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STRONGLY CORRELATED MANY-BODY SYSTEMS
? The presence of a strongly repulsive core is a prominent feature

of the potentials describing the dynamics of a variety of quantum
many-body systems, such as liquid helium and nuclear matter

STRONGLY REPULSIVE CORE

I The presence of a strongly repulsive core is a prominent feature of the
pair potentials describing the dynamics of several systems of fermions
(classical and quantum liquids, nuclear matter).
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I The details of the repulsive potential are not really relevant to reproduce
the main properties of the system: it is reasonable to model the short
range forces between particles with the steep repulsion of the hard
sphere potential.
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? Perturbation theory in the basis of eigenstates of the non
interacting system—Fermi gas in translationally invariant
systems—is not doable

The matrix elements 〈mFG|V |nFG〉 are large, or even divergent
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THE ab initio APPROACH

? The matrix elements of the bare potential are modified by either
renormalising the interaction or performing a transformation of the
basis states

I G-matrix

G-MATRIX

I The problem has been studied by several authors using different
methods and employing the usual diagrammatic techniques

I The systematic treatment in many-body perturbation theory of short
range repulsion is based on the replacement of the bare interaction
potential with the reaction matrix

hp0|v|pi ! hp0|G|pi .

G = + + + . . . �

Figure 2: Diagrammatic representation of the ladder diagrams, describing two-body multiple
scattering processes. The bare interaction and the reaction matrix are represented by dashed
and wavy lines, respectively.

multiple scattering processes, usually referred to in diagrammatic language as ladder series,
makes the resulting reaction matrix a well-behaved operator, best suited for perturbative calcu-
lations in different schemes, such as scattering theory to in free space, time-ordered perturbation
theory and the Green’s function method. The main difference between the three cases is the
form of the free particle propagators, which determines the explicit form of the integral equation
defining for the reaction matrix. Summing up ladder diagrams in free space – the t-matrix
method – is equivalent to solving the Lippman-Schwinger equation, while when the presence of
the filled Fermi sea is taken into account – the G-matrix method – the same procedure leads to
the Bethe-Goldstone equation or to the Bethe-Salpeter equation, respectively, depending on the
use of time-ordered (Goldstone) or standard (Feynman) perturbation theory [4].

Variational approaches, originally developed to describe classical and quantum liquids, have
been also successfully used to study strongly interacting fermion systems in the high density
regime, relevant to the understanding of the properties of astrophysical compact objects.

In this Thesis, we will adopt Correlated Basis Functions (CBF) perturbation theory and
the cluster expansion technique [5, 6]. This formalism has been recently employed to obtain an
effective interaction suitable for use in perturbation theory in the basis of the non interacting
Fermi gas [7, 8].

Motivated by the universality of the repulsive nature of the interaction at short distance,
we will investigate the accuracy of the CBF effective interaction approach studying a variety of
properties of the fermion hard sphere system. Within this model, the potentials shown in Fig. 1
are replaced by

v(r) =

�
� r < a
0 r > a

, (1)

where r denotes the distance between the two interacting particles. Note that neglecting the
long-range attractive interaction prevents the possible formation of Cooper pairs, leading to the
transition to a superconducting or superfluid phase.

It is long known that the hard sphere model provides an accurate description of several
properties of dilute Fermi systems. Algebraic expressions of the ground state energy, the single-
particle energy and the momentum distribution can be written as power series in the parameter
(kF a), where kF is the Fermi momentum [9]. We will use the results obtained from these
expansions in low density limit as benchmarks to assess the accuracy of the effective interaction
approach, thus providing the basis for its generalisation to neutron matter.

2

I The sum all (infinite) multiple scattering processes (ladder series)
between free particles (t-matrix) or in presence of the Fermi sea
background (G-matrix) makes the resulting reaction matrix a
well-behaved operator, best suited for perturbative calculations

I t-matrix and G-matrix are distinguished by the different forms of the
internal line propagators and the integral equation which defines the
reaction matrix
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I Correlated Basis Functions (CBF)

|nFG〉 → |n〉 = F |nFG〉 , F = S
∏

j>i

fij

? Both procedures allow to carry out accurate calculations of the
zero-temperature Equation of State (EoS) based on realistic
microscopic hamiltonians
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THE EFFECTIVE INTERACTION APPROACH
? In nuclear structure calculations, the bare potential is often

replaced by an efective potential suitable for use in perturbation
theory

? EoS of isospin-symmetric nuclear matter and pure neutron
matter computed using different Skyrme- and Gogny-type
effective interactions, compared to the results of the ab initio
approach

? Effective interactions, while being capable to provide a
reasonable description of the EoS, lack a direct connection with
the underlying nucleon-nucleon interactions
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THE CBF EFFECTIVE INTERACTION
? Using the cluster expansion techinque the expectation value of

the Hamiltonian in the correlated ground state can be written in
the form

〈H〉 = TFG +
∑

n>2

〈∆H〉n

? Accurate variational estimates of the ground state energies can
be obtained exploiting the FHNC summation scheme and its
extensions. The shape of the correlation function is determined
requiring

