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OUTLINE

» The trouble with stongly correlated many-body
systems

« Effective interactions derived from microscopic
dynamics

» The CBF effective interaction
» The Fermi hard-sphere systemn as a testing ground

» Equilibrium and non-equilibrium properties of
nuclear matter

» Summary & Outlook



STRONGLY CORRELATED MANY-BODY SYSTEMS

% The presence of a strongly repulsive core is a prominent feature
of the potentials describing the dynamics of a variety of quantum
many-body systems, such as liquid helium and nuclear matter
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% Perturbation theory in the basis of eigenstates of the non
interacting system—Fermi gas in translationally invariant

systems—is not doable

The matrix elements (mpc|V|npg) are large, or even divergent
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THE ab initio APPROACH

* The matrix elements of the bare potential are modified by either
renormalising the interaction or performing a transformation of the
basis states

» (G-matrix

» Correlated Basis Functions (CBF)

nkc) = In) = Flnee) , F=8]] /4
g>i
* Both procedures allow to carry out accurate calculations of the
zero-temperature Equation of State (EoS) based on realistic
microscopic hamiltonians



THE EFFECTIVE INTERACTION APPROACH

* In nuclear structure calculations, the bare potential is often
replaced by an efective potential suitable for use in perturbation

theory
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% BoS of isospin-symmetric nuclear matter and pure neutron
matter computed using different Skyrme- and Gogny-type
effective interactions, compared to the results of the ab initio
approach

* Effective interactions, while being capable to provide a
reasonable description of the EoS, lack a direct connection with
the underlying nucleon-nucleon interactions



THE CBF EFFECTIVE INTERACTION

* Using the cluster expansion techinque the expectation value of
the Hamiltonian in the correlated ground state can be written in
the form

(H) = Teg + 3 (AH),

n>2

* Accurate variational estimates of the ground state energies can
be obtained exploiting the FHNC summation scheme and its
extensions. The shape of the correlation function is determined
requiring

o(H
)
dfij
* The CBF effective interaction is defined through
(H) = (O|FY(T + V)F|0) = (0rc|T + Vet|Orc)
Ver = ) verr(if)

J>i




* The expectation value (H), appearing in the left hand side is
computed using FHNC (or any alternative technique providing a
precise evaluation of the ground state energy)

* The right hand side is expanded at low order of the cluster
expansion. At two body level, this procedure yields

1 2
Vet (1J) = fiTj *E(szij) - E(Vfij) -V + v fij

* The correlation function is adjusted in such a way as to
reproduce the value of (H) appearing in the left-hand side



CBF v, AT SNM EQUILIBRIUM DENSITY

*

Effective interaction obtained from the ANL vg + UIX nuclear
Hamiltonian including two- and three-body cluster terms
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* Three-body forces consistently taken into account
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THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

oo r<a

v(r):{ 0 r>a

* Valuable model to study properties
of nuclear matter.

* Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

* A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.
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DETERMINATION OF Vg

For the hard-sphere system (HS) f(r <a) =0, lim firy=1

Ve (T)

LIVIOP L r>a

We adjust the range of f(r) in order to reproduce the ground state energy
(FHNC/DMC) at two-body cluster level.
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* defined from (H) in the
correlated ground state

* employed in calculations
of matrix elements
involving excited states.
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THE GROUND-STATE ENERGY
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» The accuracy of the variational results depends on the quality of the trial
wave function.

» Long-range statistical correlations effects in f(r) much larger for v = 2
than for v = 4.

» DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.
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TWO-POINT GREEN’S FUNCTION
Dyson’s equation

G(k, E) = Go(k, E) + Go(k, E)S(k, E)G(k, E)
Non interacting Green’s function

Golh, B) = 0(k — kr)

0(kr — k)
— +
E —eo(k) +in

E —eo(k) —in
The irreducible (proper) self-energy X (k, E') (mass operator) takes into
account the effect of interactions.

The spectrum is determined by the singularities of G(k, E)

Gk B) = 2—

1
In perturbation theory

eo(k) — X(k, E)

Sk, E) =W (k) + =@ (k, E) + ...

Yopin(k, E)




THE ELEMENTARY EXCITATION SPECTRUM

> The self energy is responsible for shifting the pole of the Green’s
function.

