Ab initio calculations for non-strange and
strange few-baryon systems

® Applied ab initio methods

® Non-strange sector: continuum observables

@ Strange sector. hypernuclear bound states
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Ab initio calculations for non-strange and
strange few-baryon systems

® Applied ab initio methods

® Non-strange sector: continuum observables
Resonances
S-Factor in presence of Coulomb potential

® Strange sector: hypernuclear bound states
Benchmark calculation with other
ab initio methods
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Applied ab initio methods

A-body system: A position vectors r , removal of center of mass coordinate

leads to (A-1) Jacobi vectors nm,06,0)

Expansion of ground-state wave function or LIT state on a complete set:
Hyperspherical Harmonics (HH)
3(A-1) coordinates of HH basis: hyperradius p, 2(A-1) angular coordinates
®. and ¢, (A-2) hyperspherical angles: 1 hyperradius + (3A - 4) angles
HH basis states: eigen states of grand-angular momentum operator
depending on the (3A - 4) angles times a hyperradial basis state

Different HH versions: normally symmetrized basis states, but also a
nonsymmetrized HH (NSHH) basis is possible

Acceleration of convergence: effective interaction (EIHH)

Short-range two-body correlations (CHH)
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Applied ab initio methods

®  Solve Schrodinger or LIT equation with N basis states and increase N
up to the point that a sufficient convergence is obtained
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LIT method

The LIT of a function R(F) is defined as follows
=  L(o) = [dEL(E,0) R(F),

where the kernel £ is a Lorentzian,

1
(E—O'R)Q—i—()'%

= L(F,0)=

For inclusive reactions the LIT L(o) is calculated by solving
an equation of the form

(H—0o)U =5,

where H is the Hamiltonian of the system under consideration
and S is an asymptotically vanishing source term related to the
operator inducing the specific reaction.

The solution W is localized and the LIT is given by

L(o) = (T|F) .

Alternative way:

L(0) = - Im((S]——

—15)).

or + 1o —



The source term S for inclusive reactions has the form

= |S) =10[0),

where the operator 6 induces a specific electroweak reaction.

The corresponding response function is given by

= R(Ey) = [ dE|(£]0]0)?6(Ef — Ey — w)

Ingredients of the solution of the LIT equation via an expan-
sion on a basis of dimension N:

N Jeigenstates|with igenenergies

Dn Ey

and strength

Sn = [{n]0]0)*

leading to the following LIT

Lio) =5 S

=i (or — En)? + o7
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The source term S for inclusive reactions has the form

= |S) =10[0),

where the operator 6 induces a specific electroweak reaction.

The corresponding response function is given by

= R(Ep) = [ dEf|(f10]0)[26(E; — Eo — w)

Ingredients of the solution of the LIT equation via an expan-
sion on a basis of dimension N:

N Jeigenstates|with igenenergies

Dn Ey

/ and strength

LIT states S, = [{$,]0]0)|*> <& strengthto a LIT state

leading to the following LIT

= Lo) = 3 S

= (or — En)* + o7




Inversion of the LIT

® LIT is calculated for a fixed 0, in many o_ points
® Express the searched response function formally on a basis set with
N basis basis functions f (E) and open coefficients c_ with correct

threshold behaviour for the f (E) (e.g,f =f _(E)exp(-aE/n))

® Make a LIT transform of the basis functions and determine
coefficents c_by a fit to the calculated LIT

® Increase N up to the point that a sufficient convergence is obtained
(uncontrolled oscillations should not be present)
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Resonances
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“He isoscalar monopole resonance

Isoscalar monopole response function M (q, £y = Ey + w)

. " Gy & .
with transition operator |[6(q) = — 5 > golgrs)
-

2

G'%:(g?): nucleon isoscalar electric form factor
jo: spherical Bessel function of 0" order



0+ Resonance in the *He compound system

G. Kbbschall et al./ Quasi bound state in “He - Nucl. Phys. A405, 648 (1983)

>
[}
=
=
n
~
=
y—
<
o
=,
Ll
©
G
e
~~
©)]
o

o
o

o Z 1 =z

Excitation energy [MeV]

Resonance at E; = -8.2 MeV, i.e. above the 3H-p threshold. Strong
evidence in electron scattering off 4He, T = 270+50 keV
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Comparison to experimental results

0 Koebschall et al.
A Frosch et al.

x  Walcher
—- Hiyama ef al.
—_— AVI1B4+UIX

= NN(N'LO) +
3NF(N’L.G)

LIT/EIHH Calculation for AV18+UIX and Idaho-N3LO+N2LO

dash-dotted: AV8' + central 3NF (Hiyama et al.)
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Comparison to experimental results

0 Koebschall et al.
A Frosch et al.

x  Walcher
—- Hiyama ef al.
—_— AVI1B4+UIX

= NN(N'LO) +
3NF(N’L.G)

Observable is strongly dependent on potential model
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Why were we unable to determine the width of the 4He

isoscalar monopole resonance?