δ〈H〉
δfij

= 0

? The CBF effective interaction is defined through

〈H〉 = 〈0|F †(T + V )F |0〉 = 〈0FG|T + Veff |0FG〉

Veff =
∑

j>i

veff(ij)
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? The expectation value 〈H〉, appearing in the left hand side is
computed using FHNC (or any alternative technique providing a
precise evaluation of the ground state energy)

? The right hand side is expanded at low order of the cluster
expansion. At two body level, this procedure yields

veff(ij) = f†ij

[
− 1

m
(∇2fij)−

2

m
(∇fij) · ∇+ vijfij

]

? The correlation function is adjusted in such a way as to
reproduce the value of 〈H〉 appearing in the left-hand side
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CBF veff AT SNM EQUILIBRIUM DENSITY
? Effective interaction obtained from the ANL v6 + UIX nuclear

Hamiltonian including two- and three-body cluster terms
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? Three-body forces consistently taken into account
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

v(r) =

⇢
1 r < a
0 r > a

? Valuable model to study properties
of nuclear matter.

? Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

? A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

DETERMINATION OF ve↵

For the hard-sphere system (HS) f(r  a) = 0 , lim
r!1

f(r) = 1

ve↵(r) =
1

m
[rf(r)]2 , r > a

We adjust the range of f(r) in order to reproduce the ground state energy
(FHNC/DMC) at two-body cluster level.

ve↵

? defined from hHi in the
correlated ground state

? employed in calculations
of matrix elements
involving excited states.
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE GROUND-STATE ENERGY

E0 =
3k2

F

10m
(1 + ⇣)

I The accuracy of the variational results depends on the quality of the trial
wave function.

I Long-range statistical correlations effects in f(r) much larger for ⌫ = 2
than for ⌫ = 4.

I DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.

9 / 23
10 / 25



INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

TWO–POINT GREEN’S FUNCTION

Dyson’s equation
G(k, E) = G0(k, E) + G0(k, E)⌃(k, E)G(k, E)

Non interacting Green’s function

G0(k, E) =
✓(k � kF )

E � e0(k) + i⌘
+

✓(kF � k)

E � e0(k) � i⌘

The irreducible (proper) self-energy ⌃(k, E) (mass operator) takes into
account the effect of interactions.
The spectrum is determined by the singularities of G(k, E)

G(k, E) =
1

E � e0(k) � ⌃(k, E)

In perturbation theory

⌃(k, E) = ⌃(1)(k) + ⌃(2)(k, E) + . . .

k�

⌃HF (k)

q k�q�

⌃2p1h(k, E)

q k�q�

⌃2h1p(k, E)
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THE ELEMENTARY EXCITATION SPECTRUM

I The self energy is responsible for shifting the pole of the Green’s
function.

I The new poles determine energy e(k) and the damping �k of the
quasiparticles state

I For small �k, the propagation of quasiparticle states is described by

G(k, E) =
Zk

E � e(k) + i�k

The energy of quasiparticle

e(k) = e0(k) + Re⌃[k, e(k)]

Quasiparticle lifetime

⌧�1
k = �k = ZkIm⌃[k, e(k)]

The residue of the Green’s function

Zk =


1 � @

@E
Re⌃[k, E]

��1

E=e(k)

18 / 1

12 / 25



INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

QUASIPARTICLE SPECTRUM

m? =


1

k

de(k)

dk

��1

de(k)

dk
=


k

m
+

@

@k
Re⌃ (k, E)

� 
1 � @

@E
Re⌃ (k, E)

��1

E=e(k)
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MOMENTUM DISTRIBUTION

I Momentum distribution describes the occupation probability of the
quasiparticle state of momentum k (see Källén-Lehman representation of
G(k, E) )

G(k, E) =

Z 1

0
dE0


Pp(k, E)

E � E0 � µ + i⌘
+

Ph(k, E)

E + E0 � µ � i⌘

�
, µ = e(kF)

I In term of the quasiparticle (hole) spectral functions

n(k) =

Z 1

0
dEPh(k, E) = 1 �

Z 1

0
dEPp(k, E)

I Is related to one body Green’s function through an integration in
complex variable ! on an closed contour in upper half-plane (Im! > 0)

n(k) =
1

2⇡i

Z

C
d! G(k,!)

