Medium effects on heavy-flavour observables in high-energy nuclear collisions

Andrea Beraudo

INFN - Sezione di Torino

Pisa, $20^{\mathrm{th}}-22^{\mathrm{th}}$ April 2016

1/38

Heavy-ion collisions: exploring the QCD phase-diagram

QCD phases identified through the *order* parameters

- Polyakov loop (L) ~ e^{-βΔFQ} energy cost to add an isolated color charge
- Chiral condensate $\langle \overline{q}q \rangle \sim$ effective mass of a "dressed" quark in a hadron

Region explored at LHC: high-T/low-density (early universe, $n_B/n_\gamma \sim 10^{-9}$)

- From QGP (color deconfinement, chiral symmetry restored)
- to hadronic phase (confined, chiral symmetry breaking¹)

NB $\langle \overline{q}q \rangle \neq 0$ responsible for most of the baryonic mass of the universe: only $\sim 35 \text{ MeV}$ of the proton mass from $m_{u/d} \neq 0$

¹V. Koch, Aspects of chiral symmetry, Int.J.Mod.Phys. (E6) (1997) (=) = → (<

Heavy-ion collisions: a typical event

- Valence quarks of participant nucleons act as sources of strong color fields giving rise to *particle production*
- Spectator nucleons don't participate to the collision;

Almost all the energy and baryon number carried away by the remnants

Heavy-ion collisions: a typical event

Event display of a Au-Au collision at $\sqrt{s_{\rm NN}} = 200 \text{ GeV}$

Heavy-ion collisions: a cartoon of space-time evolution

- Soft probes (low-p_T hadrons): collective behavior of the medium;
- Hard probes (high-p_T particles, heavy quarks, quarkonia): produced in hard pQCD processes in the initial stage, allow to perform a tomography of the medium

Hydrodynamic behavior: elliptic flow

• In *non-central collisions* particle emission is not azimuthally-symmetric!

(a)

6/38

Hydrodynamic behavior: elliptic flow

- In non-central collisions particle emission is not azimuthally-symmetric!
- The effect can be quantified through the Fourier coefficient v₂

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \left(1 + 2v_2 \cos[2(\phi - \psi_{RP})] + \dots \right)$$
$$v_2 \equiv \langle \cos[2(\phi - \psi_{RP})] \rangle$$

v₂(p_T) ~ 0.2 gives a modulation 1.4 vs
 0.6 for in-plane vs out-of-plane particle emission!

Elliptic flow: physical interpretation

• Matter behaves like a fluid whose *expansion* is *driven by pressure* gradients

$$(\epsilon + P) \frac{dv^i}{dt} \underset{v \ll c}{=} - \frac{\partial P}{\partial x^i}$$
 (Euler equation)

- Spatial anisotropy is converted into momentum anisotropy;
- At freeze-out particles are mostly emitted along the reaction-plane.
- It provides information on the EOS of the produced matter (Hadron Gas vs QGP) through the speed of sound: $\vec{\nabla P} = c_s^2 \vec{\nabla \epsilon}$

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

(a)

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

イロト イポト イヨト イヨト

8/38

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

イロト イポト イヨト イヨト

8/38

The medium is opaque: jet-quenching

The nuclear modification factor

$$R_{AA} \equiv rac{\left(dN^{h}/dp_{T}
ight)^{AA}}{\left\langle N_{\mathrm{coll}}
ight
angle \left(dN^{h}/dp_{T}
ight)^{pp}}$$

quantifies the suppression of high- p_T hadron spectra

Hard-photon $R_{AA} \approx 1$

- supports the Glauber picture (binary-collision scaling);
- entails that quenching of inclusive hadron spectra is a *final state effect* due to in-medium energy loss.

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

(日) (同) (三) (三)

Di-jet imbalance at LHC: looking at the event display

An important fraction of events display a *huge mismatch* in E_T between the leading jet and its away-side partner

Possible to observe event-by-event, without any analysis!

Initial production Transport setup Results

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);

Initial production Transport setup Results

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe how particles would (asymptotically) approach equilibrium.

