Recent progresses in *ab-initio* studies of low-energy few-nucleon reactions of astrophysical interest

Laura E. Marcucci

University of Pisa

INFN-Pisa

TNPI2016 April 20-22, 2016

Results obtained in collaboration with:

- The FBS Pisa Group
- The astrophysics colleagues of the Dep. (E. Tognelli, S. Degl'Innocenti, P. Prada Moroni)
- R. Schiavilla and collaborators
- G. Mangano (Napoli)

• <u>Ab-initio</u> methods for <u>few-nucleon</u> systems

- (Standard) phenomenological approach (PhenAp)
- Chiral effective field theory (χEFT)
- Tests
 - Electromagnetic structure of A = 2, 3, 4 nuclei
 - Muon capture on light nuclei
- Results
 - $p + p \rightarrow d + e^+ + \nu_e$
 - $p + d \rightarrow {}^{3}\mathrm{He} + \gamma$

Outlook

- The weak sector in $\chi {\rm EFT}$
- Recent (local) χEFT potential WITH Δ 's

Theoretical framework: ab-initio studies

A-nucleon system \leftrightarrow Cross section σ [or S-factor S(E)]

Ingredients

- <u>Realistic nuclear Hamiltonian</u> $H = T + \sum_{i < i} V_{ii} + \sum_{i < i < k} V_{iik}$
- <u>Ab-initio method</u> to solve the A-body quantum problem (HH method for A = 3)
- Realistic nuclear electroweak currents j^{EW}

Nuclear Hamiltonian

• PhenAp \rightarrow AV18/UIX

• $\chi \text{EFT} \rightarrow \text{N3LO}(\text{Idaho})/\text{N2LO}(\text{Iocal form}) - \Lambda = 500,600 \text{ MeV}$

Electroweak currents in PhenAp

EW operators: $\rho^{\gamma}, \mathbf{j}^{\gamma}; \rho^{V/A}, \mathbf{j}^{V/A}$ but $\text{CVC} \Rightarrow \rho^{V}/\mathbf{j}^{V} \rightarrow \rho^{\gamma}/\mathbf{j}^{\gamma}$

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Similar power counting for the EW currents

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Electroweak currents in χEFT : power counting for \mathbf{j}^{γ}

Electroweak currents in χEFT : power counting for \mathbf{j}^A

Note:

- \$\mathcal{O}(Q^1)\$: two-pion-exchange
 A. Baroni *et al.*, PRC **93**, 015501 (2016)
- Park *et al.* up to $\mathcal{O}(Q^0)$ \rightarrow one LEC - d_R

$$d_R = \frac{M_N}{\Lambda_{\chi}g_A}c_D + \frac{1}{3}M_N(c_3 + 2c_4) + \frac{1}{6}$$

• fit c_D and c_E (in TNI at N2LO) to B(A = 3) and GT_{Exp}

PhenAp

A new 1b term \rightarrow relativistic correction (RC) $O(1/m^3)$. L. Girlanda *et al.*, PRL **105**, 232502 (2010): significant (few %) contribution to $n + d \rightarrow {}^{3}\text{H} + \gamma$.

$\chi {\sf EFT}$

Main results in the weak sector up to $\mathcal{O}(Q^0)$ (Park *et al.*). Preliminary results also including the $\mathcal{O}(Q^1)$ contributions.

	PhenAp	χ EFT Exp.	
$r_c(d)$ [fm]	2.119	$\textbf{2.126} \pm \textbf{0.004}$	2.130 ± 0.010
$\mu(d)$ [n.m.]	0.847	<u>0.8574</u>	0.8574
Q(d) [fm ²]	0.280	$\textbf{0.2836} \pm \textbf{0.0016}$	0.2859 ± 0.0003
$r_c(^{3}\text{He})$ [fm]	1.928	$\textbf{1.962} \pm \textbf{0.004}$	1.973 ± 0.014
<i>r_m</i> (³ He) [fm]	1.909	$1.920\pm\!0.007$	$1.976 \ {\pm} 0.047$
$\mu(^{3}\mathrm{H})$ [n.m.]	2.953	<u>2.979</u>	2.979
μ(³ He) [n.m.]	-2.125	-2.128	-2.128
$r_c(^4\text{He})$ [fm]	1.639	$\textbf{1.663} \pm \textbf{0.011}$	1.681 ± 0.004

L.E. Marcucci et al., JPG 43, 023002 (2016)

A = 4 form factor

Scaling function: $F_C(Q)_{\text{scaled}} = F_c(Q)/[F_0 \exp(-Q/k)]$, with $F_0 = 1 \& k = 0.760488 \text{ fm}^{-1}$

Muon capture on A = 2, 3 nuclei

• $\mu^- + d \rightarrow n + n + \nu_{\mu} \longrightarrow$ capture rate in the doublet hyperfine state Γ^D • $\mu^- + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + \nu_{\mu} \longrightarrow$ total capture rate Γ_0

