Efimov physics with 1/2 spin-isospin symmetry

A. Kievsky

INFN, Sezione di Pisa (Italy)

TNPI2016 - XV Conference on Theoretical Nuclear Physics in Italy Pisa 20-22 April 2016

Collaborators

- M. Gattobigio INLN & Nice University, Nice (France)
- M. Viviani INFN & Pisa University, Pisa (Italy)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)

Efimov physics with 1/2 spin-isospin symmetry

A. Kievsky

INFN, Sezione di Pisa (Italy)

TNPI2016 - XV Conference on Theoretical Nuclear Physics in Italy Pisa 20-22 April 2016

Collaborators

- M. Gattobigio INLN & Nice University, Nice (France)
- M. Viviani INFN & Pisa University, Pisa (Italy)
- E. Garrido CSIC, Madrid (Spain)
- A. Deltuva ITPA, Vilnius (Lithuania)

3

Preliminaries

Efimov physics for three bosons (zero-range theory)

The spectrum in terms of the two-body scattering length a is:

$$K_3^n a = \tan \xi$$

$$\kappa_* a = e^{(n-n^*)\pi/s_0} \frac{e^{-\Delta(\xi)/2s_0}}{\cos \xi}$$

$$r \quad K_3^n = \kappa_* e^{-(n-n^*)\pi/s_0} e^{\Delta(\xi)/2s_0} \sin \xi$$

• $\hbar^2 (K_3^n)^2 / m = E_3^n$

0

• $e^{-\Delta(\xi)/2s_0}$ is a universal function obtained for example solving the zero-range three-boson problem (STM equation).

Knowing the universal function the spectrum is completely solved by fixing the value of κ_* (called the three-body parameter). Accordingly the above equation is a one-parameter equation.

A. Kievsky (INFN-Pisa)

Zero-Range vs. Finite-Range (two-body system)

Defining $E_2 = \frac{\hbar^2}{ma_B^2}$

The zero-range theory implies $\longrightarrow a - a_B = 0$

In a finite-range theory we can define $\rightarrow a - a_B = r_B$

Inside the Efimov window $(a, a_B << r_B)$ r_B has a well define meaning:

$$r_B \approx rac{r_{eff}}{2} rac{a}{a_B}$$

moving around the unitary limit

Defining $V_{\lambda} = \lambda V$, varying λ close to the unitary limit the Scrödinger can be solved $H_{\lambda}\Psi = E\Psi$ for the shallow state (bound or virtual) and the zero-energy state E = 0. For the different λ values it results:

$$r_B^{\lambda} \approx rac{r_{eff}^{\lambda}}{2} rac{a}{a_B} \approx constant = rac{r_u}{2}$$

Zero-Range vs. Finite-Range (two-body system)

Defining $E_2 = \frac{\hbar^2}{ma_B^2}$

The zero-range theory implies $\longrightarrow a - a_B = 0$

In a finite-range theory we can define $\rightarrow a - a_B = r_B$

Inside the Efimov window $(a, a_B << r_B)$ r_B has a well define meaning:

$$r_B \approx rac{r_{eff}}{2} rac{a}{a_B}$$

moving around the unitary limit

Defining $V_{\lambda} = \lambda V$, varying λ close to the unitary limit the Scrödinger can be solved $H_{\lambda}\Psi = E\Psi$ for the shallow state (bound or virtual) and the zero-energy state E = 0. For the different λ values it results:

$$r_B^\lambda pprox rac{r_{ ext{eff}}^\lambda}{2} rac{a}{a_B} pprox ext{constant} = rac{r_u}{2}$$

Zero-Range vs. Finite-Range (two-body system)

Defining

$$r_{u} = r_{eff}(1/a = 0) = 2r_{B}$$
and assuming

$$r_{B} = \frac{r_{eff}}{2} \frac{a}{a_{B}} = constant$$
we obtain

$$\frac{r_{eff}}{r_{u}} = \frac{2r_{B}}{r_{u}} \frac{a_{B}}{a} = \frac{2r_{B}}{r_{u}} \frac{a - r_{B}}{a} = 1 - 0.5 \frac{r_{u}}{a}$$
universal function for the effective range

$$\frac{r_{eff}}{r_{u}} = 1 - 0.5 \frac{r_{u}}{a}$$

TNPI2016, April 2016 6 / 21

Zero-Range vs. Finite-Range Effects Zero-Range Equations: $E_2 = \hbar^2/ma^2$ $E_3^n/(\hbar^2/ma^2) = \tan^2 \xi$ $\kappa_* a = e^{\pi (n-n_*)/s_0} e^{-\Delta(\xi)/2s_0}/\cos \xi$

 $\Delta(\xi)$ calculated from the Skorniakov-Ter-Martirosian (STM) equation

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_3^n / E_2 = \tan^2 \xi$ $\kappa_*^n a_B = e^{-\widetilde{\Delta}_n(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_n(\xi) = s_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2 (\kappa_*^n)^2 / m}\right)$