Initial production Transport setup Results

Heavy Flavour in the QGP: the conceptual setup

- Description of soft observables based on hydrodynamics, assuming to deal with a system close to local thermal equilibrium (no matter why);
- Description of jet-quenching based on energy-degradation of external probes (high-p_T partons);
- Description of heavy-flavour observables requires to employ/develop a setup (transport theory) allowing to deal with more general situations and in particular to describe *how particles would (asymptotically) approach equilibrium*.

NB At high- p_T the interest in heavy flavor is no longer related to thermalization, but to the study of the mass and color charge dependence of jet-quenching (not addressed in this talk)

nitial production Transport setup Results

Why are charm and beauty considered *heavy*?

• $M \gg \Lambda_{\rm QCD}$: their initial production (as shown!) is well described by pQCD

nitial production Transport setup Results

Why are charm and beauty considered *heavy*?

- M ≫ Λ_{QCD}: their initial production (as shown!) is well described by pQCD
- $M \gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime $\sim 10 \text{ fm/c}$) set by the initial hard production

nitial production Transport setup Results

Why are charm and beauty considered *heavy*?

- M ≫ Λ_{QCD}: their initial production (as shown!) is well described by pQCD
- $M \gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime $\sim 10 \text{ fm/c}$) set by the initial hard production
- M ≫ gT, with gT being the typical momentum exchange in the collisions with the plasma particles: many soft scatterings necessary to change significantly the momentum/trajectory of the quark.

nitial production Transport setup Results

Why are charm and beauty considered *heavy*?

- M ≫ Λ_{QCD}: their initial production (as shown!) is well described by pQCD
- $M \gg T$: thermal abundance in the plasma would be negligible; final multiplicity in the experiments (expanding fireball with lifetime $\sim 10 \text{ fm/c}$) set by the initial hard production
- M ≫ gT, with gT being the typical momentum exchange in the collisions with the plasma particles: many soft scatterings necessary to change significantly the momentum/trajectory of the quark.

NB for realistic temperatures $g \sim 2$, so that one can wonder whether a charm is really "heavy", at least in the initial stage of the evolution.

nitial production Fransport setup Results

Heavy quarks as probes of the QGP

A realistic study requires developing *a multi-step setup*:

• Initial production: pQCD + possible nuclear effects (nPDFs, k_T -broadening) \rightarrow QCD event generators;

nitial production Fransport setup Results

Heavy quarks as probes of the QGP

- Initial production: pQCD + possible nuclear effects (nPDFs, k_T -broadening) \rightarrow QCD event generators;
- Description of the background medium (T(x), u^µ(x), local value of transport coefficients...) → hydrodynamics;

nitial production Fransport setup Results

Heavy quarks as probes of the QGP

- Initial production: pQCD + possible nuclear effects (nPDFs, k_T -broadening) \rightarrow QCD event generators;
- Description of the background medium (T(x), u^µ(x), local value of transport coefficients...) → hydrodynamics;
- Dynamics in the medium \longrightarrow transport calculations;

nitial production Fransport setup Results

Heavy quarks as probes of the QGP

- Initial production: pQCD + possible nuclear effects (nPDFs, k_T -broadening) \rightarrow QCD event generators;
- Description of the background medium (T(x), u^µ(x), local value of transport coefficients...) → hydrodynamics;
- Dynamics in the medium \rightarrow transport calculations;
- Hadronization: not well under control (fragmentation in the vacuum? recombination with light thermal partons?)
 - An item of interest in itself (change of hadrochemistry in AA)
 - However, a source of systematic uncertainty for studies of parton-medium interaction;

nitial production Fransport setup Results

Heavy quarks as probes of the QGP

- Initial production: pQCD + possible nuclear effects (nPDFs, k_T -broadening) \rightarrow QCD event generators;
- Description of the background medium (T(x), u^µ(x), local value of transport coefficients...) → hydrodynamics;
- Dynamics in the medium \rightarrow transport calculations;
- Hadronization: not well under control (fragmentation in the vacuum? recombination with light thermal partons?)
 - An item of interest in itself (change of hadrochemistry in AA)
 - However, a source of systematic uncertainty for studies of parton-medium interaction;
- Final decays $(D \rightarrow X \nu e, B \rightarrow X J/\psi...)$

