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grows at the expense of the number of neutrons constituting
the nucleus in the center of the box. Since the total average
number of neutrons is conserved, by changing Rbox one ac-
tually performs an unphysical study of different nuclei, sur-
rounded by a neutron gas of a fixed density. Another conse-
quence of the presence of a gas of particles is that the rms
nuclear radius cannot be calculated in BCS theory, because
the results strongly depend on the box size ~see discussion in
Refs. @52,11#!.
It has been suggested in the literature @86# that the above

deficiencies of the BCS approximation can be cured by ap-
plying to them the state-dependent-pairing-gap version,
where the pairing gap is calculated for every single-particle
state using an interaction which is not of the seniority type.
@The corresponding BCS equations resemble the canonical-
basis relations ~4.19!.# In such an approach one hopes that
the majority of continuum states would neither contribute to
the pairing field ~e.g., because of their very different spatial
character! nor result in the appearance of the unphysical gas.
This conjecture is tested in Fig. 19 ~middle and bottom
panel! where the neutron densities obtained within the state-
dependent version of the BCS approximation using the
SkPd and the SkP interactions are presented. It is seen that a
reduced coupling of some continuum states to the pairing
field does indeed decrease the gas density; however, the
asymptotic behavior of the density is still incorrect.
In the above plots, the shaded lines represent the asymp-

totic behavior given by Eq. ~5.14a! assuming Emin50, i.e.,
that of a single-particle state at the Fermi energy. It is seen
that a surplus density above this asymptotic limit appears at
large distances. However, the deficiencies of the state-
dependent BCS approximation, as used for example in Refs.
@86,36,87#, are certainly less acute than those of the
seniority-pairing BCS. For example, in this type of approach
one may probably calculate radii of nuclei much nearer to
the drip line.
It is clear that the neutron gas appears in the BCS solu-

tions because of the nonzero occupation probabilities of scat-
tering states. Therefore, one may think that excluding the
scattering states from the pairing phase space could be a
decisive solution to the problem. However, for drip-line nu-
clei, where the Fermi energy is by definition close to zero,
the remaining phase space would then be small, and this
would lead to an artificial quenching of pairing correlations.
Moreover, even if the density obtained in a such method
would vanish asymptotically, the corresponding factor x
would not be governed by D2l.2 MeV, as discussed in
Sec. V F, but by the single-particle energy e.0 of the
highest-energy single-particle state considered in BCS calcu-
lations. This again would lead to densities vanishing at a
much slower pace than is required by HFB theory.

VI. PHYSICAL OBSERVABLES FAR FROM STABILITY

In this section are discussed some experimental conse-
quences of HFB theory, particularly important for weakly
bound nuclei.

A. Pairing gaps

Pairing gaps are p-p analogs of single-particle energies.
They carry the information about the energies of noncollec-

tive excitations, level occupations, odd-even mass differ-
ences, and other observables. The average neutron canonical
pairing gaps ~4.15b! are shown in Figs. 20 (120Sn! and 21
(150Sn! as functions of the canonical single-particle energies
~4.15a!.
As seen in the middle part of Fig. 20, pairing gaps ob-

tained with the volume-type pairing interaction exhibit a
very weak configuration dependence. In 120Sn they decrease
slightly with em but remain confined between 1.0 and
1.5 MeV. In general, the values of Dm for the s1/2 states are
slightly larger than for other orbitals, which is again related
to the volume character of volume delta interaction.
The results presented in the bottom part of Fig. 20 nicely

illustrate the surface character of the SkP pairing interaction.
Indeed, here the pairing gaps increase from 0.5 MeV ~deep-
hole states! to about 1.25–1.5 MeV when the single-particle
energies increase towards the Fermi energy, and then they
decrease again to about 1.0 MeV for positive single-particle
energies. This is related to the fact that orbitals near the
Fermi level are concentrated in the surface region.
Still another type of behavior is obtained for the finite

range Gogny interaction ~top part of Fig. 20!. Here, the pair-
ing gaps decrease steadily with single-particle energy. In
120Sn the values of Dm decrease from about 2.5 MeV for
deep-hole states to about 0.75 MeV for positive-energy
states. ~A similar energy dependence of pairing gaps was
obtained in the BCS calculations of Ref. @17# with the renor-
malized Paris potential.! Interestingly, the values obtained
for the high-l , j5l 2 1