To answer this let us check our very first LIT calculation from 1997:
*He(e,e') inelastic longitudinal response function

with a central NN potential
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Unpublished result from a CHH calculation with
the TN potential (V. Efros, WL, G. Orlandini, PRL 78,432 (1997))

o, =0.1 MeV

Resonance peak
due to a single
LIT state
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To study the problem better let us consider first instead of a
four-body reaction a simpler three-body reaction:

‘He+y —» d+p

at low energies

LIT calculation with central MTI/1lIl NN potential in unretarded dipole
approximation

Aim: Increase low-energy density of LIT states
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To study the problem better let us consider first instead of a
four-body reaction a simpler three-body reaction:

‘He+y —» d+p

at low energies

LIT calculation with central MTI/1lIl NN potential in unretarded dipole
approximation

Aim: Increase low-energy density of LIT states

Answer seems to be simple increase number of basis states both
for hyperspherical and hyperradial states
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To study the problem better let us consider first instead of a
four-body reaction a simpler three-body reaction:

‘He+y —» d+p

at low energies

LIT calculation with central MTI/1lIl NN potential in unretarded dipole
approximation

Aim: Increase low-energy density of LIT states

Answer seems to be simple increase number of basis states both
for hyperspherical and hyperradial states

Also note: hyperradial basis states consist in an expansion on Laguerre
polynomials times a spatial cutoff exp(-p/b)
Increase of b shifts spectrum to lower energies
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OIS VW ¢ of Lore zians . .
arious widths of Lorentzians Widih GEL.Orentsians

—— 0.5 MeV
— 1MeV
2 MeV

30 hyperspherical
31 hyperradial

= 930 basis states
b=0.6fm

C v
— 20 MeV

40 MeV
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Observation

The LIT is a method with a controlled resolution
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Observation

The LIT is a method with a controlled resolution

But in present LIT calculation below three-body breakup threshold
not a single LIT state! Similar problem as in the previous four-body case
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Observation

The LIT is a method with a controlled resolution

But in present LIT calculation below three-body breakup threshold
not a single LIT state! Similar problem as in the previous four-body case

Solution: use instead of the HH basis a somewhat modified basis
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New A-body basis

Note one of the (A-1) Jacobi vectors can be written in the following form:

m=r -R (1,2,.,A1)

This is the coordinate one would use for the scattering of a nucleon with a

(A-1)-nucleon system. In other words the relevant coordinate for a two-body
breakup. Therefore

A-body HH basis —»  (A-1)-body HH basis times expansion on n

radial part: Laguerre polynomials

angular part: Y,,(6,,9)
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new basis (20 hiaV)
new basis (10 hiaV)

»  HH basis (20 MeV)
»  HH basis (10 MeV)

new basis (5 MeV)
new basis (0 3haV)
HH basis {5 M2V
HH basis (0.5 kW)

new basis (0025 MeV)
new basis (0.1 MeV)
new basis (0,01 MeV)
HH basis {0012V
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Inversions

Implement correct threshold behaviour for’He+y —» d+p

Due to Coulomb potential: usual Gamow factor
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Back to the *“He resonance
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Unpublished result from a CHH calculation with
the TN potential (V. Efros, WL, G. Orlandini, PRL 78,432 (1997))

o, =0.1 MeV

Resonance peak
due to a single
LIT state
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IS

Results with new bas
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Results with new basis

— 0.25MeV'!
0.10 MeV'i

Inversion: I' = 180(70) keV

WL, PRC 91, 054001 (2015)
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Benchmark calculations for hypernuclei

® Quick introduction to hypernuclei

® Short outline of our NSHH method

® Preliminary benchmark results: comparison with

AFDMC (D. Lonardoni, F. Pederiva)
Faddeev (A. Nogga)
(GEM: E. Hiyama)
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Nuclei with Strangeness

116 MeV nautron proton: 3 guarks

189
Mgo = 1193 ® O
@ ® @

Mg = 1673

1
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My
My

Mass: 3318 MeV

Mo charge +charge

fyperon. iInCluding strangensss quark
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Hypernuclear Chart
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Production of Hypernuclei

Strangeness exchange reaction
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Experimental Present and Future Perspectives

@ Despite exensive investigations, single A hypernucle
knowledge is far from that of ordinary nuclei;

@ Only one bound -hypernucleus detected!

