}{d \Omega}(\theta)=|A(\theta)|^{2}+|C(\theta)|^{2}
$$

Analyzing power

$$
A_{y}(\theta)=\frac{2 \operatorname{Re}\left[A^{*}(\theta) C(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}}
$$

Spin rotation

$$
Q(\theta)=\frac{2 \operatorname{Im}\left[A(\theta) C^{*}(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}}
$$

Rotation of the spin vector in the scattering plane, i.e. protons polarised along the $+\boldsymbol{x}$ axis have a finite probability of having the spin polarised along the $\pm \boldsymbol{z}$ axis after the collision

Inclusion of the Coulomb potential

Combine phase shifts from Coulomb and nuclear

$$
\sigma_{L}=\arg \Gamma\left[L+1+i \eta\left(k_{0}\right)\right]
$$

The central amplitude include a Coulomb component

$$
A\left(k_{0}, \theta\right)=F_{p t}^{c}\left(k_{0}, \theta\right)+\frac{1}{2 \pi^{2}} \sum_{L=0}^{\infty} e^{2 i \sigma_{L}}\left[(L+1) \bar{F}_{L}^{+}\left(k_{0}\right)+L \bar{F}_{L}^{-}\left(k_{0}\right)\right] P_{L}(\cos \theta)
$$

$$
F_{p t}^{c}\left(k_{0}, \theta\right)=\frac{-\eta\left(k_{0}\right) \exp \left[2 i \sigma_{0}-i \eta\left(k_{0}\right) \ln (1-\cos \theta)\right]}{k_{0}(1-\cos \theta)}
$$

Sommerfeld parameter $\eta(k)=\frac{\mu Z \alpha}{k}$

$$
u_{L}(r) \sim C f\left(H_{L}^{-}, H_{L}^{+}\right)
$$

$$
\bar{U}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k} ; \omega\right)=\left\langle\boldsymbol{k}^{\prime}\right| \bar{U}(\omega)|\boldsymbol{k}\rangle=\left\langle\psi_{c}^{(+)}\left(\boldsymbol{k}^{\prime}\right)\right| \hat{U}(\omega)\left|\psi_{c}^{(+)}(\boldsymbol{k})\right\rangle
$$

Do not add nuclear and Coulomb separately!

Numerical details

Partial waves of the NN potential used to construct the threedimensional NN t matrix

$t_{L, L L}^{S=0, T=1}$	$:$	${ }^{1} S_{0},{ }^{1} D_{2},{ }^{1} G_{4},{ }^{1} I_{6},{ }^{1} K_{8}$
$t_{L-1, L L}^{S=1, T=1}$	$:$	${ }^{3} P_{0},{ }^{3} F_{2},{ }^{3} H_{4},{ }^{3} J_{6},{ }^{3} L_{8}$
$t_{L, L L}^{S=1, T=1}$	$:$	${ }^{3} P_{1},{ }^{3} F_{3},{ }^{3} H_{5},{ }^{3} J_{7}$
$t_{L+1, L L}^{S=1, T=1}$	$:$	${ }^{3} P_{2},{ }^{3} F_{4},{ }^{3} H_{6},{ }^{3} J_{8}$
$t_{L, L L}^{S=0, T=0}$	$:$	${ }^{1} P_{1},{ }^{1} F_{3},{ }^{1} H_{5},{ }^{1} J_{7}$
$t_{L-1, L L}^{S=1, T=0}$	$:$	${ }^{3} D_{1},{ }^{3} G_{3},{ }^{3} I_{5},{ }^{3} K_{7}$
$t_{L, L L}^{S=1, T=0}$	$:$	${ }^{3} D_{2},{ }^{3} G_{4},{ }^{3} I_{6},{ }^{3} K_{8}$
$t_{L+1, L L}^{S=1, T=0}$	$:$	${ }^{3} S_{1},{ }^{3} D_{3},{ }^{3} G_{5},{ }^{3} I_{7}$

$$
\int_{a}^{b} f(x) d x \simeq \sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

150-200 points for \mathbf{t}_{NN} and ~ 100 for \mathbf{t}_{NA}

NN potential

Chiral potentials: why?

Chiral potentials

I. QCD symmetries are consistently respected

Phenomen. potentials

I. QCD symmetries are not respected

I. Lorentz covariance
 2. Chiral symmetry
 3. Gauge invariance

Chiral potentials: why?