2 orbitals ~antiparallel L-S coupling!
are significantly larger than those for other orbitals. The dif-

FIG. 20. Average values of the neutron p-h and p-p potentials
enl j and Dnl j @Eqs. ~4.15!# in the canonical states calculated for
120Sn in HFB1D1S ~top!, HFB1SkP d ~middle!, and HFB1SkP
~bottom! models. Only the states with vnl j

2 .0.0001 are displayed.
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h̃ ~rs ,r8s8!5E d3r18d3r28 (
s18s28

2s8s28

3V~rs ,r8,2s8;r18s18 ,r28 ,2s28!

3 r̃~r18s18 ,r28s28!, ~4.2b!

where we assume that V(r1s1 ,r2s2 ;r18s18 ,r28s28) includes the
exchange terms.
Additional terms coming from the density dependence of

the two-body interaction V have been for simplicity omitted
in Eqs. ~4.2a!, ~4.2b!, and ~4.1!. The last term in Eq. ~4.1!,

Epair5
1
2E d3rd3r8(

ss8
h̃~rs ,r8s8!r̃~r8s8,rs!, ~4.3!

represents the pairing energy. We also define the average
magnitude of pairing correlations by the formula @52#

^D&52
1
NtE d3rd3r8(

ss8
h̃~rs ,r8s8!r~r8s8,rs!,

~4.4!

where Nt is the number of particles ~neutrons or protons!.
The p-h and p-p mean fields ~4.2! have particularly simple

forms for the Skyrme interaction @52#. In Appendix A we
present the form of the p-h and p-p mean-field Hamiltonians
in the case of a local two-body finite-range Gogny interac-
tion.

1. Examples of the p-h and p-p potentials

In this section we aim at comparing the self-consistent
potentials obtained with the Skyrme and Gogny forces. Such
a comparison cannot be carried out directly, because the cor-
responding integral kernels h(rs ,r8s8) and h̃(rs ,r8s8)
have different structure. For the Skyrme interaction, they are
proportional to d(r2r8) and depend also on the differential
operators ~linear momenta! @52#, while for the Gogny inter-
action they are sums of terms proportional to d(r2r8) and
terms which are functions of r and r8 ~Appendix A!.
Therefore, for the purpose of the present comparison we

introduce operational prescriptions to calculate the local
parts of the integral kernels:

U~r!5loc@G~rs ,r8s8!# , ~4.5a!

Ũ~r!5loc@ h̃~rs ,r8s8!# . ~4.5b!

These formal definitions in practice amount to ~i! disregard-
ing the momentum-dependent terms of the kernels, ~ii! con-
sidering only terms with s5s851/2 ~which by time-reversal
symmetry are equal to those with s5s8521/2!, and ~iii!
taking into account only the term proportional to d(r2r8), if
such a term is present. The expressions for U(r) and Ũ(r)
can be found in Appendix A of Ref. @52# ~Skyrme interac-
tion! and in Appendix A ~Gogny interaction!. In the Skyrme
calculations, the contribution of the Coulomb interaction to
Ũ(r) has been neglected since it is estimated to be small.
In the case of finite-range local interactions ~such as

Gogny or Coulomb!, the corresponding nonlocal pairing
field h̃(rs ,r8s8) does not contain the term proportional to

d(r2r8) ~see Appendix A!. Consequently, the local field
Ũ(r) cannot be extracted in a meaningful way. For instance,
the diagonal ~i.e., r85r) part of of the D1S pairing field is
positive; i.e., it is dominated by the short-range repulsive
component rather than the long-range attractive part @18,58#.
In the spherical case, the potentials U(r) and Ũ(r) depend

on only one radial coordinate r5uru. This facilitates the
qualitative comparison between different forces. Figure 3
displays the self-consistent spherical local p-h potentials
U(r), Eq. ~4.5!, for several tin isotopes, calculated with SkP,
SIII d, and D1S interactions ~the results with SkP d are very
close to those with SkP!. The terms depending on the angular
momentum, which result from a reduction to the radial co-
ordinate, are not included. ~The general behavior of the self-
consistent p-h potentials has already been discussed many
times in the literature, e.g. @76–78#, and we include these
results only for completeness and for a comparison with the
corresponding p-p potentials, for which the detailed analysis
does not exist.!
Qualitatively, the results for U(r) obtained with different

