Efimov physics with $1 / 2$ spin-isospin symmetry

A. Kievsky

INFN, Sezione di Pisa (Italy)
TNPI2016 - XV Conference on Theoretical Nuclear Physics in Italy Pisa 20-22 April 2016

- M. Gattobigio - INLN \& Nice University, Nice (France)
- M Viviani - INFN \& Pisa IIniversity Pisa (Italv)
- E. Garrido - CSIC, Madrid (Spain)
- A. Deltuva - ITPA, Vilnius (Lithuania)

Efimov physics with $1 / 2$ spin-isospin symmetry

A. Kievsky

INFN, Sezione di Pisa (Italy)
TNPI2016 - XV Conference on Theoretical Nuclear Physics in Italy Pisa 20-22 April 2016

Collaborators

- M. Gattobigio - INLN \& Nice University, Nice (France)
- M. Viviani - INFN \& Pisa University, Pisa (Italy)
- E. Garrido - CSIC, Madrid (Spain)
- A. Deltuva - ITPA, Vilnius (Lithuania)

Preliminaries

Efimov physics for three bosons (zero-range theory)

The spectrum in terms of the two-body scattering length a is:

$$
\begin{aligned}
K_{3}^{n} a & =\tan \xi \\
\kappa_{*} a & =\mathrm{e}^{\left(n-n^{*}\right) \pi / s_{0}} \frac{\mathrm{e}^{-\Delta(\xi) / 2 s_{0}}}{\cos \xi} \\
\text { or } \quad K_{3}^{n} & =\kappa_{*} \mathrm{e}^{-\left(n-n^{*}\right) \pi / s_{0}} \mathrm{e}^{\Delta(\xi) / 2 s_{0}} \sin \xi
\end{aligned}
$$

- $\hbar^{2}\left(K_{3}^{n}\right)^{2} / m=E_{3}^{n}$
- $\mathrm{e}^{-\Delta(\xi) / 2 s_{0}}$ is a universal function obtained for example solving the zero-range three-boson problem (STM equation).

Knowing the universal function the spectrum is completely solved by fixing the value of κ_{*} (called the three-body parameter). Accordingly the above equation is a one-parameter equation.

Zero-Range vs. Finite-Range (two-body system)

Defining $E_{2}=\frac{\hbar^{2}}{m a_{B}^{2}}$
The zero-range theory implies $\longrightarrow a-a_{B}=0$

In a finite-range theory we can define $\longrightarrow a-a_{B}=r_{B}$ Inside the Efimov window $\left(a, a_{B} \ll r_{B}\right) r_{B}$ has a well define meaning:

$$
r_{B} \approx \frac{r_{\text {eff }}}{2} \frac{a}{a_{B}}
$$

Zero-Range vs. Finite-Range (two-body system)

Defining $E_{2}=\frac{\hbar^{2}}{m a_{B}^{2}}$
The zero-range theory implies $\longrightarrow a-a_{B}=0$

In a finite-range theory we can define $\longrightarrow a-a_{B}=r_{B}$ Inside the Efimov window $\left(a, a_{B} \ll r_{B}\right) r_{B}$ has a well define meaning:

$$
r_{B} \approx \frac{r_{\text {eff }}}{2} \frac{a}{a_{B}}
$$

moving around the unitary limit

Defining $V_{\lambda}=\lambda V$, varying λ close to the unitary limit the Scrödinger can be solved $H_{\lambda} \Psi=E \Psi$ for the shallow state (bound or virtual) and the zero-energy state $E=0$. For the different λ values it results:

$$
r_{B}^{\lambda} \approx \frac{r_{\text {eff }}^{\lambda}}{2} \frac{a}{a_{B}} \approx \text { constant }=\frac{r_{u}}{2}
$$

Zero-Range vs. Finite-Range (two-body system)

Defining

$$
r_{u}=r_{e f f}(1 / a=0)=2 r_{B}
$$

and assuming

$$
r_{B}=\frac{r_{\text {eff }}}{2} \frac{a}{a_{B}}=\text { constant }
$$

we obtain

$$
\frac{r_{\text {eff }}}{r_{u}}=\frac{2 r_{B}}{r_{u}} \frac{a_{B}}{a}=\frac{2 r_{B}}{r_{u}} \frac{a-r_{B}}{a}=1-0.5 \frac{r_{u}}{a}
$$

universal function for the effective range

$$
\frac{r_{\text {eff }}}{r_{u}}=1-0.5 \frac{r_{u}}{a}
$$

Zero-Range vs. Finite-Range Effects

Zero-Range Equations: $E_{2}=\hbar^{2} / m a^{2}$

$$
\begin{gathered}
E_{3}^{n} /\left(\hbar^{2} / m a^{2}\right)=\tan ^{2} \xi \\
\kappa_{*} a=\mathrm{e}^{\pi\left(n-n_{*}\right) / s_{0}} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}} / \cos \xi
\end{gathered}
$$