Chiral potentials

I. QCD symmetries are consistently respected
2. Systematic expansion (order by order you know exactly the terms to be included)
3. Theoretical errors

Order by order in a power expansion, the uncertainties are of order
of $\mathcal{O}\left(k_{F} / \Lambda_{\chi}\right)^{n}$

Phenomen. potentials

I. QCD symmetries are not respected
2. Expansion determined by phenomenology (add whatever you need). A lot of freedom
3. Errors can't be estimated

Higher orders of

$$
\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}, S_{12}(\vec{r}), S_{12}(\vec{p}), \vec{L} \cdot \vec{S},(\vec{L} \cdot \vec{S})^{2} \boldsymbol{?}
$$

How to choose what

 to include?
Chiral potentials: why?

Chiral potentials

I. QCD symmetries are consistently respected
2. Systematic expansion (order by order you know exactly the terms to be included)
3. Theoretical errors
4. Two- and three- body forces belong to the same framework

Many-body !

Phenomen. potentials

I. QCD symmetries are not respected
2. Expansion determined by phenomenology (add whatever you need). A lot of freedom
3. Errors can't be estimated 4. Two- and three- body forces are not related one to each other

Chiral potentials: why?

Chiral potentials

I. QCD symmetries are consistently respected
2. Systematic expansion (order by order you know exactly the terms to be included)
3. Theoretical errors
4. Two- and three- body forces belong to the same framework

Difficult (hard calculations)

Phenomen. potentials

I. QCD symmetries are not respected
2. Expansion determined by phenomenology (add whatever you need). A lot of freedom
3. Errors can't be estimated 4. Two- and three- body forces are not related one to each other

Easy (not always...)

Chiral potentials: why?

Chiral potentials

Many-body data needed and many-body forces inevitable

Exploit divergences (cutoff dependence as tool)

Phenomen. potentials
Two-body data may be sufficient; many-body forces as last resort

Avoid (hide) divergences

Choose diagrams by intuition

\bigcirc Adapted from R.

How to build a chiral potential Problems with nucleons: cutoffs

Usually one regulates the integrals and then removes the dependence on the regularization parameters (scales, cutoffs) by renormalization. In the end, the theory and its predictions do not depend on cutoffs or renormalization scales.

In contrast, EFTs are renormalized by counter terms (contact terms) that are introduced order by order in increasing numbers. In the nuclear case the potential has validity only for momenta smaller than the chiral symmetry breaking scale $\boldsymbol{\Lambda} \mathbf{X} \sim \mathbf{1 G e V}$.

The cutoff independence should be examined for cutoffs below the hard scale and not beyond.

How to build a chiral potential

Following Machleidt

1. Identify the soft and hard scales, and the degrees of freedom (DOF) appropriate for (low-energy) nuclear physics. Soft scale: $Q \sim m_{\pi}$, hard scale: $\Lambda_{\chi} \sim m_{\rho} \sim 1$ GeV; DOF: pions and nucleons.
2. Identify the relevant symmetries of low-energy QCD and investigate if and how they are broken: explicitly and spontaneously broken chiral symmetry (spontaneous symmetry breaking generates the pions as Goldstone bosons).
3. Construct the most general Lagrangian consistent with those symmetries and symmetry breakings, see Ref. [13].

At first order

$$
\mathcal{L}_{\pi N}^{(1)}=\bar{N}\left(i \gamma^{\mu} D_{\mu}-m+\frac{g_{A}}{2} \gamma^{\mu} \gamma_{5} u_{\mu}\right) N
$$

$$
-\frac{1}{4 f_{\pi}^{2}}\left(\bar{\Psi} \gamma_{\mu} \vec{\tau} \Psi\right) \cdot\left(\vec{\Phi} \times\left(\partial^{\mu} \vec{\Phi}\right)\right) \quad+\frac{1}{2 f_{\pi}}\left(\bar{\Psi} \gamma_{\mu} \gamma_{5} \vec{\tau} \Psi\right) \partial^{\mu} \vec{\Phi}
$$

