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The starting point: Landau model
for multiparticle production process in nucleon-nucleon collisions at BeV(TeV) energies

Fermi model, Prog. Theor. Phys., 5, 570, (1950):

Secondary particles are created in the Lorentz
contracted volume V = 4π

3 a3 2Mc2
√

s ,
a = h̄/µc is the size of nucleon meson cloud

Particles are born in statistical equilibrium (because of
strong interaction and small volume), and immediately
escape in a “frozen state”

The model is applied to describe the angular
distribution of produced pions

Landau model, Izv. Ak. Nauk SSSR, Ser. Fiz., 17, 51
(1951); Nuovo Cimento Suppl., 3, 15 (1956):

Causality problems for noncentral collisions

The initial volume V expands (hydrodynamically!)

As the mean free path becomes comparable to the
system size, it disintegrates into separate particles.
This happens when T ≈ µ, the pion mass.
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Modern history: hydro for ultrarelativistic AA collisions,
√

sNN = 200 GeV (full RHIC), 2760 GeV (LHC)
Figure taken from: C. Gale, S. Jeon, B. Schenke, Int. J. of Mod. Phys. A, Vol. 28, 1340011 (2013)
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Motivation of my work: going back to ’lower’ energies

We want to understand whether the fluid is created at lower energies,
find its transport properties (η/s,...) and constrain its EoS.
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Picture taken from: G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).
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Tools

Hybrid model: initial state + hydrodynamic phase + hadronic cascade� thermalization � particlization 
Initial state: thick pancakes

I boost ivariance is not a good approximation
→ need for 3 dimensional evolution

I CGC picture does not work well either

Initial state: fluctuations

Baryon and electric charges
I obtained from the initial state
I included in hydro phase
I taken into account at particlization

Pictures taken from: https://www.jyu.fi/fysiikka/tutkimus/suurenergia/urhic
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The model
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Initial (pre-thermal) stage

pre-thermal evolution: UrQMD
cascade (involving PYTHIA)

scatterings allowed until
√

t2−z2 = τ0

minimal starting time is τ0 = 2R
γvz
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“Thermalization”

At τ = τ0 the energy/momentum Pα , baryon
and electric charges N0 of every particle are
deposited into fluid cells according to:
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Hydrodynamic stage

The hydrodynamic equations:

∂;νT µν = 0, ∂;νNν = 0

Evolution equations for shear/bulk,
coming from Israel-Stewart formalism:

< uγ
∂;γ π

µν > =−
πµν −π

µν

NS
τπ

− 4
3

π
µν

∂;γuγ

* Bulk viscosity ζ = 0, charge diffusion=0
vHLLE code: free and open source. Comput. Phys. Commun. 185 (2014), 3016
https://github.com/yukarpenko/vhlle

Fluid→particle transition and hadronic phase

Cooper-Frye prescription at ε = εsw:

p0 d3ni
d3p

= ∑ f (x ,p)pµ ∆σµ

f (x ,p) = feq ·
(

1 + (1∓ feq)
pµ pν πµν

2T 2(ε + p)

)
∆σi using Cornelius
subroutine∗

Hadron gas phase: back to
UrQMD cascade

∗Huovinen and Petersen, Eur.Phys.J. A 48 (2012), 171
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Equations of state in the fluid stage
Chiral model
J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

good agreement with lattice QCD
at µB = 0
crossover type PT between
confined and deconfined phases
at all µB

Hadron resonance gas + Bag Model
P.F. Kolb, et al, Phys.Rev. C 62, 054909 (2000)

(a.k.a. EoS Q)
hadron resonance gas made of
u,d quarks including repulsive
meanfield
Maxwell construction resulting in
1st order PT
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Results
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40 + 158 A GeV PbPb SPS (
√

s = 8.8 and 17.3 GeV)
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Elliptic and triangular flows at RHIC BES + top RHIC

v2,v3 vs collision energy
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v3: prediction! Peripheral events: too strong smearing
for smaller system
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Parameter values used to approach the data

EoS: Chiral model, εsw = 0.5 GeV/fm3.
√

s
[GeV]

τ0
[fm/c]

R⊥
[fm]

Rz
[fm]

η/s

7.7 3.2 1.4 0.5 0.2
8.8 2.83 1.4 0.5 0.2
11.5 2.1 1.4 0.5 0.2
17.3 1.42 1.4 0.5 0.15
19.6 1.22 1.4 0.5 0.15
27 1.0 1.2 0.5 0.12
39 0.9* 1.0 0.7 0.08
62.4 0.7* 1.0 0.7 0.08
200 0.4* 1.0 1.0 0.08

*here we increase τ0 as compared to
τ0 = 2R

γvz
.
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Green band:
same v2 and ±5% change in Teff.

! Actual error bar would require a proper χ2 fitting of the model parameters
(and enormous amount of CPU time).

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 12/18



η/s determination, not estimate? J. Auvinen, analysis at
√

sNN = 62.4 GeV

This hybrid model
+

Gaussian processes
(emulator)

+
Markov chain Monte

Carlo

done by J. Auvinen
(Duke Univ.)
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η/s determination, not estimate? J. Auvinen, analysis at
√

sNN = 19.6 GeV

This hybrid model
+

Gaussian processes
(emulator)

+
Markov chain Monte

Carlo

done by J. Auvinen
(Duke Univ.)
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EoS dependence: Chiral EoS vs ’EoS Q’

Take same parameters but change the EoS:
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EoS Q increases the average duration of hydro phase,
especially at lower collision energies.

But the difference is smeared by the cascade
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EoS dependence: Chiral EoS vs ’EoS Q’

Final multiplicities and rapidity distributions are unchanged.
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EoS Q results in slightly less radial flow→ mean pT is decreased.
The biggest effect is for the elliptic flow.
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Summary

3+1D EbE viscous hydro + UrQMD model for
√

sNN = 7.7 . . .200 GeV A+A
collisions:

pre-termal stage: UrQMD

3+1D viscous hydrodynamics

EoS at finite µB: Chiral model, EoS Q

Conclusions:
Adjustment to experimental data suggests η/s = 0.2→ 0.08 when√

s = 7.7→ 200 GeV, modulo initial state (UrQMD) and EoS (Chiral
model) used.

I Rigorous analysis with emulator is ongoing (by J. Auvinen, Duke Univ.).

Hydrodynamic evolution is affected by EoS, which leads to change in v2.
Current projects at INFN Firenze (F. Becattini):

Hyperon polarization and vorticity in QGP liquid

Multi-fluid hydrodynamics

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 17/18



Backup slides

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 17/18



Strategy to compare to experiment

Run the model with default values of the parameters:
η/s = 0, R⊥ = Rη = 1 fm, εsw = 0.5 GeV/fm3, Chiral EoS

Observe a difference with the experimental data

Learn how variations of parameters affect the observables in the model1

Adjust the parameters at each collision energy to approach the data

Shorter hydro phase⇒ stronger dependence on the initial state

1see backup slides
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Learning parameter dependence

Response of the observables:
Teff, inverse slope of pT spectrum

dN/dy at midrapidity

pT integrated v2{EP}
to the change of every parameter with
respect to its default value.
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Learning parameter dependence (2)

par. ↑ R⊥ Rz η/s τ0 εcrit
Teff ↓ ↑ ↑ ↓ ↓
dN/dy ↑ ↑ ↑ ↓ ↑
v2 ↓ ↑ ↓ ↓ ↓

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 17/18



RHIC BES + top RHIC
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The rapidity/pseudorapidity and pT
distributions from SPS/NA49 together
with RHIC are reasonably reproduced.
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