A. Kievsky (INFN-Pisa)

Zero-Range vs. Finite-Range Effects Zero-Range Equations: $E_2 = \hbar^2/ma^2$ $E_3^n/(\hbar^2/ma^2) = \tan^2 \xi$ $\kappa_* a = e^{\pi (n-n_*)/s_0} e^{-\Delta(\xi)/2s_0}/\cos \xi$

 $\Delta(\xi)$ calculated from the Skorniakov-Ter-Martirosian (STM) equation

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_3^n / E_2 = \tan^2 \xi$ $\kappa_*^n a_B = e^{-\widetilde{\Delta}_n(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_n(\xi) = s_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2 (\kappa_*^n)^2 / m}\right)$

$$\widetilde{\Delta}_n(\xi) o \Delta(\xi)$$
 for $n > 0$

A. Kievsky (INFN-Pisa)

Extension to N=4

TNPI2016, April 2016 9/21

Zero-Range Equations for N = 4

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_4^{n,m}/E_2 = \tan^2 \xi$ $\kappa_4^{n,m}a_B = e^{-\widetilde{\Delta}_4^{n,m}(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_4^{n,m}(\xi) = s_0 \ln \left(\frac{E_4^{n,m} + E_2}{\hbar^2(\kappa_4^{n,m})^2/m}\right)$

Zero-Range Equations: $E_2 = \hbar^2 / ma^2$

$$E_4^{n,m}/(\hbar^2/ma^2) = \tan^2 \xi$$

$$\kappa_*^m a = e^{\pi (n-n_*)/s_0} e^{-\Delta_4^m(\xi)/2s_0}/\cos \xi$$

with $\kappa_*^0/\kappa_*^1 = 4.6003$

э

Zero-Range Equations for N = 4

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from V(r) $E_4^{n,m}/E_2 = \tan^2 \xi$ $\kappa_4^{n,m} a_B = e^{-\widetilde{\Delta}_4^{n,m}(\xi)/2s_0} / \cos \xi$ $\widetilde{\Delta}_4^{n,m}(\xi) = s_0 \ln \left(\frac{E_4^{n,m} + E_2}{\hbar^2 (\kappa_4^{n,m})^2 / m}\right)$

Zero-Range Equations: $E_2 = \hbar^2 / ma^2$

$$E_4^{n,m}/(\hbar^2/ma^2) = \tan^2 \xi$$

$$\kappa_*^m a = e^{\pi(n-n_*)/s_0} e^{-\Delta_4^m(\xi)/2s_0} / \cos \xi$$

with $\kappa_*^0/\kappa_*^1 = 4.6003$

э.

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{\text{eff}} = 1.760 \pm 0.005 \text{ fm}$

• The S = 1 channel:

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_0^2}$ is used with V_0 and r_0 fixed to describe a_0 and roff

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{eff} = 1.760 \pm 0.005 \text{ fm}$ $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_0 and r_1 fixed to describe a_1 and a_B V_1 is varied: this path has the value $r_B = a_1 - a_B$ almost constant. For nuclear physics we have $r_B \approx 1.2$ fm

• The S = 0 channel:

1/2-spin 1/2-isospin fermions close to the unitary limit The 2N system in s-wave

This is a two-channel system with spin S = 0 and S = 1. For two nucleons the physical values are:

 $E_d = -2.2245 \text{ MeV}, a_B = 4.318 \text{ fm}$

 $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{\text{eff}} = 2.77 \pm 0.05 \text{ fm}$

 $a_1 = 5.424 \pm 0.003 \text{ fm}$ $r_1^{eff} = 1.760 \pm 0.005 \text{ fm}$

moving the system to the unitary limit

• The S = 1 channel:

a gaussian $V_1 e^{-r^2/r_1^2}$ with V_0 and r_1 fixed to describe a_1 and a_B V_1 is varied: this path has the value $r_B = a_1 - a_B$ almost constant. For nuclear physics we have $r_B \approx 1.2$ fm

• The S = 0 channel:

a gaussian $V_0 e^{-r^2/r_0^2}$ is used with V_0 and r_0 fixed to describe a_0 and roff

TNPI2016, April 2016 12 / 21

Three-body spectrum with spin-isospin symmetry

Finite-Range Equations: $E_2 = \hbar^2 / ma_B^2$ from $V_1(r)$ $E_2^n/E_2 = \tan^2 \varepsilon$ $\kappa_*^n a_{\mathsf{B}} = \mathrm{e}^{-\widetilde{\Delta}_3(\xi,\phi)/2s_0}/\cos\xi$ $\widetilde{\Delta}_n(\xi,\phi) = \mathbf{s}_0 \ln \left(\frac{E_3^n + E_2}{\hbar^2 (\kappa_n^n)^2 / m} \right)$ $\frac{a_1}{a_0} = \tan \phi$ $\widetilde{\Delta}_n(\xi,\phi) \to \Delta(\xi,\phi)$ For n > 0

A. Kievsky (INFN-Pisa)

Efimov physics with 1/2 spin-isospin symmetry

TNPI2016, April 2016 13 / 21

A (10) × (10) × (10) ×

TNPI2016, April 2016 14 / 21

Comments on the two-channel plot

- Studying a three-boson system using finite-range potentials, the first excited state does not dispapear onto the two-body threshold
- In the two-channel system the excited state disappears on the two-body threshold as the ratio a₀/a₁ varies.
- The analysis of the nuclear plane produces a binding energy at the unitary limit of $E_u \approx 3.6$ MeV.
- However at the nuclear point the binding energy of $E_3 \approx 10.2$ MeV is far from the experimental value of 8.5 MeV
- A three-body force has to be included
- using a more realistic potential model and varying the depth, the unitary limit can be reached.
- The value obtained has been $E_u \approx 2.8$ MeV.