Initial production Transport setup Results

HQ production: NLO calculation + Parton Shower

- The strategy to simulate the initial $Q\overline{Q}$ production is to interface the output of a NLO event-generator for the hard process with a parton-shower describing the Initial and Final State Radiation and modeling other *non-perturbative processes* (intrinsic k_T , MPI, hadronizazion)
- This provides a fully exclusive information on the final state
 In the final state
 In the final state

Initial production Transport setup Results

Heavy flavour: experimental observables

- D and B mesons
- Non-prompt J/ψ 's $(B \rightarrow J/\psi X)$
- Heavy-flavour electrons, from the decays
 - of charm (e_c)

• of beauty (e_b)

B-tagged jets

Initial production Transport setup Results

HF production in pp collisions: results

• Besides reproducing the inclusive D-meson p_T -spectra²

and the heavy-flavour electrons

²W.M. Alberico *et al*, Eur.Phys.J. C73 (2013) 2481⁻⁻⁻

Initial production Transport setup Results

HF production in pp collisions: results

- Besides reproducing the inclusive D-meson p_T -spectra²
- and the heavy-flavour electrons
- ...the POWHEG+PYTHIA setup allows also the comparison with <u>D-h</u> correlation data, which start getting available.

²W.M. Alberico *et al*, Eur.Phys.J. C73 (2013) 2481

15 / 38

Initial production Transport setup Results

Transport theory: the Boltzmann equation

Time evolution of HQ phase-space distribution $f_Q(t, \mathbf{x}, \mathbf{p})^3$:

$$\frac{d}{dt}f_Q(t,\mathbf{x},\mathbf{p})=C[f_Q]$$

• Total derivative along particle trajectory

$$\frac{d}{dt} \equiv \frac{\partial}{\partial t} + \mathbf{v} \frac{\partial}{\partial \mathbf{x}} + \mathbf{F} \frac{\partial}{\partial \mathbf{p}}$$

Neglecting x-dependence and mean fields: $\partial_t f_Q(t, \mathbf{p}) = C[f_Q]$

• Collision integral:

$$C[f_Q] = \int d\mathbf{k} [\underbrace{w(\mathbf{p} + \mathbf{k}, \mathbf{k}) f_Q(\mathbf{p} + \mathbf{k})}_{\text{gain term}} - \underbrace{w(\mathbf{p}, \mathbf{k}) f_Q(\mathbf{p})}_{\text{loss term}}]$$

 $w(\mathbf{p}, \mathbf{k})$: HQ transition rate $\mathbf{p} \rightarrow \mathbf{p} - \mathbf{k}$

16/38

Initial production Transport setup Results

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

⁴B. Svetitsky, PRD 37, 2484 (1988)

Initial production Transport setup Results

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \frac{\partial}{\partial p^i} \left\{ A^i(\mathbf{p})f_Q(t,\mathbf{p}) + \frac{\partial}{\partial p^j} [B^{ij}(\mathbf{p})f_Q(t,\mathbf{p})] \right\}$$

where (verify!)

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \ k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p}) = A(p) \ p^{i}}_{\text{friction}}$$
$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \ k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{B^{ij}(\mathbf{p}) = \hat{p}^{i} \hat{p}^{j} B_{0}(p) + (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) B_{1}(p)}_{\text{momentum broadening}}$$

⁴B. Svetitsky, PRD 37, 2484 (1988)

Initial production Transport setup Results

From Boltzmann to Fokker-Planck

Expanding the collision integral for *small momentum exchange*⁴ (Landau)

$$C[f_Q] \approx \int d\mathbf{k} \left[k^i \frac{\partial}{\partial p^i} + \frac{1}{2} k^i k^j \frac{\partial^2}{\partial p^i \partial p^j} \right] [w(\mathbf{p}, \mathbf{k}) f_Q(t, \mathbf{p})]$$