STUD

$$
\begin{aligned}
& u_{\mu} \equiv i u^{\dagger}\left(\partial_{\mu} U\right) u^{\dagger}=-\frac{\boldsymbol{\tau} \cdot \partial_{\mu} \boldsymbol{\pi}}{F}+\mathcal{O}\left(\boldsymbol{\pi}^{3}\right) \\
& D_{\mu} N \equiv\left(\partial_{\mu}+\Gamma_{\mu}\right) N, \quad \text { with } \quad \Gamma_{\mu} \equiv \frac{1}{2}\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right)=\frac{i}{4 F^{2}} \boldsymbol{\tau} \cdot \boldsymbol{\pi} \times \partial_{\mu} \boldsymbol{\pi}+\mathcal{O}\left(\boldsymbol{\pi}^{4}\right)
\end{aligned}
$$

How to build a chiral potential

Following Machleidt

4. Design an organizational scheme that can distinguish between more and less important contributions: a low-momentum expansion, $\left(Q / \Lambda_{\chi}\right)^{\nu}$, with ν determined by 'power counting'.

[^0]
How to build a chiral potential

Following Machleidt

4. Design an organizational scheme that can distinguish between more and less important contributions: a low-momentum expansion, $\left(Q / \Lambda_{\chi}\right)^{\nu}$, with ν determined by 'power counting'.

The nuclear force at large distances is governed by the exchange of one or multiple pions. In the chiral limit of vanishing quark masses one is expanding around, these contributions would have an infinitely long range. This long-range part of the nuclear force is strongly constrained by the chiral symmetry of QCD and can be rigorously derived in chiral perturbation theory.

The nuclear force at large distances is governed by the exchange

LO $\left(Q / \Lambda_{\chi}\right)^{0}$ NLO
$\left(Q / \Lambda_{\chi}\right)^{2}$...
The short-range part of the
nuclear force is driven by ...
The short-range part of the
nuclear force is driven by physics not resolved explicitly in reactions with typical nucleon momenta of the order of $M_{\pi} c$. It can be mimicked by zero-range contact interactions with an increasing number of derivatives. Chiral symmetry of QCD does not provide any constraints for contact interactions except for their quark mass dependence.

of one or multiple pions. In the chiral limit of vanishing quark masses one is expanding around, these contributions would have an infinitely long range. This long-range part of the nuclear force is strongly constrained by the chiral symmetry of QCD and can be rigorously derived in chiral perturbation theory.

How to build a chiral potential

$$
V_{2 \mathrm{~N}}^{(0)}=-\frac{g_{A}^{2}}{4 F_{\pi}^{2}} \frac{\vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}}{\vec{q}^{2}+M_{\pi}^{2}} \tau_{1} \cdot \tau_{2}+C_{S}+C_{T} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
$$

How to build a chiral potential

Contact terms

$$
\begin{aligned}
V_{\mathrm{ct}}^{(2)}\left(\vec{p}^{\prime}, \vec{p}\right)= & C_{1} q^{2}+C_{2} k^{2}+\left(C_{3} q^{2}+C_{4} k^{2}\right) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+C_{5}(-i \vec{S} \cdot(\vec{q} \times \vec{k})) \\
& +C_{6}\left(\vec{\sigma}_{1} \cdot \vec{q}\right)\left(\vec{\sigma}_{2} \cdot \vec{q}\right)+C_{7}\left(\vec{\sigma}_{1} \cdot \vec{k}\right)\left(\vec{\sigma}_{2} \cdot \vec{k}\right) .
\end{aligned}
$$

Two-pion exchange

$$
\begin{gathered}
V\left(\vec{p}^{\prime}, \vec{p}\right)=V_{C}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{C}+\left[V_{S}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{S}\right] \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+\left[V_{L S}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{L S}\right](-i \vec{S} \cdot(\vec{q} \times \vec{k})) \\
+\left[V_{T}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{T}\right] \vec{\sigma}_{1} \cdot \vec{q} \vec{\sigma}_{2} \cdot \vec{q}+\left[V_{\sigma L}+\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2} W_{\sigma L}\right] \vec{\sigma}_{1} \cdot(\vec{q} \times \vec{k}) \vec{\sigma}_{2} \cdot(\vec{q} \times \vec{k}), \\
W_{C}=-\frac{L(q)}{384 \pi^{2} f_{\pi}^{4}}\left[4 m_{\pi}^{2}\left(5 g_{A}^{4}-4 g_{A}^{2}-1\right)+q^{2}\left(23 g_{A}^{4}-10 g_{A}^{2}-1\right)+\frac{48 g_{A}^{4} m_{\pi}^{4}}{w^{2}}\right] \\
V_{T}=-\frac{1}{q^{2}} V_{S}=-\frac{3 g_{A}^{4} L(q)}{64 \pi^{2} f_{\pi}^{4}},
\end{gathered}
$$

$$
L(q) \equiv \frac{w}{q} \ln \frac{w+q}{2 m_{\pi}} \quad w \equiv \sqrt{4 m_{\pi}^{2}+q^{2}}
$$