effective forces are quite similar, which reflects the fact that
all these interactions correctly describe global nuclear prop-
erties. In particular, one sees that with increasing neutron
excess the neutron potentials become more shallow in the
interior and more wide in the outer region. Interestingly, for
each of these three forces there exists a pivoting point at
which the potential does not depend on the neutron excess.
For the three forces presented, this occurs at r55.9, 4.6, and
5.4 fm, respectively. The differences in the overall depths of
the average potentials reflect the associated effective masses
~i.e., the nonlocal contributions of the two-body interac-
tions!.
The analogous results for the p-p potentials Ũ(r) calcu-

lated for the SkP and SkP d interactions are shown in Fig. 4.
On can see that the different character of pairing interactions
is directly reflected in the form of the p-p potentials. Particu-
larly noteworthy is the fact that the density-dependent pair-
ing interaction in SkP yields a very pronounced surface-
peaked potential @the behavior of Ũ(r) at large distances is
further discussed in Sec. V G#. One can easily understand its
form by recalling that this potential is equal to the product of
the pairing density r̃(r) ~Fig. 2! and the function which
roughly resembles the behavior of the DDDI of Eq. ~2.3!,
i.e., small in the interior and large in the outer region. Of
course, values of r̃(r) and Ũ(r) depend on each other by the

FIG. 3. Self-consistent spherical local neutron potentials
UN(r) calculated with the SkP, SIII d, and D1S interactions for
selected tin isotopes across the b-stability valley.
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consequences for the nucleosynthesis have also been per-
formed @13,90#. Microscopically, it can be explained by ~i!
the changes in the mean field itself due to weak binding ~see
above! and ~ii! a strong pairing-induced coupling between
bound orbitals and the low-l continuum.

C. Separation energies

Weakening of shell effects with neutron number mani-
fests itself in the behavior of two-neutron separation ener-
gies. This is illustrated in Fig. 24 which displays the two-
neutron separation energies for the N580, 82, 84, and 86
spherical even-even isotones. The large N582 magic gap,
clearly seen in the nuclei close to the stability valley and to
the proton drip line, gradually closes down when approach-
ing the neutron drip line. The quenching of the neutron shell
structure with N is not a generic property of all effective

interactions. As seen in the plot of S2n and lN for the tin
isotopes ~Fig. 25! this effect is seen in the SkP and SkP dr

models, and, to some degree, also in the SkP d model. ~A
weak irregularity at N5126 reflects the weaker coupling to
continuum for the volume pairing @34#.! The strong shell
effect seen in the SIII and SkM* results has been discussed
in Ref. @53#; it can be attributed to the low effective mass in
these forces. The result of the D1S model, both for S2n and
lN , is close to that of the SkP d model. It is interesting to
point out that the QLM calculations of Ref. @42# ~with
m*/m51) for the Sn isotopes yield very similar results to
those of HFB1SkP.
The very neutron-rich nuclei, as those shown in Fig. 25,

cannot be reached experimentally under present laboratory
conditions. On the other hand, these systems are the building
blocks of the astrophysical r process; their separation ener-
gies, decay rates, and cross sections are the basic quantities
determining the results of nuclear reaction network calcula-
tions. Consequently, one can learn about properties of very
neutron-rich systems by studying element abundances
@12,91#. The recent r-process network calculations @13#,
based on several mass formulas, indicate a quenching of the
shell effect at N582 in accordance with the results of HFB
1SkP model.

D. Deep hole states

The pairing interaction between bound orbitals and the
particle continuum is partly responsible for the appearance of
particle widths of deep-hole states and the term-repulsion
phenomenon ~strong repulsion between single-particle lev-
els! @33,34#. In the distorted-wave Born approximation
~DWBA! and for the local pairing field Ũ the particle width
is given by

FIG. 23. Sequences of nuclear single-particle levels for various
potentials. Orbitals are labeled by the spherical quantum numbers.
From left to right: ~i! shell structure for a potential with spin-orbit
term but with a very diffuse surface, ~ii! the Nosc54 and 5 shells of
the harmonic oscillator potential, ~iii! no spin-orbit term, leading to
a degenerate spin-orbit pattern as observed in, e.g., hypernuclei, and
~iv! shell structure characteristic of nuclei near the stability valley.