The Boltzmann equation reduces to the Fokker-Planck equation

$$\frac{\partial}{\partial t}f_Q(t,\mathbf{p}) = \frac{\partial}{\partial \rho^i} \left\{ A^i(\mathbf{p})f_Q(t,\mathbf{p}) + \frac{\partial}{\partial \rho^i} [B^{ij}(\mathbf{p})f_Q(t,\mathbf{p})] \right\}$$

where (verify!)

$$A^{i}(\mathbf{p}) = \int d\mathbf{k} \ k^{i} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{A^{i}(\mathbf{p}) = A(p) \ p^{i}}_{\text{friction}}$$
$$B^{ij}(\mathbf{p}) = \frac{1}{2} \int d\mathbf{k} \ k^{i} k^{j} w(\mathbf{p}, \mathbf{k}) \longrightarrow \underbrace{B^{ij}(\mathbf{p}) = \hat{p}^{i} \hat{p}^{j} B_{0}(p) + (\delta^{ij} - \hat{p}^{i} \hat{p}^{j}) B_{1}(p)}_{\text{momentum broadening}}$$

Problem reduced to the evaluation of three transport coefficients

⁴B. Svetitsky, PRD 37, 2484 (1988)

Initial production Transport setup Results

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark: the Langevin equation

$$\frac{\Delta p'}{\Delta t} = -\underbrace{\eta_D(p)p^i}_{\text{determ}} + \underbrace{\xi^i(t)}_{\text{stochastic}},$$

erm. stochastic

with the properties of the noise encoded in

$$\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = b^{ij}(\mathbf{p}_{t})\frac{\delta_{tt'}}{\Delta t} \qquad b^{ij}(\mathbf{p}) \equiv \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij}-\hat{p}^{i}\hat{p}^{j})$$

Initial production Transport setup Results

The relativistic Langevin equation

The Fokker-Planck equation can be recast into a form suitable to follow the dynamics of each individual quark: the Langevin equation

$$\frac{\Delta p^{i}}{\Delta t} = -\underbrace{\eta_{D}(p)p^{i}}_{\text{determ}} + \underbrace{\xi^{i}(t)}_{\text{eterm}},$$

with the properties of the noise encoded in

 $\langle \xi^{i}(\mathbf{p}_{t})\xi^{j}(\mathbf{p}_{t'})\rangle = \frac{b^{ij}(\mathbf{p}_{t})}{\Delta t} \frac{\delta^{ij}(\mathbf{p})}{\Delta t} = \kappa_{\parallel}(p)\hat{p}^{i}\hat{p}^{j} + \kappa_{\perp}(p)(\delta^{ij} - \hat{p}^{i}\hat{p}^{j})$ **Transport coefficients** to calculate:

- Momentum diffusion $\kappa_{\perp} \equiv \frac{1}{2} \frac{\langle \Delta p_{\perp}^2 \rangle}{\Delta t}$ and $\kappa_{\parallel} \equiv \frac{\langle \Delta p_{\parallel}^2 \rangle}{\Delta t}$;
- Friction term (dependent on the discretization scheme!)

$$\eta_{D}^{\mathrm{Ito}}(p) = \frac{\kappa_{\parallel}(p)}{2TE_{p}} - \frac{1}{E_{p}^{2}} \left[(1 - v^{2}) \frac{\partial \kappa_{\parallel}(p)}{\partial v^{2}} + \frac{d - 1}{2} \frac{\kappa_{\parallel}(p) - \kappa_{\perp}(p)}{v^{2}} \right]$$

fixed in order to assure approach to equilibrium (Einstein relation). $\frac{2}{18/38}$

Initial production Transport setup Results

A first check: thermalization in a static medium

For $t \gg 1/\eta_D$ one approaches a relativistic Maxwell-Jüttner distribution⁵

$$f_{\mathrm{MJ}}(p)\equiv rac{e^{-E_p/T}}{4\pi M^2\,T\,K_2(M/T)}, \qquad ext{with } \int\!\!d^3p\,f_{\mathrm{MJ}}(p)=1$$