@ No = hypernuclel detected (some indications of weak
attraction);

@ No experimental information about 2 hypernuclei;

o Four A\-hypernuclei energies measured ( 5 He, 1%Be,
12Bg, 13p):
AN i i
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Non-Symmetrized HH method

Problem: selection of antisymmetric states (we deal with
fermions):

— We add to H the Casimir operator of the permutation
group Sy, which selects "by himself” the interesting states:

H=H+CA) ;: CA=) P

Its action on the vectors:

AlA-1)
2
CAVm = AW ;
AlA-1)
2

= with a proper choice of ~ the g.s. energy Eﬂ becomes the
lowest eigenvalue of H' (similar procedure for excited states).

C(A)Ws =

1'I-'r5- e .-1"I.51'I-'r5- =

C(AW, = —

W, =AW,
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HYP-NSHH: different particles

Hypernuclel are systems made of two different species of
particles.

@ Different masses:

@ mass weighted coordinates = dependence inside
transpositions:

By —= Bi(my, m;, m;) ;

@ relative coordinate rescaling - mass dependence inside
potential.

@ Assuming 2-body potential: 3 types of different
interactions:

@ NN - nuclear core;
@ YN - nucleon-hyperon couples;

@ YY - hyperonic part.
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2-body Bodmer Usmani interaction

The A particle has T = 0 so there is no OFE term:

Vir
Van(r) = Vﬂ{r}*IT,—.ﬁ{r} Tn-TN

v A A N \ \
b 5 A ||"L .II'|.'

\ \ \ A \ \

b
w(r) = —2 -~ VTZ(r)
1+e=
o T

T:(r)= |1+ 3 - il (1 —.:ri}E

LT N {;rﬁr}ﬁ . r
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Bodmer Usmani benchmark results

Van + Vyy  System AFDMC  NSHH FY

AVA4' 2.245(15) [-2.245(1)] -2.245(1)
AV4'+U .245(5)  -2.530(3)  -2.537(1)
0.21(5)  0.285(3)  0.292(1)

AV4' .8.92(5)  -8.983(7)
AVA'+U 11.95(5)  -12.023(3)
3.03(7)  3.039(8)

AV4' .32.85(5) -32.695(6)
AV4'+U -39.50(5)  -39.543(10)
6.65(7)  6.848(12)
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NSC97f realistic interaction

We employed the NSC97f realistic potential® which simulates
the Nijmegen scattering phase shifts:

i
EVN'&"—N'&"'{-F} =Z (SF;EF_N?, g~ L1/5i)
i

ST —(r/a;)*
+ SViy_ny: S12 @)

(r/
+ SViy_wy LS e 179) )

o Y2 AY;
@ C — central, T — tensor, LS — spin-orbit;
@ gaussian radial functions with fitted paramenters.

Explicit use of £ degree of freedom = need for extension of
the HYP-NSHH method.

'E.Hiyama et al., Th.A.Riken, Phys. Rev. C89, 061302 (2014).
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L ambda-Sigma mixing

= gxtension of the basis including A/% degree of freedom:

\ @ definition of transformation between two
A- A-L Jacobi sets differing by one mass;
Illll:..']'i.‘iil coupling

@ extension of Lee-Suzuki procedure
including A /% degree of freedom.

Y-nuclear

coupling

A-L
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NSC97f interaction benchmark

Wasii - Won NSHH FY

AVS [-2.226(1)] -2.226(1)
AVS'+NSCI7f 241(2)  -2.415(1)
0.19(2)  0.189(1) 0.19(1)

AVS .7.76(0)
AVS'+NSCaTf -10.05(7)
2.29(7)
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Results were obtained in collaboration with

S. Deflorian and F. Ferrari-Rufino (Trento PhD students)

N. Barnea (Jerusalem), V. Efros (Moscow), G. Orlandini (Trento)
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