How to build a chiral potential

$$
\begin{array}{ll}
V_{C}=\frac{3 g_{A}^{2}}{16 \pi f_{\pi}^{4}}\left\{\frac{g_{A}^{2} m_{\pi}^{5}}{16 M_{N} w^{2}}-\left[2 m_{\pi}^{2}\left(2 c_{1}-c_{3}\right)-q^{2}\left(c_{3}+\frac{3 g_{A}^{2}}{16 M_{N}}\right)\right] \widetilde{w}^{2} A(q)\right\}, & W_{T}=-\frac{1}{q^{2}} W_{S}=-\frac{g_{A}^{2} A(q)}{32 \pi f_{\pi}^{4}}\left[\left(c_{4}+\frac{1}{4 M_{N}}\right) w^{2}-\frac{g_{A}^{2}}{8 M_{N}}\left(10 m_{\pi}^{2}+3 q^{2}\right)\right] \\
W_{C}=\frac{g_{A}^{2}}{128 \pi M_{N} f_{\pi}^{4}}\left\{3 g_{A}^{2} m_{\pi}^{5} w^{-2}-\left[4 m_{\pi}^{2}+2 q^{2}-g_{A}^{2}\left(4 m_{\pi}^{2}+3 q^{2}\right)\right] \widetilde{w}^{2} A(q)\right\}, & V_{L S}=\frac{3 g_{A}^{4} \widetilde{w}^{2} A(q)}{32 \pi M_{N} f_{\pi}^{4}} \\
V_{T}=-\frac{1}{q^{2}} V_{S}=\frac{9 g_{A}^{4} \widetilde{w}^{2} A(q)}{512 \pi M_{N} f_{\pi}^{4}}, & W_{L S}=\frac{g_{A}^{2}\left(1-g_{A}^{2}\right)}{32 \pi M_{N} f_{\pi}^{4}} w^{2} A(q)
\end{array}
$$

How to build a chiral potential

Three-body forces naturally arise

How to build a chiral potential

How to build a chiral potential

$V_{2 \mathrm{PE}}^{3 \mathrm{NF}}=\left(\frac{g_{A}}{2 f_{\pi}}\right)^{2} \frac{1}{2} \sum_{i \neq j \neq k} \frac{\left(\vec{\sigma}_{i} \cdot \vec{q}_{i}\right)\left(\vec{\sigma}_{j} \cdot \vec{q}_{j}\right)}{\left(q_{i}^{2}+m_{\pi}^{2}\right)\left(q_{j}^{2}+m_{\pi}^{2}\right)} F_{i j k}^{a b} \tau_{i}^{a} \tau_{j}^{b} \quad F_{i j k}^{a b}=\delta^{a b}\left[-\frac{4 c_{1} m_{\pi}^{2}}{f_{\pi}^{2}}+\frac{2 c_{3}}{f_{\pi}^{2}} \vec{q}_{i} \cdot \vec{q}_{j}\right]+\frac{c_{4}}{f_{\pi}^{2}} \sum_{c} \epsilon^{a b c} \tau_{k}^{c} \vec{\sigma}_{k} \cdot\left[\vec{q}_{i} \times \vec{q}_{j}\right]$
$V_{1 \mathrm{PE}}^{3 \mathrm{NF}}=-D \frac{g_{A}}{8 f_{\pi}^{2}} \sum_{i \neq j \neq k} \frac{\vec{\sigma}_{j} \cdot \vec{q}_{j}}{q_{j}^{2}+m_{\pi}^{2}}\left(\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}\right)\left(\vec{\sigma}_{i} \cdot \vec{q}_{j}\right)$
$V_{\mathrm{ct}}^{3 \mathrm{NF}}=E \frac{1}{2} \sum_{j \neq k} \boldsymbol{\tau}_{j} \cdot \boldsymbol{\tau}_{k}$