<u>(Test with a sample of c quarks with $p_0 = 2 \text{ GeV/c}$)</u> ⁵A.B., A. De Pace, W.M. Alberico and A. Molinari, NPA 831, 59 (2009) $\sum_{19/38}$

Initial production Transport setup Results

The realistic case: expanding fireball

Within our POWLANG setup (POWHEG+LANGevin) the HQ evolution in heavy-ion collisions is simulated as follows

• $Q\overline{Q}$ pairs initially produced with the POWHEG-BOX package (with nPDFs) and distributed in the transverse plane according to $n_{\text{coll}}(\mathbf{x}_{\perp})$ from (optical) Glauber model;

⁶P. Romatschke and U.Romatschke, Phys. Rev. Lett. **99** (2007) 172301 and ECHO-QGP, L. Del Zanna *et al.*, Eur.Phys.J. C73 (2013) 2524.

Initial production Transport setup Results

The realistic case: expanding fireball

Within our POWLANG setup (POWHEG+LANGevin) the HQ evolution in heavy-ion collisions is simulated as follows

- $Q\overline{Q}$ pairs initially produced with the POWHEG-BOX package (with nPDFs) and distributed in the transverse plane according to $n_{\rm coll}(\mathbf{x}_{\perp})$ from (optical) Glauber model;
- update of the HQ momentum and position to be done at each step in the local fluid rest-frame
 - $u^{\mu}(x)$ used to perform the boost to the fluid rest-frame;
 - T(x) used to set the value of the transport coefficients

with $u^{\mu}(x)$ and T(x) fields taken from the output of hydro codes⁶;

• Procedure iterated until hadronization

⁶P. Romatschke and U.Romatschke, Phys. Rev. Lett. **99** (2007) 172301 and ECHO-QGP, L. Del Zanna *et al.*, Eur.Phys.J. C73 (2013) 2524. < ≥ > < ≥ > <

Initial production Transport setup Results

The Langevin equation provides a link between *what is possible to calculate in QCD* (transport coefficients) and *what one actually measures* (final p_T spectra)

Evaluation of transport coefficients:

- Weak-coupling hot-QCD calculations⁷
- Non perturbative approaches
 - Lattice-QCD
 - $\bullet \ \ \mathsf{AdS}/\mathsf{CFT} \ \ \mathsf{correspondence}$
 - Resonant scattering

⁷Our approach: W.M. Alberico *et al.*, Eur.Phys.J. €71 (2011) 1666 💷 🖉 🤤 🤄

Initial production Transport setup Results

Transport coefficients: perturbative evaluation

It's the stage where the various models differ!

We account for the effect of $2\to 2$ collisions in the medium

Intermediate cutoff $|t|^* \sim m_D^{2.8}$ separating the contributions of

- hard collisions $(|t| > |t|^*)$: kinetic pQCD calculation
- soft collisions (|t| < |t|*): Hard Thermal Loop approximation (resummation of medium effects)

⁸Similar strategy for the evaluation of dE/dx in S. Peigne and A. Peshier, Phys.Rev.D77:114017 (2008).

Initial production Transport setup Results

Transport coefficients $\kappa_{T/L}(p)$: hard contribution

$$\kappa_{T}^{g/q(\text{hard})} = \frac{1}{2} \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{T}^{2}$$

$$\kappa_{L}^{g/q(\text{hard})} = \frac{1}{2E} \int_{k} \frac{n_{B/F}(k)}{2k} \int_{k'} \frac{1 \pm n_{B/F}(k')}{2k'} \int_{p'} \frac{1}{2E'} \theta(|t| - |t|^{*}) \times (2\pi)^{4} \delta^{(4)}(P + K - P' - K') \left| \overline{\mathcal{M}}_{g/q}(s, t) \right|^{2} q_{L}^{2}$$

where: $(|t| \equiv q^2 - \omega^2)$

Initial production Transport setup Results

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium and requires **resummation**.

