Hydrodynamic modelling of QCD matter in heavy ion collisions at RHIC Beam Energy Scan

Iurii KARPENKO

with Pasi Huovinen, Hannah Petersen and Marcus Bleicher

INFN sezione Firenze Frankfurt Institute for Advanced Studies / Goethe Universität Bogolyubov Institute for Theoretical Physics

IK, P. Huovinen, H. Petersen, M. Bleicher, Phys.Rev. C 91, 064901 (2015)

The starting point: Landau model

for multiparticle production process in nucleon-nucleon collisions at BeV(TeV) energies

Fermi model, Prog. Theor. Phys., 5, 570, (1950):

- Secondary particles are created in the Lorentz contracted volume $V = \frac{4\pi}{3}a^3\frac{2Mc^2}{\sqrt{s}}$, $a = \hbar/\mu c$ is the size of nucleon meson cloud
- Particles are born in statistical equilibrium (because of strong interaction and small volume), and immediately escape in a "frozen state"
- The model is applied to describe the angular distribution of produced pions

Landau model, Izv. Ak. Nauk SSSR, Ser. Fiz., **17**, 51 (1951); Nuovo Cimento Suppl., **3**, 15 (1956):

- Causality problems for noncentral collisions
- The initial volume V expands (hydrodynamically!)
- As the mean free path becomes comparable to the system size, it disintegrates into separate particles. This happens when *T* ≈ μ, the pion mass.

lurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 4/

Motivation of my work: going back to 'lower' energies

We want to understand whether the fluid is created at lower energies, find its transport properties (η/s ,...) and constrain its EoS.

Picture taken from: G. Odyniec, Acta Phys. Polon. B 43, 627 (2012).

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 5/18

Tools

Hybrid model: initial state + hydrodynamic phase + hadronic cascade

Initial state: thick pancakes

- \blacktriangleright boost ivariance is not a good approximation \rightarrow need for 3 dimensional evolution
- CGC picture does not work well either
- Initial state: fluctuations
- Baryon and electric charges
 - obtained from the initial state
 - included in hydro phase
 - taken into account at particlization

Pictures taken from: https://www.jyu.fi/fysiikka/tutkimus/suurenergia/urhic

The model

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 6/18

Initial (pre-thermal) stage

- pre-thermal evolution: UrQMD cascade (involving PYTHIA)
- scatterings allowed until $\sqrt{t^2 z^2} = \tau_0$
- minimal starting time is $\tau_0 = \frac{2R}{\gamma v_z}$

"Thermalization"

At $\tau = \tau_0$ the energy/momentum P^{α} , baryon and electric charges N^0 of every particle are deposited into fluid cells according to:

$$\begin{split} \Delta P^{\alpha}_{ijk} &= P^{\alpha} \cdot C \cdot \exp\left(-(\Delta x_i^2 + \Delta y_j^2)/R_{\perp}^2 - \Delta \eta_k^2 \gamma_{\eta}^2 \tau_0^2/R_{\eta}^2\right) \\ \Delta N^0_{ijk} &= N^0 \cdot C \cdot \exp\left(-(\Delta x_i^2 + \Delta y_j^2)/R_{\perp}^2 - \Delta \eta_k^2 \gamma_{\eta}^2 \tau_0^2/R_{\eta}^2\right) \end{split}$$

ر س آ

8

6

2

energy density [GeV/fm³]

20

15

10

Hydrodynamic stage

The hydrodynamic equations:

$$\partial_{\nu} T^{\mu\nu} = 0, \quad \partial_{\nu} N^{\nu} = 0$$

Evolution equations for shear/bulk, coming from Israel-Stewart formalism:

$$<$$
 $u^{\gamma}\partial_{;\gamma}\pi^{\mu\nu}>=-rac{\pi^{\mu
u}-\pi^{\mu
u}_{NS}}{ au_{\pi}}-rac{4}{3}\pi^{\mu
u}\partial_{;\gamma}u^{\gamma}$

* Bulk viscosity $\zeta = 0$, charge diffusion=0 vHLLE code: free and open source. Comput. Phys. Commun. 185 (2014), 3016 https://github.com/yukarpenko/vhlle

Hydrodynamic stage

The hydrodynamic equations:

$$\partial_{iv}T^{\mu\nu}=0, \quad \partial_{iv}N^{\nu}=0$$

Evolution equations for shear/bulk, coming from Israel-Stewart formalism:

$$<$$
 $u^{\gamma}\partial_{;\gamma}\pi^{\mu\nu}>=-rac{\pi^{\mu
u}-\pi^{\mu
u}_{NS}}{ au_{\pi}}-rac{4}{3}\pi^{\mu
u}\partial_{;\gamma}u^{\gamma}$

* Bulk viscosity $\zeta = 0$, charge diffusion=0 vHLLE code: free and open source. Comput. Phys. Commun. 185 (2014), 3016 https://github.com/yukarpenko/vhlle

Fluid \rightarrow particle transition and hadronic phase

• Cooper-Frye prescription at $\varepsilon = \varepsilon_{sw}$:

$$p^{0} \frac{d^{3} n_{i}}{d^{3} p} = \sum f(x, p) p^{\mu} \Delta \sigma_{\mu}$$
$$f(x, p) = f_{eq} \cdot \left(1 + (1 \mp f_{eq}) \frac{p_{\mu} p_{\nu} \pi^{\mu \nu}}{2T^{2}(\varepsilon + p)} \right)$$