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

The proton-proton weak capture reaction

S(E)in χ EFT and PhenAp • Energy range 2 keV - 100 keV

• PhenAp or χ EFT + FULL EM interaction

• pp $L \leq 1$ partial waves: ${}^{1}S_{0} + \text{all } P$ -waves

S(0) cumulative contributions (in 10^{-23} MeV fm²)

		${}^{1}S_{0}$	$\cdots + {}^{3}P_{0}$	$\cdots + {}^{3}P_{1}$	$\cdots + {}^{3}P_{2}$
	PhenAp	4.000(3)	4.003(3)	4.015(3)	4.033(3)
)	χ EFT	4.008(6)	4.011(6)	4.020(6)	4.030(6)

$$S(0)$$
=(4.030 ± 0.006) × 10⁻²³ MeV fm²
vs.
 $S(0)^{SFII}$ =(4.01 ± 0.04) × 10⁻²³ MeV fm²

SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

L.E. Marcucci et al., PRL 110, 192503 (2013)

Effects on

- age of mid and old stellar clusters (1-12 Gyr)
- standard solar model predictions

E. Tognelli et al., PLB 742, 189 (2015)

	MSV13(S+P)	MSV13(S)	NACRE99	AD11	JINA	
	reference	relative differences				
T _c [10 ⁷ K]	1.54794	-1%	-3‰	-2‰	-1%	
$\Phi^{\nu}_{_{ m DD}}$ [10 ¹⁰]	6.020	1‰	2‰	2‰	1%	
$\Phi_{ m pep}^{ u}$ [10 ⁸]	1.446	-2‰	-6%	-2%	-1%	
$\Phi_{ m hep}^{ u}$ [10 ³]	8.584	-1%	-3%	< 1%	2‰	
$\Phi_{ m Be-7}^{\nu}$ [10 ⁹]	4.503	-1%	-3%	-1%	-9%	
$\Phi_{\rm B-8}^{\overline{\nu}}$ [10 ⁶]	3.694	-3%	-7%	-4%	-2%	
$\Phi_{\rm N-13}^{\overline{\nu}}$ [10 ⁸]	2.417	-2%	-6%	-3%	-1%	
$\Phi_{\rm O-15}^{\nu}$ [10 ⁸]	1.811	-3%	-8%	-4%	-2%	
$\Phi_{ m F-17}^{ u}$ [10 ⁶]	3.373	-3%	-8%	-4%	-2%	

Latest calculation in χEFT consistent up to N2LO

B. Acharya *et al.*, arXiv:1693.01593

The $p + d \rightarrow {}^{3}\mathrm{He} + \gamma$ reaction

SFII: E.G. Adelberger et al., RMP 83, 195 (2011)

Planck Collab., arXiv:1501.01589 (2015)

- New ongoing measurement by the LUNA Collab. at LNGS in the energy range of interest for BBN
- "New" calculation in PhenAP:
- Preliminary calculation in χEFT

Pisa, April 21, 2016 18 / 1

Implications for Big Bang Nucleosynthesis

- $S(E) \rightarrow \text{primordial }^2\text{H}$ abundance
- ${}^{2}H/H$ abundance as function of $\Omega_{b}h^{2}$ and N_{eff}
- Likelihood function to get the best fit on $\Omega_b h^2$ and N_{eff}

PRELIMINARY RESULTS in χ EFT

PRELIMINARY RESULTS in χ EFT: zoom for E = 0 - 250 keV

Outlook: the weak sector in $\chi \text{EFT}(I)$

- Weak current up to $\mathcal{O}(Q^1) + N3LO(Idaho)/N2LO$ (local form)
- Fit c_D using B(A = 3) and $GT_{E\times p}$ (PRELIMINARY $\Lambda = 500$ MeV)

Laura E. Marcucci (Univ. Pisa & INFN-Pisa)

Using the χ EFT weak current up to $\mathcal{O}(Q^1)$

- μ -capture on deuteron and ³He
- $p + {}^{3}\mathrm{He} \rightarrow {}^{4}\mathrm{He} + e^{+} + \nu_{e}$ the *hep* reaction
- ν -scattering on light nuclei (A = 2 4)
- ••••

Outlook: a new $\chi {\sf EFT}$ potential with Δ 's

M. Piarulli et al., PRC 91, 024003 (2015)

- χ EFT with Δ 's in two-pion exchange up to $\mathcal{O}(Q^3)$ (N3LO)
- minimally non-local / coordinate space (operatorial structure \sim AV18)
- fit to the 2013 Granada database with $\chi^2/{
 m datum} \sim 1.3$

Steps to be done:

- consistent TNI work in progress
- fitting procedure of $c_D c_E$
- EW currents with the same cutoff functions

Consistent χ EFT framework

 \Rightarrow from few- to less few-nucleon systems