FIG. 24. Two-neutron separation energies for the N580, 82, 84,
and 86 spherical even-even isotones calculated in the HFB1SkP
model as a function of N̄/Z ~lower scale, N̄583! or Z ~upper scale!.
The arrows indicate the proximity of neutron and proton drip lines.

FIG. 25. Two-neutron separation energies S2n ~top! and Fermi
energies lN ~bottom! for the Sn isotopes, calculated in the HFB
approach with several Skyrme interactions and the Gogny-D1S in-
teraction.
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having no precise idea concernjng relative im-
portance of the higher-order corrections, we
never know the accuracy one should require at a
given level of approximation.
Turning back to Table V we notice another en-

couraging feature of these calculations which ex-
cept for "'Sn predict the right spin for the ground
state of all the tin isotopes investigated here.
With respect to the "'Sn, our calculation predicts
a '2' instead a ~ level, but experimentally these
levels are separated by only 8 keV and in our
calculations by 150 keV. The reasons we have to
be satisfied with such predictions are better un-
derstood by looking at Fig. 4 where we have re-
ported the experimental situation concerning the
first low lying states of the odd tin nuclei. The
first two or three states are in general all con-
tained in an energy range of a few hundred keV;
consequently, it is remarkable that the use of a
microscopic approach permits. to extract among
them the right spin for the ground states. At this
stage it is worthwhile to recall that we use ex-
clusively the effective interaction D1 derived
as explained in Sec. III. In particular, nothing
has been done to adjust the HF average field in
that region and also the pairing properties of the
interaction associated with the singlet-even com-
ponent of D1 was only adjusted to reproduce at
best the odd-even mass differences discussed
above.
Although the one QP picture has been found

insufficient even for the low lying states, we
have thought of some interest to report the low-
est excited states calculated with the blocking
version of the HFB theory. We give two sets of
results, one set corresponds to the interaction
D1 and the other, named D1' in the following, is
calculated by increasing by about 10% the inten-
sity of the two-body spin orbit of D1. The
(P,&, -P»,}neutrons splitting in "0is 5. I MeV
with Dl (W~~ = 115) and 6.3 MeV with the new
intensity (Wz, ~ =130) to be compared with an ex-
perimental value of the order of 6.1 MeV. I et us
also mention that initially we did not take into
account the two-body contribution of the center
of mass to the HF field. Without this contribution
one gets (p,&, -p», )= 6 MeV with Was=115. We
recognized later that this contribution might re-
duce significantly the spin orbit splitting in the
light nuclei and consequently a S'» of the order
of 130 MeV has appeared to be a more appropri-
ate value. However, as we did not want to repeat
the lengthy computations performed before, we
decided to present all the results with D1
(Wz, ~ =115) and to give also the more recent re-
sults with D1' (W» = 130), including the two-
body contribution of the center of mass. Except
for the spin orbit splitting there is not a sig-
nificant difference between D1 and D1'.
Turning back to Fig. 4, the HFB spectrum

reproduces the essential features of the experi-
ment in particular with W» ——130. This result
is rather encouraging especially when one re-
members that the first attempts" to reproduce
the spectrum of these isotopes did not do much
better despite the seven free parameters used in
these works. The same type of discussion applies
.to Fig. 5 where we give the spectroscopic factors
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FIG. 4. The first low lying excited states of the odd
tin isotopes [Nuclear Data Sheets (Academic, New York,
1973)]'compared to the one QP spectrum resulting from
the blocking version of the HFB theory (see the text).
(s,g, d, d, h) stands, respectively, for
(s /2 g?/2 d3/2 ds/2 h i/2)

FlG. 5. The HFB spectroscopic factors calculated with
the D1 and Dl' interactions and compared with the ex-
perimental values extracted from the (d, t) and (d,p) re-
actions IE. J. Schneid et al. , Phys. Bev. 156, 1316
(1967)l
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Microscopic description of superfluid nuclei  beyond mean field:

iterating the PVC  with Nambu-Gor’kov formalism  

by extending the Dyson equation…

… to the case of superfluid nuclei (Nambu-Gor’kov), it is possible to consider both:

and

J. Terasaki et al., Nucl.Phys. A697(2002)126;  

F. Barranco et al, EPJ  A21 (2004) 57

A. Idini et al.  PRC 85 (2012) 014

cf.  V. Soma’ , C. Barbieri, T. Duguet,

PRC	84 (2011)	064317	 ;PRC87		(2013)	011303	
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Renormalization	of		BCS	quasiparticle energies	and	pairing	gap	