*Huovinen and Petersen, Eur. Phys. J. A 48 (2012), 171

- Δσ_i using Cornelius subroutine*
- Hadron gas phase: back to UrQMD cascade

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 8/18

Equations of state in the fluid stage

Chiral model

J. Steinheimer, et al, J. Phys. G 38, 035001 (2011)

- good agreement with lattice QCD at $\mu_B = 0$
- crossover type PT between confined and deconfined phases at all μ_B

Hadron resonance gas + Bag Model

P.F. Kolb, et al, Phys.Rev. C 62, 054909 (2000) (a.k.a. EoS Q)

- hadron resonance gas made of u, d quarks including repulsive meanfield
- Maxwell construction resulting in 1st order PT

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 9/18

Results

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 9/18

40 + 158 A GeV PbPb SPS (\sqrt{s} = 8.8 and 17.3 GeV)

lurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan

Elliptic and triangular flows at RHIC BES + top RHIC

 v_2, v_3 vs collision energy

 v_2, v_3 vs centrality

v₃: prediction!

Peripheral events: too strong smearing for smaller system

Parameter values used to approach the data

EoS: Chiral model, $\varepsilon_{sw} = 0.5 \text{ GeV/fm}^3$.

\sqrt{s}	τ_0	R_{\perp}	Rz	η/s			
[GeV]	[fm/c]	[fm]	[fm]				
7.7	3.2	1.4	0.5	0.2			
8.8	2.83	1.4	0.5	0.2			
11.5	2.1	1.4	0.5	0.2			
17.3	1.42	1.4	0.5	0.15			
19.6	1.22	1.4	0.5	0.15			
27	1.0	1.2	0.5	0.12			
39	0.9*	1.0	0.7	0.08			
62.4	0.7*	1.0	0.7	0.08			
200	0.4*	1.0	1.0	0.08			
*here we increase τ_0 as compared to							
$ au_0 = rac{2R}{\gamma v_z}.$							

! Actual error bar would require a proper χ^2 fitting of the model parameters (and enormous amount of CPU time).

η/s determination, not estimate? J. Auvinen, analysis at $\sqrt{s_{NN}} = 62.4$ GeV

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 13/18

 η/s determination, not estimate? J. Auvinen, analysis at $\sqrt{s_{NN}} = 19.6$ GeV

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 14/18

EoS dependence: Chiral EoS vs 'EoS Q'

Take same parameters but change the EoS:

- EoS Q increases the average duration of hydro phase, especially at lower collision energies.
- But the difference is smeared by the cascade

EoS dependence: Chiral EoS vs 'EoS Q'

Final multiplicities and rapidity distributions are unchanged.

- EoS Q results in slightly less radial flow \rightarrow mean p_T is decreased.
- The biggest effect is for the elliptic flow.

Summary

3+1D EbE viscous hydro + UrQMD model for $\sqrt{s_{NN}} = 7.7...200$ GeV A+A collisions:

- pre-termal stage: UrQMD
- 3+1D viscous hydrodynamics
- EoS at finite μ_B: Chiral model, EoS Q

Conclusions:

- Adjustment to experimental data suggests $\eta/s = 0.2 \rightarrow 0.08$ when $\sqrt{s} = 7.7 \rightarrow 200$ GeV, modulo initial state (UrQMD) and EoS (Chiral model) used.
 - ▶ Rigorous analysis with emulator is ongoing (by J. Auvinen, Duke Univ.).
- Hydrodynamic evolution is affected by EoS, which leads to change in v_2 . Current projects at INFN Firenze (F. Becattini):
 - Hyperon polarization and vorticity in QGP liquid
 - Multi-fluid hydrodynamics

Backup slides

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 17/18

Strategy to compare to experiment

- Run the model with default values of the parameters: $\eta/s = 0, R_{\perp} = R_{\eta} = 1$ fm, $\varepsilon_{sw} = 0.5$ GeV/fm³, Chiral EoS
- Observe a difference with the experimental data
- Learn how variations of parameters affect the observables in the model¹
- Adjust the parameters at each collision energy to approach the data

Shorter hydro phase \Rightarrow stronger dependence on the initial state

¹see backup slides

Iurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan 17/18

Learning parameter dependence

Response of the observables:

- $T_{\rm eff}$, inverse slope of p_T spectrum
- dN/dy at midrapidity
- *p_T* integrated *v*₂{EP}

to the change of every parameter with respect to its default value.

lurii Karpenko, Hydrodynamic modelling of QCD matter at RHIC Beam Energy Scan

0.09

0.08

0.07

0.05

0.04

06 08

°< 0.06 STAR v₂{EP}

change of R

change of ∈

- e - change of to

16

v₂{EP}, √s=19.6 GeV, 20-30% central

Learning parameter dependence (2)

par. ↑	R_{\perp}	R_z	η/s	τ_0	$\epsilon_{\rm crit}$
$T_{\rm eff}$	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow
dN/dy	1	1	\uparrow	\downarrow	1
<i>V</i> ₂	\downarrow	\uparrow	\downarrow	\downarrow	\downarrow

RHIC BES + top RHIC

The rapidity/pseudorapidity and p_T distributions from SPS/NA49 together with RHIC are reasonably reproduced.