# A quantitative account of the variety of nuclear structure observables in superfluid nuclei

| A. Idini                             |  |  |  |  |
|--------------------------------------|--|--|--|--|
| Surrey University                    |  |  |  |  |
| G. Potel                             |  |  |  |  |
| Michigan State University            |  |  |  |  |
| R.A. Broglia                         |  |  |  |  |
| Milano University and                |  |  |  |  |
| The Niels Bohr Institute, Copenhagen |  |  |  |  |
| F. Barranco                          |  |  |  |  |
| Sevilla University                   |  |  |  |  |
| E. Vigezzi                           |  |  |  |  |
| INFN Milano                          |  |  |  |  |

A. Idini et al., PRC92 031304(2015)

### Open-shell nuclei around 50 Sn<sub>70</sub>

Observables:

- Low-energy quasiparticle spectrum
- Multiplet splitting
- Electromagnetic transition strength
- One-neutron transfer reactions
- Two-nucleon transfer cross sections
- Pairing gaps

#### Mean field description: HFB



 $\varepsilon_{nli}$  (MeV)

Fragmented  $d_{5/2}$  strength

#### <sup>120</sup>Sn(p,d)<sup>119</sup>Sn



## **Elementary modes of excitation**



Hartree-Fock mean Field

Random Phase Approximation

## Nuclear Field Theory Approach



I<sup>st</sup> order

II<sup>nd</sup> order

Green's function can consistently Particle-Vibration Couplings to the <u>infinite order</u>: Microscopic description of superfluid nuclei beyond mean field:

iterating the PVC with Nambu-Gor'kov formalism

by extending the Dyson equation...

$$G_{\mu}^{-1} = (G_{\mu}^{o})^{-1} - \Sigma_{\mu}(\omega)$$

$$\Sigma_{\mu}(\omega) = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \sum_{\mu'} \frac{1}{\hbar} G_{\mu'}(\omega') \sum_{\alpha} \frac{1}{\hbar} D_{\alpha}^{o}(\omega - \omega') * V_{\mu\mu',\alpha}^{2}$$

... to the case of superfluid nuclei (Nambu-Gor'kov), it is possible to consider both:



- J. Terasaki et al., Nucl. Phys. A697(2002)126;
- F. Barranco et al, EPJ A21 (2004) 57
- A. Idini et al. PRC 85 (2012) 014
- cf. V. Soma', C. Barbieri, T. Duguet,

PRC 84 (2011) 064317 ;PRC87 (2013) 011303

Resume of s-p Self-energy



This is a kind of UNIVERSAL RESULT: Green Functions, Equations of Motion, in general any many body theory based on sp picture

#### Renormalization of BCS quasiparticle energies and pairing gap

Van der Sluys et al., NPA551(1993)210 A. Idini et al., PRC 85 (2012) 014331

$$\begin{pmatrix} E_a + \Sigma_{11}(\tilde{E}_{a(n)}) & \Sigma_{12}(\tilde{E}_{a(n)}) \\ \Sigma_{12}(\tilde{E}_{a(n)}) & -E_a + \Sigma_{22}(\tilde{E}_{a(n)}) \end{pmatrix} \begin{pmatrix} x_{a(n)} \\ y_{a(n)} \end{pmatrix} = \tilde{E}_{a(n)} \begin{pmatrix} x_{a(n)} \\ y_{a(n)} \end{pmatrix}$$

$$\begin{split} \Sigma_{11} &= \sum_{b,m,J,\nu} \frac{V^2(a(n)b(m)J\nu)}{\tilde{E}_{a(n)} - \tilde{E}_{b(m)} - \hbar\omega_{J\nu}} + \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{W^2(a(n)b(m)J\nu)}{\tilde{E}_{a(n)} + \tilde{E}_{b(m)} + \hbar\omega_{J\nu}} & \text{for each of } \\ \int_{12} (\tilde{E}_{a(n)}) &= -\sum_{b,m,J,\nu} V(a(n),b(m),J,\nu)W(a(n),b(m),J,\nu) \\ & \left[ \frac{1}{\tilde{E}_a(n) - \tilde{E}_b(m) - \hbar\omega_{J,\nu}} - \frac{1}{E_a(n) + \tilde{E}_b(m) + \hbar\omega_{J,\nu}} \right]. \end{split}$$

 $\Sigma$ 

 $\begin{array}{lll} V(ab(m)\lambda\nu) = & h(ab\lambda\nu)(u_{a}^{BCS}\tilde{u}_{b(m)} - v_{a}^{BCS}\tilde{v}_{b(m)}) & \tilde{u}_{a(n)} = x_{a(n)}u_{a}^{BCS} - y_{a(n)}v_{a}^{BCS} \\ W(ab(m)\lambda\nu) = & h(ab\lambda\nu)(u_{a}^{BCS}\tilde{v}_{b(m)} + v_{a}^{BCS}\tilde{u}_{b(m)}) & \tilde{v}_{a(n)} = x_{a(n)}v_{a}^{BCS} + y_{a(n)}u_{a}^{BCS}, \end{array}$ 

#### Generalized Gap Equation (schematic)



### **Three Parameters**

#### Hartree-Fock mean Field



 $m_k \approx 0.7m$ 



In <sup>120</sup>Sn with SLy4  $\Delta^{v_{14}} \approx 1.1 \text{ MeV}$  $\Delta^{exp} \approx 1.4 \text{ MeV}$  Particle Vibration Coupling Vertex



## Tuning the parameters

#### Hartree-Fock mean Field



Pairing Interaction



#### Particle Vibration Coupling Vertex















 $G_{0} = 0.22 \text{ MeV}$  $(\beta_2)_0 = 0.12$  $m_k = 0.7$ 





Transfer reactions:  ${}^{120}Sn(d,p){}^{121}Sn$ 



#### Transfer reactions: ${}^{120}$ Sn(p,d) ${}^{119}$ Sn (5/2+)



Pairing Properties

## Two particle transfer cross section



## Multiplet Splitting

(keV)

[T]

Elastic excitation of a quasiparticle state coupled to the core vibrations



 $(h_{11/2}\otimes 2^+)_{i^-}$ 400 11/2300 200 100 13/20 15/2- 100 7/2-200

#### **Electromagnetic Transitions**



Interweaving single-particle (m<sub>k</sub> ≈ 0.7m) and collective (tuned to experiment) degrees of freedom, we can calculate several nuclear structure observables in open shell nuclei within 10% error.

| Observables                     | SLy4      | $d_{5/2}$ shifted | Opt. levels |
|---------------------------------|-----------|-------------------|-------------|
| $\Delta (\text{keV})$           | 10 (0.7%) | 10 (0.7 %)        | 50 (3.5 %)  |
| $E_{qp} \; (\mathrm{keV})$      | 190 (19%) | 160~(16%)         | 45 (4.5 %)  |
| Mult. splitt. (keV)             | 50~(7%)   | 70~(10%)          | 59 (8.4 %)  |
| $d_{5/2}$ (centr.) (keV)        | 200 (20%) | 40 (4%)           | 40 (4%)     |
| $d_{5/2}$ (width) (keV)         | 160 (20%) | 75~(9.3%)         | 8 (1%)      |
| $B(E2)/B_{sp}$                  | 1.4 (14%) | 1.34~(13%)        | 1.43 (14%)  |
| $\sigma_{2n}(p,t) \text{ (mb)}$ | 40 (2%)   | 40~(2%)           | 40 (2%)     |