ũa(n) = xa(n)u
BCS
a � ya(n)v

BCS
a

ṽa(n) = xa(n)v
BCS
a + ya(n)u

BCS
a , (1)

V (ab(m)�⇥) = h(ab�⇥)(uBCS
a ũb(m) � vBCS

a ṽb(m))

W (ab(m)�⇥) = h(ab�⇥)(uBCS
a ṽb(m) + vBCS

a ũb(m)) (1)

Van der Sluys et al., NPA551(1993)210 
A.	Idini et	al.,	PRC	85	(2012)	014331
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Transfer reactions: 120Sn(d,p)121Sn
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FIG. 4. (Color online) (a) Absolute finite range, full recoil
DWBA theoretical differential cross sections associated with the
low-lying fragments of the h11/2,d3/2,s1/2, and d5/2 valence states most
strongly populated in the reaction 120Sn(d,p) 121Sn, calculated with
the help of state-of-the-art optical potentials and vnp interaction [40],
using the NG structure input, in comparison with the experimental
data [46]. In the NG calculations the d5/2 single-particle orbit in the
SLy4 mean-field potential has been shifted toward ϵF by 0.6 MeV (see
text). (b) 120Sn(p,d) 119Sn (5/2+) absolute experimental differential
cross sections [47], together with the DWBA fit used in the analysis
of the data (right panel) in comparison with the DWBA calculations
(left panel) carried out as mentioned in (a). (c) Comparison of
the calculated strength function S5/2 {d[σ (120Sn(p,d)119Sn(5/2+)) +
σ (120Sn(d,p)121Sn(5/2+))]/dE} with experimental data [46,47]. The
peaks have been folded with a Gaussian function of variance
0.25 MeV. (d) The difference between the centroid (width) of the
experimental and of the calculated d5/2 strength S5/2 is shown as
a function of the ratio β2/(β2)0 in terms of the solid (dashed)
curve.

TABLE II. Most prominent experimental (theoretical) fragments
of the d5/2 single-particle state populated in the 120Sn(p,d) 119Sn
(5/2+) reaction lying below 2 MeV, calculated using the NG equation
and the bare SLy4 single-particle levels in comparison with the
data [47]. The energies (in keV) are listed in the first (fourth)
column, while the absolute cross sections (in mb) are given in the
second (fifth), integrated within the range 2◦ < θc.m. < 55◦, and third
(sixth), peak cross section (in mb/sr), (θc.m.)max ≈ 170. In the last three
columns, similar results are displayed but now calculated using the
shifted energy value (ϵd5/2 = −10.7 MeV) of the d5/2 valence orbital.

ϵi Expt. SLy4 SLy4 (d5/2 shift)

σ dσ/d% ϵi σ dσ/d% ϵi σ dσ/d%

921 0.63 0.75
1090 5.35 7.0 1150 1.80 2.3 1050 4.40 5.60
1354 1.66 2.3 1290 1.20 1.7 1250 0.45 0.58
1562 0.13 0.16 1710 0.25 0.32 1540 0.07 0.09
1730 0.16 0.18 1910 2.90 4.0 1710 1.45 1.90

7.93 ± 2 10.39 6.15 8.32 6.37 8.17

TABLE III. Root mean-square deviation σ between the experi-
mental data and the theoretical values taken at the minimum of the
corresponding functions displayed in Figs. 1(d), 2(c), 2(e), 2(h), 3(c),
and 4(d) reported in keV for the pairing gap, quasiparticle energies,
multiplet splitting, centroid, and width of the 5/2+ low-lying single-
particle strength distribution. In single-particle units Bsp for the
γ -decay [B(E2) transition probabilities] and in µb for σ2n(p,t). In
brackets the ratio σ/L, called σrel in the text, between σ and the
experimental range L of the corresponding quantities [1.4 MeV ('),
1 MeV (Eqp), 800 keV (mult. splitting), 1 MeV (d5/2 centroid),
809 keV (=1730–921) keV (d5/2 width), 10 Bsp (B(E2)), 2505 µb
(σ2n(p,t))], is given.