How to build a chiral potential

How to build a chiral potential

Chiral expansion of the 2N force: $\quad V_{2 \mathrm{~N}}=V_{2 \mathrm{~N}}^{(0)}+V_{2 \mathrm{~N}}^{(2)}+V_{2 \mathrm{~N}}^{(3)}+V_{2 \mathrm{~N}}^{(4)}+\ldots$

- LO:

- NLO:

leading 2π-exchange
- $\mathrm{N}^{2} \mathrm{LO}$:

$$
\leftarrow \text {-- } \leftarrow \text { renormalization of } 1 \pi \text {-exchange }
$$

- $\mathbf{N}^{3} \mathrm{LO}$:

renormalization of 1π-exchange

sub-subleading 2π-exchange

15 LECS renormalization of contact terms

How to build a chiral potential

 Three-body- NLO: does not contribute

Weinberg '91; Coon \& Friar '94; van Kolck '94; E.E. et al.,'98; ...

- N^{2} LO: first nonvanishing contributions van Kolck '94; E.E. et al. '02

- N^{3} LO: work in progress Bernard, E.E., Krebs, Meißner '07 Ishikawa, Robilotta ‘07
- no free parameters

$$
\begin{aligned}
& \text { © E. Epelbaum, Lectures at Ecole Juliot Curie }
\end{aligned}
$$

How to build a chiral potential

How to build a chiral potential Phase shifts \& potential

$$
\widehat{T}\left(\vec{p}^{\prime}, \vec{p}\right)=\widehat{V}\left(\vec{p}^{\prime}, \vec{p}\right)+\int d^{3} p^{\prime \prime} \widehat{V}\left(\vec{p}^{\prime}, \vec{p}^{\prime \prime}\right) \frac{M_{N}}{p^{2}-p^{\prime \prime 2}+i \epsilon} \widehat{T}\left(\vec{p}^{\prime \prime}, \vec{p}\right)
$$

A free available code to solve the phase-shifts problem can be found http://folk.uio.no/mhjensen/manybody/phase.tar.gz

How to build a chiral potential

 Phase shifts
© R. Furnstahl, talk at Schladming,

How to build a chiral potential

 Phase shifts

Q^{ν}	1π	2π	$4 N$
Q^{0}	$1 \cdots \cdot\{$	-	

© R. Furnstahl, talk at Schladming,

How to build a chiral potential

 Phase shifts

Q^{ν}	1π	2π	$4 N$
Q^{0}	$4 \cdots \%$		
Q^{1}			
Q^{2}			

© R. Furnstahl, talk at Schladming,

How to build a chiral potential Phase shifts

Q^{ν}	1π	2π	$4 N$
Q^{0}		-	
Q^{1}			
Q^{2}			
Q^{3}			(15)

© R. Furnstahl, talk at Schladming,

How to build a chiral potential

Machleidt (N3LO)

Epelbaum (N3LO)

Lippmann-Schwinger cutoff

$$
\begin{aligned}
& V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) \stackrel{\vdots}{\leftrightarrows} V\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) f^{\Lambda}\left(k, \boldsymbol{k}^{\prime}\right) \\
& f^{\Lambda}=\exp \left(-\left(k^{\prime} / \Lambda\right)^{2 n}:-(k / \Lambda)^{2 n}\right) \quad \text { with } \quad n=2,3
\end{aligned}
$$

cutoff the short-range part of the 2PE contribution

dimensional regularization

$$
\Lambda=450,500,600
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { spectral } \\
\text { function }
\end{array} \\
\{\Lambda, \tilde{\Lambda}\}= & \{450,500\},\{450,700\}, \\
& \{550,600\},\{600,600\}, \\
& \{600,700\}
\end{aligned}
$$

How to build a chiral potential

 Phase shiftsPhase shifts of np scattering as calculated from NN potentials at different orders of ChPT.
R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

How to build a chiral potential

 Phase shifts

R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

Neutron-proton phase parameters as described by various chiral potentials at N3LO

Idaho (500 MeV)

How to build a chiral potential

 Phase shiftsPhase shifts of np scattering as calculated from NN potentials at different orders of ChPT.
R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