$\Delta(\xi)$ calculated from the Skorniakov-Ter-Martirosian (STM) equation

Finite-Range Equations: $E_{2}=\hbar^{2} / m a_{B}^{2}$ from $V(r)$

$$
\begin{gathered}
E_{3}^{n} / E_{2}=\tan ^{2} \xi \\
\kappa_{*}^{n} a_{B}=\mathrm{e}^{-\widetilde{\Delta}_{n}(\xi) / 2 s_{0}} / \cos \xi \\
\widetilde{\Delta}_{n}(\xi)=s_{0} \ln \left(\frac{E_{3}^{n}+E_{2}}{\hbar^{2}\left(\kappa_{*}^{n}\right)^{2} / m}\right)
\end{gathered}
$$

Zero-Range vs. Finite-Range Effects

Zero-Range Equations: $E_{2}=\hbar^{2} / m a^{2}$

$$
\begin{gathered}
E_{3}^{n} /\left(\hbar^{2} / m a^{2}\right)=\tan ^{2} \xi \\
\kappa_{*} a=\mathrm{e}^{\pi\left(n-n_{*}\right) / s_{0}} \mathrm{e}^{-\Delta(\xi) / 2 s_{0}} / \cos \xi
\end{gathered}
$$

$\Delta(\xi)$ calculated from the Skorniakov-Ter-Martirosian (STM) equation

Finite-Range Equations: $E_{2}=\hbar^{2} / m a_{B}^{2}$ from $V(r)$

$$
\begin{gathered}
E_{3}^{n} / E_{2}=\tan ^{2} \xi \\
\kappa_{*}^{n} a_{B}=\mathrm{e}^{-\widetilde{\Delta}_{n}(\xi) / 2 s_{0}} / \cos \xi \\
\widetilde{\Delta}_{n}(\xi)=s_{0} \ln \left(\frac{E_{3}^{n}+E_{2}}{\hbar^{2}\left(\kappa_{*}^{n}\right)^{2} / m}\right)
\end{gathered}
$$

$\widetilde{\Delta}_{n}(\xi) \rightarrow \Delta(\xi)$ for $n>0$

Extension to $\mathrm{N}=4$

Zero-Range Equations for $N=4$

Finite-Range Equations: $E_{2}=\hbar^{2} / m a_{B}^{2}$ from $V(r)$

$$
\begin{gathered}
E_{4}^{n, m} / E_{2}=\tan ^{2} \xi \\
\kappa_{4}^{n, m} a_{B}=\mathrm{e}^{-\widetilde{\Delta}_{4}^{n, m}(\xi) / 2 s_{0}} / \cos \xi \\
\widetilde{\Delta}_{4}^{n, m}(\xi)=s_{0} \ln \left(\frac{E_{4}^{n, m}+E_{2}}{\hbar^{2}\left(\kappa_{4}^{n, m}\right)^{2} / m}\right)
\end{gathered}
$$

Zero-Range Equations: $E_{2}=\hbar^{2} / \mathrm{ma}^{2}$

Zero-Range Equations for $N=4$

Finite-Range Equations: $E_{2}=\hbar^{2} / m a_{B}^{2}$ from $V(r)$

$$
\begin{gathered}
E_{4}^{n, m} / E_{2}=\tan ^{2} \xi \\
\kappa_{4}^{n, m} a_{B}=\mathrm{e}^{-\widetilde{\Delta}_{4}^{n, m}(\xi) / 2 s_{0}} / \cos \xi \\
\widetilde{\Delta}_{4}^{n, m}(\xi)=s_{0} \ln \left(\frac{E_{4}^{n, m}+E_{2}}{\hbar^{2}\left(\kappa_{4}^{n, m}\right)^{2} / m}\right)
\end{gathered}
$$