Observables SLy4 d5/2 shift

' 10 (0.7%) 10 (0.7 %)
Eqp 190 (19%) 160 (16%)
Mult. splitt. 50 (7%) 70 (10%)
d5/2 strength (centr.) 200 (20%) 40 (4%)
d5/2 strength (width) 160 (20%) 75 (9.3%)
B(E2) 1.4 (14%) 1.34 (13%)
σ2n(p,t) 40 (2%) 40 (2%)

collective vibrational mode, namely, the lowest 2+ as well as
for different strengths of the bare pairing interaction. While
the dependence of σ2n(p,t) is very weak with β2 (not shown),
it is conspicuous with vbare

p . An example of such dependence
is displayed in Fig. 1(d).

Within this context, it is of notice that a measure of the
reliability with which theory can describe the nuclear structure
is provided by the relative dimensionless standard deviations
σrel associated with each of the different observables, as shown
in Table III.

We conclude that a theoretical description of nuclear struc-
ture based on single-particle (mean field with mk ≈ 0.7m),
on the associated collective motion (QRPA), and on their
interweaving controlled by the particle-vibration coupling
mechanism which leads to renormalization of both types of
nuclear excitations through mass (self-energy) and screening
(vertex) corrections as well as to induced pairing to be added
to v14(1S0) can provide a quantitative account, within a 10%
average error level (see Table III), of the nuclear structure
representative of a mass zone (group of nuclei displaying
homogeneous properties such as sphericity and superfluidity,
likely circumscribed by phase transition domains). The PVC
mechanism is found to play a central role in achieving this
result. The above considerations and protocols are not only
transferable to the remaining superfluid Sn isotopes (not
considered explicitly in the present case), but also applicable
to the quantitative description of other spherical, superfluid
nuclear mass zones.
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gratefully acknowledged. This work has been supported by
the Academy of Finland and University of Jyvaskyla within
the FIDIPRO program and by the Helmholtz Association
through the Nuclear Astrophysics Virtual Institute (VH-VI-
417) and the Helmholtz International Center for FAIR within
the framework of the LOEWE program launched by the State
of Hesse.
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Transfer reactions: 120Sn(p,d)119Sn (5/2+)
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• Interweaving	single-particle	(𝑚& ≈ 0.7𝑚)	and	
collective	(tuned	to	experiment)	degrees	of	
freedom,	we	can	calculate	several	nuclear	
structure	observables in	open	shell	nuclei	
within	10%	error.

2

h̄!2+ B(E2 ") �2

QRPA (SLy4) 1.5 890 0.06

QRPA + REN 0.9 2150 0.14

Exp. 1.2 2030 0.13

TABLE I. Calculated energy, B(E2) (MeV) and �2 (e2 fm4)
associated with the low-lying 2+ state of 120Sn, compared to
the experimental values [39].

a k�mass of value m
k

⇡ 0.7m). The second from 1S0

phase shift analysis of NN�scattering, HFB provides an
embodiment of the quasiparticle spectrum while QRPA
a realization of density (J⇡ = 2+, 3�, 4+, 5�) and spin
(2±, 3±, 4±, 5±) modes. Taking into account renormali-
sation processes (self-energy, vertex corrections, phonon
renormalization and phonon exchange) in terms of the
PVC mechanism, the dressed particles as well as the in-
duced pairing interaction vind

p

were calculated (see [16];
see also [17–24]). The Nambu-Gor’kov equation [7, 25–
28] is then used to go beyond the weak coupling approx-
imation by propagating the di↵erent lowest-order NFT
diagrams to infinite order, analogously to what is com-
monly done in metals [11–13] to take into account retar-
dation and damping e↵ects, which play a key role in a
fundamental understanding of the superconducting phase
[7]. Adding vind

p

to the bare interaction vbare
p

, the to-

tal pairing interaction veff
p

was determined. Solving the
NG equation selfconsistently using Green’s function tech-
niques gives the parameters characterizing the renormal-
ized physical quasiparticle states. The resulting values
of the state dependent pairing gap �̃