22 / 1
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MOMENTUM DISTRIBUTION

Exploiting Dyson’s equation, n(k) can be determined through the knowledge
of the self-energy ⌃(k, E), computed at the second order

The discontinuity at k = kF is given by

n(kF � ⌘) � n(kF + ⌘) = ZkF = Z

n(k) = n<(k) + n>(k)

with

n<(k > kF) = n>(k < kF) = 0

n<(k < kF) = 1 +


@

@E
Re⌃p(k, E)

�

E=e0(k)

n>(k > kF) = �

@

@E
Re⌃h(k, E)

�

E=e0(k)
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

MOMENTUM DISTRIBUTION ⌫ = 4

In comparison with non orthogonal CBF perturbation theory

S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Momentum distribution of HS

c ⌘ kF a = 0.55

corresponds to n(k) of nuclear matter

⇢NM = 0.16 fm�3

kF = 1.33 fm�1

Nucleons in nuclear matter ⇠ HS
of radius a = 0.55/1.33 ⇠ 0.4 fm.

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction.

14 / 23
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

BOLTZMANN-LANDAU EQUATION

Shear viscosity ⌘ and thermal conductivity  measure momentum and
energy fluxes in response to a gradient of velocity and temperature.

Boltzmann equation for a Fermi liquid:

@nk

@t
+

@nk

@r
· @✏k
@k

� @nk

@k
· @✏k
@r

= I[nk]

I nk is the distribution function
I ✏k is the energy of a quasiparticle carrying momentum k

I I[nk] is the collision integral, defined in terms of the scattering
probability W

Taking into account small deviations from local equilibrium, transport
coefficients determined from the collision integral I[nk].
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

ABRIKOSOV–KHALATNIKOV SOLUTION

The lifetime

⌧ =
1

T 2

8⇡4

m?3

1

hW i
The transport coefficients

⌘ =
16

15

1

T 2

k5
F

m?4

1

hW i(1 � �⌘)
,  =

16

3

1

T

⇡2k3
F

m?4

1

hW i(3 � �)

⌧ , ⌘,  are expressed in terms of angular averages of W

hW i , �⌘ =
hW [1 � 3 sin4(✓/2) sin2 �]i

hW i , � =
hW [1 + 2 cos ✓]i

hW i

The angular average is defined as

hfi ⌘
Z

d⌦

2⇡

f(✓,�)

cos ✓/2
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE SCATTERING PROBABILITY

W is related to the scattering cross section

W (✓,�) =
16⇡3

m2

✓
d�

d⌦

◆

I The AK formalism is derived in the frame in which the Fermi sphere is
at rest (AK)

I d�

d⌦
expressed in the laboratory or in the center of mass reference frame

I the relative kinetic energy is the same Ecm 8 frame

Ecm = EAK
rel =

k2
F

2m
(1 � cos ✓)

⇥cm = �

The in medium scattering probability has been computed within the Born
approximation using ve↵

W (✓,�) = ⇡
��[k0

1,k
0
2|ve↵ |k1,k2]

��2
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

LIFETIME AND TRANSPORT COEFFICIENTS

The second order contributions lead to
a sharp increase of m?, which in turn
implies a decrease of the shear viscos-
ity coefficient ⌘ and the thermal con-
ductivity .

21 / 23
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BACK TO NUCLEAR MATTER
? In medium neutron-neutron cross section
? From Fermi’s golden rule

W (p,p′) = 2π |v̂eff(p− p′)|2 ρ(p′)

dσ

dΩp′
=

m?2

16π2
|v̂eff(p− p′)|2
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SHEAR VISCOSITY OF NEUTRON MATTER
? Critical to the occurrence of the CFS instability of rapidly

rotating neutron stars

? Note: the SLya effective interaction, adjusted to reproduce the
microscopic EoS, predicts ηT 2 ∼ 6× 1013 g cm−1 s−1 MeV2 at
nuclear matter equilibrium density, to be compared with the
result obtained from the CBF effective interaction
ηT 2 ∼ 1.4× 1015 g cm−1 s−1 MeV2
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THERMAL CONDUCTIVITY OF NEUTRON MATTER

? The transport coefficients computed using the CBF effective
interaction is remarkably close to the result obtained within the
G-matrix approach using the same bare NN potential. Note:
three-body interactions not taken into account.

23 / 25



FUTURE DEVELOPMENTS

? A realistic and consistent description of the properties of hot
nuclear matter will be needed to perform systematic studies of
gravitational-wave emission from protoneutron stars

? Free energy of PNM (left) and SNM (right) at 0 ≤ T ≤ 50 MeV
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SUMMARY & OUTLOOK

? Effective interactions obtained from realistic nuclear hamiltonians
provide a powerful tool to carry out consistent calculations of a
variety of of properties of strongly interacting many-body
systems, ranging from the EoS to quasi particle spectra, in
medium scattering probabilities and transport coefficients

? The result of systematic studies of the Fermi hard-sphere system
performed using the CBF effective interaction are quite
encouraging, and suggest that the same formalism can be safely
employed in nuclear matter

? Future applications to neutron star matter will include the
calculation of transport coefficients, superfluid gaps and
neutrino emission absorption rates
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