> The new poles determine energy e(k) and the damping I'; of the
quasiparticles state

» For small T, the propagation of quasiparticle states is described by

G(k’ E) T E-— e(k) + le

The energy of quasiparticle

e(k) = eo(k) + ReX[k, e(k)]
Quasiparticle lifetime

7' =Ty = ZIm3Z[k, e(k)]
The residue of the Green’s function
- (%ReE[k, gl

E=e(k)

Zr=|1
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QUASIPARTICLE SPECTRUM
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MOMENTUM DISTRIBUTION

» Momentum distribution describes the occupation probability of the
quasiparticle state of momentum k (see Kéallén-Lehman representation of
G(k,E))

* P,(k,E) PkD ]
Gk.E)= [ dE : . ——— |, p=e(k
ey = ["ap | BEE ] e

> In term of the quasiparticle (hole) spectral functions

n(k) = /0 h dEP,(k,E) =1 — /0 b dEP,(k, E)

» Is related to one body Green’s function through an integration in
complex variable w on an closed contour in upper half-plane (Imw > 0)

n(k) = ﬁ/cdwc(k,w)



MOMENTUM DISTRIBUTION

Exploiting Dyson’s equation, n(k) can be determined through the knowledge

of the self-energy X (k, E), computed at the second order

The discontinuity at k = kr is given by

n(ke —n) —nke +n) =Zy, =Z

n(k) = n< (k) +n> (k)
with

ne(k>ke) =ns(k <kp)=0

0
ne(k<kp)=1+ {a—EReEP(k, E)}

E=e (k)

no k> k) = — {G%Rezh(k, E)]

E=eq (k)

n(k)
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MOMENTUM DISTRIBUTION v = 4

In comparison with non orthogonal CBF perturbation theory
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of radius a = 0.55/1.33 ~ 0.4 fm.
S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction. J




BOLTZMANN-LANDAU EQUATION

Shear viscosity 7 and thermal conductivity £ measure momentum and
energy fluxes in response to a gradient of velocity and temperature.

Boltzmann equation for a Fermi liquid:

Oruc | Omic Dewc O Oex _ pr g
ot or ok 9k or €
> ny is the distribution function
> e is the energy of a quasiparticle carrying momentum k

> I[ny] is the collision integral, defined in terms of the scattering
probability W

Taking into account small deviations from local equilibrium, transport
coefficients determined from the collision integral I[ny].



ABRIKOSOV-KHALATNIKOV SOLUTION

The lifetime
1 8rt 1

T s (W)

The transport coefficients
_ 16 1 7k} 1
T 3T mrt (WY — M)

_ 16 1 K 1
T T M (WY1 = Ay

T, 1, k are expressed in terms of angular averages of W

_ (W[L - 3sin*(0/2) sin” ¢])
W A= W) W)

The angular average is defined as
_ [ [0, 9)
()= 21 cos6/2

(W1 +2cosb])

)



THE SCATTERING PROBABILITY

W is related to the scattering cross section

1672 (d
wi(o,0) = oo (52)

» The AK formalism is derived in the frame in which the Fermi sphere is
at rest (AK)
do
» —
dQ
> the relative kinetic energy is the same Ecp, V frame

expressed in the laboratory or in the center of mass reference frame

2
Eem = EAK = 5—;(1 — cos6)
®cm = ¢
The in medium scattering probability has been computed within the Born
approximation using vesr

W (0, ¢) = 7 | [k}, Kb|verr k1, ka] |

)



LIFETIME AND TRANSPORT COEFFICIENTS

The second order contributions lead to
a sharp increase of m*, which in turn
implies a decrease of the shear viscos-

ity coefficient  and the thermal con-
ductivity .
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BACK TO NUCLEAR MATTER

* In medium neutron-neutron cross section
* From Fermi’s golden rule

(do/dQ)y, [mb]

107\\\\

W(p,p') = 27 [verr(p — )| p(p')

2
do m*

N 2
a0 = 1672 Vet (P — P/)|
P

E_,=100 MeV
p=0.16 tm™®
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SHEAR VISCOSITY OF NEUTRON MATTER
% Critical to the occurrence of the CFS instability of rapidly

rotating neutron stars
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* Note: the SLya effective interaction, adjusted to reproduce the
microscopic EoS, predicts n7? ~ 6 x 10'* gem ™! s~! MeV? at
nuclear matter equilibrium density, to be compared with the
result obtained from the CBF effective interaction
nT? ~1.4x 10 gem™t s7! MeV?



THERMAL CONDUCTIVITY OF NEUTRON MATTER
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* The transport coefficients computed using the CBF effective
interaction is remarkably close to the result obtained within the
G-matrix approach using the same bare NN potential. Note:
three-body interactions not taken into account.



FUTURE DEVELOPMENTS

(E-TS)/N [MeV]

F/N=

* A realistic and consistent description of the properties of hot

* Free energy of PNM (left) and SNM (right) at 0 < 7" < 50 MeV
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nuclear matter will be needed to perform systematic studies of

gravitational-wave emission from protoneutron stars
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SUMMARY & OUTLOOK

* Effective interactions obtained from realistic nuclear hamiltonians
provide a powerful tool to carry out consistent calculations of a
variety of of properties of strongly interacting many-body
systems, ranging from the EoS to quasi particle spectra, in
medium scattering probabilities and transport coefficients

* The result of systematic studies of the Fermi hard-sphere system
performed using the CBF effective interaction are quite
encouraging, and suggest that the same formalism can be safely
employed in nuclear matter

* Future applications to neutron star matter will include the
calculation of transport coefficients, superfluid gaps and
neutrino emission absorption rates
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