Initial production Transport setup Results

Transport coefficients $\kappa_{T/L}(p)$: soft contribution

When the exchanged 4-momentum is **soft** the t-channel gluon feels the presence of the medium **and requires resummation**.

The *blob* represents the *dressed gluon propagator*, which has longitudinal and transverse components:

$$\Delta_L(z,q) = rac{-1}{q^2 + \Pi_L(z,q)}, \quad \Delta_T(z,q) = rac{-1}{z^2 - q^2 - \Pi_T(z,q)},$$

where *medium effects* are embedded in the HTL gluon self-energy.

イロト イポト イヨト イヨト

Initial production Transport setup Results

25 / 38

Lattice-QCD transport coefficients: setup

One consider the non-relativistic limit of the Langevin equation:

$$rac{dp'}{dt}=-\eta_{D}p^{i}+\xi^{i}(t), \hspace{0.3cm} ext{with} \hspace{0.3cm} \langle\xi^{i}(t)\xi^{j}(t')
angle \!=\!\delta^{ij}\delta(t-t')\kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^{i}(t) \xi^{i}(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^{i}(t) F^{i}(0) \rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)},$$

Initial production Transport setup Results

Lattice-QCD transport coefficients: setup

One consider the non-relativistic limit of the Langevin equation:

$$rac{dp'}{dt}=-\eta_{D}p^{i}+\xi^{i}(t), \hspace{0.3cm} ext{with} \hspace{0.3cm} \langle\xi^{i}(t)\xi^{j}(t')
angle \!=\!\delta^{ij}\delta(t-t')\kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^{i}(t) \xi^{i}(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^{i}(t) F^{i}(0) \rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)},$$

In the static limit the force is due to the color-electric field:

$$\mathbf{F}(t) = g \int d\mathbf{x} Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})$$

25 / 38

Initial production Transport setup Results

Lattice-QCD transport coefficients: setup

One consider the non-relativistic limit of the Langevin equation:

$$rac{dp'}{dt}=-\eta_{D}p^{i}+\xi^{i}(t), \hspace{0.3cm} ext{with} \hspace{0.3cm} \langle\xi^{i}(t)\xi^{j}(t')
angle \!=\!\delta^{ij}\delta(t-t')\kappa$$

Hence, in the $p \rightarrow 0$ limit:

$$\kappa = \frac{1}{3} \int_{-\infty}^{+\infty} dt \langle \xi^{i}(t) \xi^{i}(0) \rangle_{\mathrm{HQ}} \approx \frac{1}{3} \int_{-\infty}^{+\infty} dt \underbrace{\langle F^{i}(t) F^{i}(0) \rangle_{\mathrm{HQ}}}_{\equiv D^{>}(t)},$$

In the static limit the force is due to the color-electric field:

$$\mathbf{F}(t) = g \int d\mathbf{x} Q^{\dagger}(t, \mathbf{x}) t^{a} Q(t, \mathbf{x}) \mathbf{E}^{a}(t, \mathbf{x})$$

In a thermal ensemble $\sigma(\omega) \equiv D^>(\omega) - D^<(\omega) = (1 - e^{-\beta\omega})D^>(\omega)$ and

$$\kappa \equiv \lim_{\omega \to 0} \frac{D^{>}(\omega)}{3} = \lim_{\omega \to 0} \frac{1}{3} \frac{\sigma(\omega)}{1 - e^{-\beta\omega}} \underset{\omega \to 0}{\sim} \frac{1}{3} \frac{T}{\omega} \sigma(\omega)$$

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■

Initial production Transport setup Results

Lattice-QCD transport coefficients: results

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean electric-field correlator*

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

Initial production Transport setup Results

Lattice-QCD transport coefficients: results

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean electric-field correlator*

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

$$\kappa/T^3 \approx 2.4(6)$$
 (quenched QCD, cont.lim.)