Zero-Range Equations: $E_{2}=\hbar^{2} / m a^{2}$

$$
\begin{gathered}
E_{4}^{n, m} /\left(\hbar^{2} / m a^{2}\right)=\tan ^{2} \xi \\
\kappa_{*}^{m} a=\mathrm{e}^{\pi\left(n-n_{*}\right) / s_{0}} \mathrm{e}^{-\Delta_{4}^{m}(\xi) / 2 s_{0}} / \cos \xi
\end{gathered}
$$

with $\kappa_{*}^{0} / \kappa_{*}^{1}=4.6003$

1/2-spin 1/2-isospin fermions close to the unitary limit

The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$\begin{array}{ll}a_{1}=5.424 \pm 0.003 \mathrm{fm} & r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm} \\ a_{0}=-23.740 \pm 0.020 \mathrm{fm} & r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}\end{array}$

- The $S=1$ channel
a gaussian $V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B} V_{1} is varied: this path has the value $r_{B}=a_{1}-a_{B}$ almost constant. For nuclear physics we have
- The $S=0$ channel:
a gaussian $V_{0} e^{-r^{2} / r_{0}^{2}}$ is used with V_{0} and r_{0} fixed to describe a_{0} and $r_{0}^{\text {eff }}$

$1 / 2$-spin $1 / 2$-isospin fermions close to the unitary limit

The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$a_{1}=5.424 \pm 0.003 \mathrm{fm} \quad r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm}$
$a_{0}=-23.740 \pm 0.020 \mathrm{fm} \quad r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}$
moving the system to the unitary limit

- The $S=1$ channel:
a gaussian $V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B} V_{1} is varied: this path has the value $r_{B}=a_{1}-a_{B}$ almost constant. For nuclear physics we have $r_{B} \approx 1.2 \mathrm{fm}$
a gaussian $V_{0} \mathrm{e}^{-r^{2} / r_{0}^{2}}$ is used with V_{0} and r_{0} fixed to describe a_{0}

$1 / 2$-spin $1 / 2$-isospin fermions close to the unitary limit

The $2 N$ system in s-wave
This is a two-channel system with spin $S=0$ and $S=1$. For two nucleons the physical values are:
$E_{d}=-2.2245 \mathrm{MeV}, a_{B}=4.318 \mathrm{fm}$
$\begin{array}{ll}a_{1}=5.424 \pm 0.003 \mathrm{fm} & r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm} \\ a_{0}=-23.740 \pm 0.020 \mathrm{fm} & r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}\end{array}$
moving the system to the unitary limit

- The $S=1$ channel:
a gaussian $V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$ with V_{0} and r_{1} fixed to describe a_{1} and a_{B} V_{1} is varied: this path has the value $r_{B}=a_{1}-a_{B}$ almost constant. For nuclear physics we have $r_{B} \approx 1.2 \mathrm{fm}$
- The $S=0$ channel:
a gaussian $V_{0} \mathrm{e}^{-r^{2} / r_{0}^{2}}$ is used with V_{0} and r_{0} fixed to describe a_{0} and $r_{0}^{\text {eff }}$

Three-body spectrum with spin-isospin symmetry

Finite-Range Equations: $E_{2}=\hbar^{2} / m a_{B}^{2}$ from $V_{1}(r)$

$$
\begin{gathered}
E_{3}^{n} / E_{2}=\tan ^{2} \xi \\
\kappa_{*}^{n} a_{B}=\mathrm{e}^{-\widetilde{\Delta}_{3}(\xi, \phi) / 2 s_{0}} / \cos \xi \\
\widetilde{\Delta}_{n}(\xi, \phi)=s_{0} \ln \left(\frac{E_{3}^{n}+E_{2}}{\hbar^{2}\left(\kappa_{*}^{n}\right)^{2} / m}\right) \\
\frac{a_{1}}{a_{0}}=\tan \phi
\end{gathered}
$$

For $n>0$
$\widetilde{\Delta}_{n}(\xi, \phi) \rightarrow \Delta(\xi, \phi)$

Comments on the two-channel plot

- Studying a three-boson system using finite-range potentials, the first excited state does not dispapear onto the two-body threshold
- In the two-channel system the excited state disappears on the two-body threshold as the ratio a_{0} / a_{1} varies.
- The analysis of the nuclear plane produces a binding energy at the unitary limit of $E_{u} \approx 3.6 \mathrm{MeV}$.
- However at the nuclear point the binding energy of $E_{3} \approx 10.2 \mathrm{MeV}$ is far from the experimental value of 8.5 MeV
- A three-body force has to be included
- using a more realistic potential model and varying the depth, the unitary limit can be reached.
- The value obtained has been $E_{u} \approx 2.8 \mathrm{MeV}$.