⌫

= �̃bare

⌫

+ �̃ind

⌫

are shown in Fig.1. The contribution of vbare
p

and vind

to �̃
⌫

are about equal. Theory (SLY4 +QRPA+ (PVC)
REN+NG) provides a quantitative account of the exper-
imental value (�exp ⇡ 1.45 MeV). It is to be noted that
in carrying out the above calculations use has been made
of empirically renormalized collective modes [29]. This is
because SLy4 leads to little collective density vibrations
(cf. Table 1), where, as an example, the bare QRPA
results characterizing the low-lying 2+ of 120Sn are dis-
played [16], see also [30]), in keeping with the associated
value of the e↵ective mass 0.7 m. In fact, collectivity is
closely associated with a density of levels (⇠ m⇤) consis-
tent with an e↵ective mass m⇤ = m

!

m
k

/m ⇡ m. This is
achieved by coupling the two-quasiparticle QRPA SLy4
solutions to 4qp doorway states made out of a 2qp un-
correlated component and an empirically tuned QRPA
collective mode [29] (see and Table 1); Cf. also Fig. 2 of
[16], [31], and for details [32]).

To test the physical validity of the results displayed in
Fig. 1, we have recalculated �̃

⌫

as a function of the three
quantities { m

k

, vbare
p

, �
J

(J⇡) } [33],[29, 34]. The re-
sults associated with the lowest quasiparticle state h11/2,
the leading orbital in determining the density of levels at
the Fermi energy, are displayed in Figs. 2(a),(b) and (c).

"
⌫

(MeV)

d5/2 g7/2 s1/2 d3/2 h11/2

SLy4 -11.3 -10.1 -9.0 -8.5 -7.1

Opt. -10.7 -10.5 -7.9 -7.1 -7.45

TABLE II. Energy of the valence orbitals (see text).

✏
i

(keV) � (mb) d�/d⌦ (mb/sr)

Exp. Th. Exp. Th. Exp. Th.

921 1150 0.63 1.80 0.75 2.3

1090 1290 5.35 1.20 7.0 1.7

1354 1710 1.66 0.25 2.3 0.32

1562 1910 0.13 2.90 0.16 4.0

1730 0.16 0.18

7.93 ± 2 6.15 10.39 8.32

TABLE III. Calculated fragments of the d5/2 single-particle
state populated in the 120Sn(p, d)119Sn (5/2+) reaction lying
below 2 MeV, in comparison with the data [40].

They provide evidence of the fact that a description based
on the renormalisation of single-particle states and collec-
tive modes through PVC leads to a global minimum for
values of the set of quantities { } close to the empirical
values: e↵ective mass m

k

⇡ 0.7m, bare pairing interac-
tion strength vbare

p

consistent with v14(1S0)(G0 ⇡ 0.22
MeV), and quadrupole deformation parameter (�2)0 ⇡
(�2)exp ⇡ 0.13. Similar conclusions can be drawn from
the study of the dependence on vbare

p

and �2 of the quasi-
particle spectrum associated with the 120Sn valence or-
bitals (h11/2, d3/2, s1/2, g7/2 and d5/2), of the splitting of
the multiplet of states (h11/2 ⌦ 2+)15/2��7/2� averaged
over the 119Sn and 121Sn spectrum and of the ��decay
spectrum following Coulomb excitation of 119Sn and the
centroid and width of the 5/2+ strength function ob-
tained from one-particle transfer, as can be seen from
Figs. 2(d)-(f), Figs.2(g)-(h), the inset of Fig.3(I) and

Observables SLy4 d5/2 shifted Opt. levels

� (keV) 10 (0.7%) 10 (0.7 %) 50 (3.5 %)

E
qp

(keV) 190 (19%) 160 (16%) 45 (4.5 %)

Mult. splitt. (keV) 50 (7%) 70 (10%) 59 (8.4 %)

d5/2 (centr.) (keV) 200 (20%) 40 (4%) 40 (4%)

d5/2 (width) (keV) 160 (20%) 75 (9.3%) 8 (1%)

B(E2)/B
sp

1.4 (14%) 1.34 (13%) 1.43 (14%)

�2n(p, t) (mb) 40 (2%) 40 (2%) 40 (2%)

TABLE IV. Mean square deviation � between the experimen-
tal data and the theoretical values taken at the minimum of
the corresponding functions. In brackets the ratio �/L, called
�
rel

in the text, between � and the experimental range L of
the corresponding quantities..