 ${\sim}3\text{-}5$ times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

Initial production Transport setup Results

Lattice-QCD transport coefficients: results

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean electric-field correlator*

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

according to

$$D_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

 $\kappa/T^3 \approx 2.4(6)$ (quenched QCD, cont.lim.)

 \sim 3-5 times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

Initial production Transport setup Results

Lattice-QCD transport coefficients: results

The spectral function $\sigma(\omega)$ has to be reconstructed starting from the *euclidean electric-field correlator*

$$D_{E}(\tau) = -\frac{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,\tau)gE^{i}(\tau,\mathbf{0})U(\tau,0)gE^{i}(0,\mathbf{0})]\rangle}{\langle \operatorname{Re}\operatorname{Tr}[U(\beta,0)]\rangle}$$

according to

$$\mathcal{D}_{E}(\tau) = \int_{0}^{+\infty} \frac{d\omega}{2\pi} \frac{\cosh(\tau - \beta/2)}{\sinh(\beta\omega/2)} \sigma(\omega)$$

One gets (arXiv:1409.3724)

$$\kappa/T^3 \approx 2.4(6)$$
 (quenched QCD, cont.lim.)

 \sim 3-5 times larger then the perturbative result (W.M. Alberico *et al*, EPJC 73 (2013) 2481). Challenge: approaching the continuum limit in full QCD (see Kaczmarek talk at QM14)!

Initial production Transport setup Results

From quarks to hadrons

In-medium hadronization may affect the R_{AA} and v_2 of final D-mesons due to the *collective flow* of light quarks. We tried to estimate the effect through this model interfaced to our POWLANG transport code:

- At T_{dec} c-quarks coupled to light q̄'s from a local thermal distribution, eventually boosted (u^µ_{fluid} ≠0) to the lab frame;
- Strings are formed and given to PYTHIA 6.4 to simulate their fragmentation and produce the final hadrons $(D + \pi + ...)$

One can address the study of D-h and e-h correlations in AA collisions

Initial production Transport setup Results

From quarks to hadrons: effect on R_{AA} and v_2

Experimental data display a peak in the R_{AA} and a sizable v_2 one would like to interpret as a signal of *charm radial flow and thermalization*

Initial production Transport setup Results

From quarks to hadrons: effect on R_{AA} and v_2

Experimental data display a peak in the R_{AA} and a sizable v_2 one would like to interpret as a signal of *charm radial flow and thermalization*

However, comparing transport results with/without the boost due to u_{fluid}^{μ} , at least part of the effect might be due to the radial and elliptic flow of the light partons from the medium picked-up at hadronization.

Initial production Transport setup Results

D-meson R_{AA} at RHIC

It is possible to perform a systematic study of different choices of

- Hadronization scheme (left panel)
- Transport coefficients (weak-coupling pQCD+HTL vs non-perturbative I-QCD) and decoupling temperature (right panel)

イロト イポト イヨト イヨト

Initial production Transport setup Results

D-meson R_{AA} at LHC

Experimental data for central (0–20%) Pb-Pb collisions at LHC display a strong quenching, but – at least with the present bins and p_T range – don't show strong signatures of the bump from radial flow predicted by "thermal" and "transport + $Q\bar{q}_{therm}$ -string fragmentation" curves.

・ロト ・回ト ・ヨト ・ヨト

Initial production Transport setup Results

D meson R_{AA} : in-plane vs out-of-plane

One can study di R_{AA} in- and out-of-plane in non-central (30–50%) Pb-Pb collisions at LHC:

 Data better described by weak-coupling (pQCD+HTL) transport coefficients;

Initial production Transport setup Results

D meson R_{AA} : in-plane vs out-of-plane

One can study di R_{AA} in- and out-of-plane in non-central (30–50%) Pb-Pb collisions at LHC:

- Data better described by weak-coupling (pQCD+HTL) transport coefficients;

31/38

Initial production Transport setup Results

D-meson v_2 at LHC

Concerning *D*-meson v_2 in non-central (30–50%) Pb-Pb collisions:

- $Q\overline{q}_{\mathrm{therm}}$ -string fragmentation routine significantly improves our transport model predictions compared to the data;
- HTL curves with a *lower decoupling temperature* display the best agreement with ALICE data

HF in small systems (p-Pb and d-Au collisions)

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ C
33 / 38

Hydrodynamic behavior in small systems?