N3LO

How to build a chiral potential

Phase shifts

R. Machleidt et al,

Chiral effective field theory and nuclear forces, Phys. Rep. 503 (2011)

```
Neutron-proton phase
parameters as described by
various chiral potentials at N3LO
Idaho (500 MeV)
```



```
|-|-|-| J Juelich(600/700 MeV)
.......... Juelich (450/500 MeV)
```


How to build a chiral potential
 E. Epelbaum et al,

 Exploit the cutoffs Modern Theory of Nuclear Forces, Rev. Mod. Phys. 81 (2009) 1773-1825
.... LO

NNLO
\square N3LO

- Nijmegen
$\Delta \quad$ Virginia Tech

How to build a Exploit the cutoffs

potential
E. Epelbaum et al,

Modern Theory of Nuclear Forces, Rev. Mod. Phys. 81 (2009) 1773-1825

Results

NN amplitudes - 100 MeV

$$
M\left(\boldsymbol{\kappa}^{\prime}, \boldsymbol{\kappa}, \omega\right)=\left\langle\boldsymbol{\kappa}^{\prime}\right| M(\omega)|\boldsymbol{\kappa}\rangle=-4 \pi^{2} \mu\left\langle\boldsymbol{\kappa}^{\prime}\right| t(\omega)|\boldsymbol{\kappa}\rangle
$$

$$
\begin{aligned}
a_{p N} & =\frac{1}{f_{p N} \pi^{2}} \sum_{L=0}^{\infty} P_{L}(\cos \phi)\left[(2 L+1) M_{L L}^{L, S=0}\right. & c_{p N} & =\frac{i}{f_{p N} \pi^{2}} \sum_{L=1}^{\infty} P_{L}^{1}(\cos \phi)\left[\left(\frac{2 L+3}{L+1}\right) M_{L L}^{L+1, S=1}\right. \\
& +(2 L+1) M_{L L}^{L, S=1}+(2 L+3) M_{L L}^{L+1, S=1} & & \left.-\left(\frac{2 L+1}{L(L+1)}\right) M_{L L}^{L, S=1}-\left(\frac{2 L-1}{L}\right) M_{L L}^{L-1, S=1}\right] \\
& \left.+(2 L-1) M_{L L}^{L-1, S=1}\right] & &
\end{aligned}
$$

NN amplitudes - 200 MeV

$$
M\left(\boldsymbol{\kappa}^{\prime}, \boldsymbol{\kappa}, \omega\right)=\left\langle\boldsymbol{\kappa}^{\prime}\right| M(\omega)|\boldsymbol{\kappa}\rangle=-4 \pi^{2} \mu\left\langle\boldsymbol{\kappa}^{\prime}\right| t(\omega)|\boldsymbol{\kappa}\rangle
$$

$$
\begin{array}{rlrl}
a_{p N} & =\frac{1}{f_{p N} \pi^{2}} \sum_{L=0}^{\infty} P_{L}(\cos \phi)\left[(2 L+1) M_{L L}^{L, S=0}\right. & c_{p N} & =\frac{i}{f_{p N} \pi^{2}} \sum_{L=1}^{\infty} P_{L}^{1}(\cos \phi)\left[\left(\frac{2 L+3}{L+1}\right) M_{L L}^{L+1, S=1}\right. \\
& +(2 L+1) M_{L L}^{L, S=1}+(2 L+3) M_{L L}^{L+1, S=1} & & -\left(\frac{2 L+1}{L(L+1)}\right) M_{L L}^{L, S=1}-\left(\frac{2 L-1}{L}\right) M_{L L}^{L-1, S=} \\
& \left.+(2 L-1) M_{L L}^{L-1, S=1}\right] &
\end{array}
$$

NN amplitudes - convergence (200 MeV)

100 MeV

$$
\begin{aligned}
\frac{d \sigma}{d \Omega}(\theta) & =|A(\theta)|^{2}+|C(\theta)|^{2} \\
A_{y}(\theta) & =\frac{2 \operatorname{Re}\left[A^{*}(\theta) C(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}} \\
Q(\theta) & =\frac{2 \operatorname{Im}\left[A(\theta) C^{*}(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}}
\end{aligned}
$$

200 MeV

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}(\theta)=|A(\theta)|^{2}+|C(\theta)|^{2} \\
& A_{y}(\theta)=\frac{2 \operatorname{Re}\left[A^{*}(\theta) C(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}} \\
& Q(\theta)=\frac{2 \operatorname{Im}\left[A(\theta) C^{*}(\theta)\right]}{|A(\theta)|^{2}+|C(\theta)|^{2}}
\end{aligned}
$$