Working on the nuclear point

The 2 N sector
Low Energy data:
$E_{d}=-2.2245 \mathrm{MeV}$
$a_{1}=5.424 \pm 0.003 \mathrm{fm} \quad r_{1}^{\text {eff }}=1.760 \pm 0.005 \mathrm{fm}$
$a_{0}=-23.740 \pm 0.020 \mathrm{fm} \quad r_{0}^{\text {eff }}=2.77 \pm 0.05 \mathrm{fm}$
Constructing LO 2 N potential
Two parameters corresponding to the $I=0$ partial waves with $S=0,1$: $V_{0}(r)=-V_{0} \mathrm{e}^{-r^{2} / r_{0}^{2}}, V_{1}(r)=-V_{1} \mathrm{e}^{-r^{2} / r_{1}^{2}}$

$V_{0}[\mathrm{MeV}]$	$r_{0}[\mathrm{fm}]$	$a_{0}[f \mathrm{fm}]$	$\left.r_{0}^{\text {eft }[f m}\right]$	$V_{1}[\mathrm{MeV}]$	$r_{1}[f \mathrm{fm}]$	$a_{1}[f \mathrm{fm}]$	$r_{1}^{e e_{1} t}[\mathrm{fm}]$
53.255	1.40	-23.741	2.094	79.600	1.40	5.309	1.622
42.028	1.57	-23.745	2.360	65.750	1.57	5.423	1.776
40.413	1.60	-23.745	2.407	63.712	1.60	5.447	1.802
37.900	1.65	-23.601	2.487	60.575	1.65	5.482	1.846
33.559	1.75	-23.745	2.644	55.036	1.75	5.548	1.930
30.932	1.82	-23.746	2.756				

Working on the nuclear point

The 3 N sector

$V_{0}[\mathrm{MeV}]$	$r_{0}[\mathrm{fm}]$	$V_{1}[\mathrm{MeV}]$	$r_{1}[\mathrm{fm}]$	$E_{3}^{0}[\mathrm{MeV}]$	$E_{3}^{1}[\mathrm{MeV}]$	${ }^{2} a_{n d}[\mathrm{fm}]$
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

We choose a simple (two-parameter) form:

Working on the nuclear point

The 3 N sector

$V_{0}[\mathrm{MeV}]$	$r_{0}[\mathrm{fm}]$	$V_{1}[\mathrm{MeV}]$	$r_{1}[\mathrm{fm}]$	$E_{3}^{0}[\mathrm{MeV}]$	$E_{3}^{1}[\mathrm{MeV}]$	${ }^{2} a_{n d}[\mathrm{fm}]$
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$
W(\rho)=W_{0} \mathrm{e}^{-\rho^{2} / \rho_{0}^{2}}
$$

with $\rho^{2}=\frac{2}{3}\left(r_{12}^{2}+r_{23}^{2}+r_{31}^{2}\right)$
$\mathrm{V}(\mathrm{r})=[\mathrm{V}(\mathrm{S}=1)+\mathrm{V}(\mathrm{S}=0)] * \exp \left(-\mathrm{r}^{2} / \mathrm{r}_{1}{ }^{2}\right)+\mathrm{W}_{0} * \exp \left(-\rho^{2} / \rho_{0}{ }^{2}\right)$

The $\mathrm{N}=4$ ground and excited state

Summary of the LO potential

LO	E_{d}	$B\left({ }^{3} \mathrm{H}\right)$	$B\left({ }^{4} \mathrm{He}\right)$	$B\left({ }^{4} \mathrm{He}{ }^{*}\right)$	${ }^{2} a_{n d}$
	-2.225	-8.480	-28.41	-8.29	0.652
Exp.	-2.225	-8.482	-28.296	-8.10	0.645

$\mathrm{A}=3$ low energy scattering

No bad for a 4-parameter $2 N$ potential + 2-parameter $3 N$ potential! next step (in progress) $\rightarrow{ }^{6} \mathrm{He}$ and ${ }^{6} \mathrm{Li}$ ground states

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_{B}=a-a_{B}$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet $n-d$ scattering length and the four-nucleon system have been studied

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_{B}=a-a_{B}$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet $n-d$ scattering length and the four-nucleon system have been studied
- Work in progress: extension to $A>4$