(日)

Working on the nuclear point

The 2N sector

Low Energy data: $E_d = -2.2245 \text{ MeV}$ $a_1 = 5.424 \pm 0.003 \text{ fm}$ $a_0 = -23.740 \pm 0.020 \text{ fm}$ $r_0^{eff} = 2.77 \pm 0.05 \text{ fm}$

Constructing LO 2N potential

Two parameters corresponding to the I = 0 partial waves with S = 0, 1: $V_0(r) = -V_0 e^{-r^2/r_0^2}, V_1(r) = -V_1 e^{-r^2/r_1^2}$

V ₀ [MeV]	<i>r</i> ₀ [fm]	<i>a</i> ₀[fm]	r ₀ ^{eff} [fm]	V ₁ [MeV]	<i>r</i> ₁ [fm]	<i>a</i> ₁[fm]	<i>r</i> ^{eff} [fm]
53.255	1.40	-23.741	2.094	79.600	1.40	5.309	1.622
42.028	1.57	-23.745	2.360	65.750	1.57	5.423	1.776
40.413	1.60	-23.745	2.407	63.712	1.60	5.447	1.802
37.900	1.65	-23.601	2.487	60.575	1.65	5.482	1.846
33.559	1.75	-23.745	2.644	55.036	1.75	5.548	1.930
30.932	1.82	-23.746	2.756				

A. Kievsky (INFN-Pisa)

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V_1 [MeV]	<i>r</i> ₁ [fm]	$E_{3}^{0}[MeV]$	E_3^1 [MeV]	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 e^{-\rho^2/\rho_0^2}$$

with $\rho^2 = \frac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$

Working on the nuclear point

The 3N sector

V_0 [MeV]	<i>r</i> ₀ [fm]	V_1 [MeV]	<i>r</i> ₁ [fm]	$E_{3}^{0}[MeV]$	$E_{3}^{1}[MeV]$	² a _{nd} [fm]
53.255	1.40	79.600	1.40	-12.40	-2.191	-2.175
42.028	1.57	65.750	1.57	-10.83	-2.199	-1.236
40.413	1.60	63.712	1.60	-10.59	-2.197	-1.097
37.900	1.65	60.575	1.65	-10.22	-2.199	-0.860
33.559	1.75	55.036	1.75	-9.584	-2.201	
30.932	1.82	65.750	1.57	-9.715		-0.285
Exp.				-8.482		0.645 ± 0.010

Introducing a Three-Body Force

We choose a simple (two-parameter) form:

$$W(\rho) = W_0 \mathrm{e}^{-\rho^2/\rho_0^2}$$

with $\rho^2 = \frac{2}{3}(r_{12}^2 + r_{23}^2 + r_{31}^2)$

$$V(r) = [V(S=1)+V(S=0)]*exp(-r^{2}/r_{1}^{2})+W_{0}*exp(-\rho^{2}/\rho_{0}^{2})$$

A. Kievsky (INFN-Pisa)

Efimov physics with 1/2 spin-isospin symmetr

TNPI2016, April 2016 18 / 21

The N=4 ground and excited state

Summary of the LO potential $2a_{nd}$ LO $B(^{3}H)$ $B(^{4}\text{He}^{*})$ E_d $B(^{4}\text{He})$ -2.225 -8.480 -28.41-8.29 0.652 Exp. -2.225 -8.482 -28.296 -8.10 0.645

A=3 low energy scattering

No bad for a 4-parameter 2*N* potential + 2-parameter 3*N* potential! next step (in progress) \rightarrow ⁶He and ⁶Li ground states

A. Kievsky (INFN-Pisa)

Efimov physics with 1/2 spin-isospin symmetry

TNPI2016, April 2016 20 / 21

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_B = a a_B$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet n d scattering length and the four-nucleon system have been studied
- Work in progress: extension to A > 4

Conclusions

- A path matching a physical point to the unitary limit has been analyzed
- Varying the depth of the potential the quantity $r_B = a a_B$ remains almost constant
- Along this path different scale can be joined
- Finite-range effects have been analyzed
- Using this procedure a 1/2-spin 1/2-isospin fermion system has been studied
- A detailed study on the nuclear physics point has been performed with gaussian potentials
- Including a three-body force the doublet n d scattering length and the four-nucleon system have been studied
- Work in progress: extension to A > 4