• Long-range rapidity correlations in high-multiplicity p-Pb (and p-p) events: collectiv flow?

Hydrodynamic behavior in small systems?

- Long-range rapidity correlations in high-multiplicity p-Pb (and p-p) events: collectiv flow?
- Evidence of non-vanishing elliptic flow v₂ (and mass ordering) in d-Au and p-Pb.

Hard observables in p-A collisions: no medium effect?

No evidence of medium effects in the nuclear modification factor

neither of jets

Hard observables in p-A collisions: no medium effect?

No evidence of medium effects in the nuclear modification factor

- neither of jets
- nor of charged particles

NB Lack of a p-p reference at the same center-of-mass energy source of systematic uncertainty 35/38

Hard and soft probes: different sensitivity to the medium

The quenching of a high-energy parton is described by the pocket formula

$$\langle \Delta E \rangle \sim C_R \alpha_s \hat{q} L^2 \sim T^3 L^2$$

with a strong dependence on the temperature and medium thickness.

Hard and soft probes: different sensitivity to the medium

The quenching of a high-energy parton is described by the pocket formula

$$\langle \Delta E \rangle \sim C_R \alpha_s \hat{q} L^2 \sim T^3 L^2$$

with a strong dependence on the temperature and medium thickness. If one believes that also in p-A collisions soft physics is described by hydrodynamics ($\lambda_{mfp} \ll L$), then starting from an entropy-density profile

$$s(x,y) \sim \exp\left[-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}
ight]$$

and employing the Euler equation (for $v \ll 1$) and $\mathit{Tds} = d\epsilon$

$$(\epsilon + P) \frac{d}{dt} \vec{v} = -\vec{\nabla}P \quad \xrightarrow{\nabla}_{\vec{\nabla}P = c_s^2 \vec{\nabla}\epsilon} \quad \partial_t \vec{v} = -c_s^2 \vec{\nabla} \ln s$$

whose solution and mean square value over the transverse plane is

$$v^{i} = c_{s}^{2} \frac{x'}{\sigma_{i}^{2}} t \longrightarrow \overline{v}^{x/y} = c_{s}^{2} \frac{t}{\sigma_{x/y}}$$

The result has a much milder temperature dependence $(c_s^2 \approx 1/3)$ wrt \hat{q} and, although the medium has a (≈ 3 times) shorter lifetime, radial flow develops earlier, due to the larger pressure gradient

36 / 38

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{K}{2\pi\sigma^2} \sum_{i=1}^{N_{\text{coll}}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \quad \longrightarrow \quad \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

イロト 不得下 イヨト イヨト 二日

37 / 38

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{\kappa}{2\pi\sigma^2} \sum_{i=1}^{N_{\text{coll}}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \quad \longrightarrow \quad \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

One can consider an *average background* obtained summing all the events of a given centrality class rotated by the *event-plane* angle ψ_2

Medium modeling: event-by-event hydrodynamics

Event-by-event fluctuations (e.g. in the nucleon positions) modeled by Glauber-MC calculation leads to an initial *eccentricity* (responsible for a non-vanishing elliptic flow)

$$s(\mathbf{x}) = \frac{\kappa}{2\pi\sigma^2} \sum_{i=1}^{N_{\rm coll}} \exp\left[-\frac{(\mathbf{x} - \mathbf{x}_i)^2}{2\sigma^2}\right] \quad \longrightarrow \quad \epsilon_2 = \frac{\sqrt{\{y^2 - x^2\}^2 + 4\{xy\}^2}}{\{x^2 + y^2\}}$$

One can consider an *average background* obtained summing all the events of a given centrality class rotated by the *event-plane* angle ψ_2

Transport-model predictions