Oxygen 16

Scattering observable - convergence

Oxygen 16

Scattering observable analysis of the contributions

Future

Go to N4LO

$$
R=0.9 \mathrm{fm}-\mathrm{NLO}-\mathrm{N}^{2} \mathrm{LO}-\mathrm{N}^{3} \mathrm{LO}-\mathrm{N}^{4} \mathrm{LO}
$$

New renormalisation technique in the coordinate space with the cutoff R being chosen in the range of $R=0.8 \ldots 1.2 \mathrm{fm}$. For contact interactions, they use a non- local Gaussian

$$
f\left(\frac{r}{R}\right)=\left[1-\exp \left(-\frac{r^{2}}{R^{2}}\right)\right]^{6}
$$ regulator in momentum space with the cutoff $\Lambda=2 R^{-1}$

SRG - Similarity Renormalization Group

- Unitary transformation designed to decouple low- and high-energy states
- All observables preserved
- No relevant changes to low energy observables even when high momenta are removed
- Natural hierarchy of many-body forces
 maintained

Medium effects - G matrix

$$
\begin{aligned}
& U_{\mathrm{NM}}\left(k ; k_{F}\right)=\sum_{\alpha \leq \epsilon_{F}}\left\langle\frac{1}{2}\left(\vec{k}-\vec{k}_{\alpha}\right)\right| g_{\left[\vec{k}+\vec{k}_{\alpha}\right]}\left(\epsilon(k)+\epsilon\left(k_{\alpha}\right)\right) \\
& \times\left|\frac{1}{2}\left(\vec{k}-\vec{k}_{\alpha}\right)\right\rangle, \\
& \left\langle\vec{\kappa}^{\prime}\right| g_{[\vec{P} ; \vec{R}]}(\omega)|\vec{\kappa}\rangle=\left\langle\vec{\kappa}^{\prime}\right| V|\vec{\kappa}\rangle+\int d \vec{\kappa}^{\prime \prime}\left\langle\vec{\kappa}^{\prime}\right| V\left|\vec{\kappa}^{\prime \prime}\right\rangle \\
& \times \lambda_{\vec{P}}^{\mathrm{NM}}\left(\vec{\kappa}^{\prime \prime} ; \omega ; k_{F}(R)\right) \\
& \times\left\langle\vec{\kappa}^{\prime \prime}\right| g_{[\vec{P} ; \vec{R}]}(\omega)|\vec{\kappa}\rangle,
\end{aligned}
$$

$$
\lambda_{\vec{P}}^{\mathrm{NM}}\left(\vec{q} ; \omega ; k_{F}\right)=\frac{\mathcal{Q}\left(P_{+} ; P_{-} ; k_{F}\right)}{\omega+i \eta-\epsilon\left(P_{+} ; k_{F}\right)-\epsilon\left(P_{-} ; k_{F}\right)}
$$

...could be easily extended with the inclusion of three-body force (with equivalent two-body density dependent)

Arellano, Brieva and Love, Phys. Rev. C 52 (1995) 301

Include three-body forces

2N Force

3N Force

Isotope chains - micro vs. pheno

Thanks

The general goal when solving the scattering problem of a nucleon from a nucleus is to solve the corresponding Lippmann-Schwinger equation for the many-body transition amplitude T

$$
T=V+V G_{0}(E) T
$$

$$
|\Psi\rangle=\left|\phi_{A}\right\rangle+\left|\Psi_{i n}\right\rangle
$$

$$
\begin{array}{cc}
\begin{array}{l}
P+Q=1 \\
{\left[G_{0}, P\right]=0}
\end{array} & H(P+Q)|\Psi\rangle=E(P+Q)|\Psi\rangle \\
P=\frac{\left|\Phi_{A}\right\rangle\left\langle\Phi_{A}\right|}{\left\langle\Phi_{A} \mid \Phi_{A}\right\rangle} \\
T=U+U G_{0}(E) P T \\
U=V+V G_{0}(E) Q U
\end{array}
$$

[^0]: Contrary to the pion mass, the nucleon mass does not vanish in the chiral limit and introduces an additional hard scale in the problem

