Continuum-coupling effects in heavy meson spectroscopy

Jacopo Ferretti Università di Roma "Sapienza'

TNPI2016 – XV Conference on Theoretical Nuclear Physics in Italy Pisa, April 20-22 2016

Outline

- * Why introducing higher Fock components in QM formalism
- * The Unquenched Quark Model (UQM) formalism
- * Calculation of meson observables in the UQM
- * Charmonium and bottomonium spectra with self-energy corrections
- * The X(3872): quark structure and decays

Introduction of higher Fock components

- * The QM reproduces quite well several observables: magnetic moments, baryon and meson spectra (lower parts), strong couplings
- * Some observables may require corrections due to the coupling to the continuum, e.g. electromagnetic couplings
- Some observables necessarily require coupling to the continuum: strangeness content of nucleon e.m. form factors, flavor asymmetry of nucleon sea
- ★ Coupling to the continuum → Higher Fock components are introduced in meson $(q\overline{q} q\overline{q})$ and baryon $(qqq q\overline{q})$ wave functions via a quark-antiquark pair-creation mechanism

Higher Fock components and meson spectroscopy

- * Potential models reproduce very well meson spectrum (lower part)
- Example: Relativized QM's global fit (isoscalars, vectors, strange, D, B, charmonium, ...) with a single set of parameters

Godfrey and Isgur, PRD 32, 189 (1985)

***** A few exceptions:

State	Exp. Mass [MeV]	Rel. QM Mass [MeV]				
X(3872)	3871.69±0.17	3950				
D ₀ [*] (2400)	2318±29	2398				
D _{s0} *(2317)	2317.7±0.6	2482				
B ₂ [*] (5747)	5743±5	5796				

- * Several interpretations: meson-meson molecules, tetraquarks, quarkonium + continuum components
- * Necessary to estimate main decay modes within different interpretations to distinguish between them

Unquenched quark model (UQM) formalism

* Hadron wave function in the UQM

$$|\psi_A\rangle = \mathcal{N}\left[|A\rangle + \sum_{BC\ell J} \int d\vec{q} |BC\vec{q}\ell J\rangle \frac{\langle BC\vec{q}\ell J|T^{\dagger}|A\rangle}{E_a - E_b - E_c}\right]$$

Valence component $|A\rangle$ + sum over continuum components $|BC\rangle$

* Coupling to continuum provided by ${}^{3}P_{0}$ model (open-flavor decays) $T^{\dagger} = -3\gamma_{0}^{\text{eff}} \int d\vec{p}_{3}d\vec{p}_{4}\delta(\vec{p}_{3} + \vec{p}_{4})C_{34}F_{34}e^{-r_{q}^{2}(\vec{p}_{3} - \vec{p}_{4})^{2}/6}$ $C_{34} = \text{color-singlet WF; }F_{34} = \text{flavor-singlet WF; }\chi_{34} \text{ spin-triplet WF; }b_{3}^{+} \text{ and}$ $\times [\chi_{34} \times \mathcal{Y}_{1}(\vec{p}_{3} - \vec{p}_{4})]_{0}^{(0)}b_{3}^{\dagger}(\vec{p}_{3})d_{4}^{\dagger}(\vec{p}_{4}),$ $C_{34} = \text{color-singlet WF; }F_{34} = \text{flavor-singlet WF; }\lambda_{34} \text{ spin-triplet WF; }b_{3}^{+} \text{ and}$ $d_{4}^{+} = \text{quark and antiquark creation}$ operators

The created quark-antiquark pair (34) has ³P₀ quantum numbers

Quark form factor (created pair not point-like)

Effective paircreation strength γ_0^{eff} (heavy pair-creation suppressed)

Hadron observables in the UQM

* Expectation value of an observable *O*, $\langle \Psi_A | O | \Psi_A \rangle$, on the wave function

$$|\psi_A\rangle = \mathcal{N}\left[|A\rangle + \sum_{BC\ell J} \int d\vec{q} |BC\vec{q}\ell J\rangle \frac{\langle BC\vec{q}\ell J|T^{\dagger}|A\rangle}{E_a - E_b - E_c}\right]$$

Continuum + valence contributions

Santopinto and Bijker, PRC **80**, 065210 (2009); Bijker and Santopinto, PRC **82**, 062202 (2010); Bijker, Ferretti and Santopinto, PRC **85**, 035204 (2012)

Meson spectrum with selfenergy corrections

* Hamiltonian

 $H = H_0 + V$

Bare spectrum (H_0) + coupling to meson-meson continuum (V)

* Bare meson spectrum (E_a) calculated in the relativized QM

$$H_0 = \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + V_{\text{conf}} + V_{\text{hyp}} + V_{\text{so}} \quad \frac{\text{Godfrey and Isgur,}}{\text{PRD 32, 189 (1985)}}$$

* Self-energy corrections calculated in the UQM

$$\Sigma(E_a) = \sum_{BC\ell J} \int_0^\infty q^2 dq \frac{|\langle BC\vec{q}\ell J | T^\dagger | A \rangle|^2}{E_a - E_b - E_c}$$

Ferretti, Galatà, Santopinto and Vassallo, PRC 86, 015204 (2012); Ferretti, Galatà and Santopinto,
PRC 88, 015207 (2013); PRD 90, 054010 (2014); Ferretti and Santopinto PRD 90, 094022 (2014)

- * Physical masses: $M_a = E_a + \Sigma(E_a)$
- Relativized QM parameters fitted to experimental masses
 UQM parameters fitted to open-flavor strong decays

Charmonium spectrum with self-energy corrections

* Ferretti, Galatà and Santopinto, PRC 88, 015207 (2013)

$m_c = 1.562 \text{ GeV}$	$b = 0.1477 \text{ GeV}^2$	$\alpha_s^{\rm cr} = 0.600$
$\Lambda=0.200~{\rm GeV}$	c = 0.069 GeV	$\sigma_0 = 1.463 \text{ GeV}$
s = 2.437	$\epsilon_c = -0.2500$	$\epsilon_t = 0.0300$
$\epsilon_{so(V)} = -0.0314$	$\epsilon_{so(S)} = 0.0637$	

Relativized QM parameters

Parameter	Value
γ ₀	0.510
α	0.500 GeV
r_{q}	0.335 fm
m_n	0.330 GeV
m _s	0.550 GeV
m_c	1.50 GeV

³P₀ model parameters

State	Exp. Mass [MeV]	Rel. QM Mass [MeV]	UQM Mass [MeV]				
X(3872)	3871.69±0.17	3950	3908				

Charmonium spectrum with self-energy corrections

* Ferretti, Galatà and Santopinto, PRC 88, 015207 (2013)

State	J^{PC}	DD	$ar{D}D^* \ Dar{D}^*$	$ar{D}^*D^*$	$D_s \bar{D}_s$	$D_s ar{D}_s^* \ ar{D}_s D_s^*$	$D_s^* ar{D}_s^*$	$\eta_c \eta_c$	$\eta_c J/\Psi$	$J/\Psi J/\Psi$	$\Sigma(E_a)$	E _a	M_a	M _{expt} .
$\overline{\eta_c(1^1S_0)}$	0^{-+}	_	-34	-31	_	-8	-8	_	_	-2	-83	3062	2979	2980
$J/\Psi(1^{3}S_{1})$	1	-8	-27	-41	-2	-6	-10	-	-2	_	-96	3233	3137	3097
$\eta_c(2^1S_0)$	0^{-+}	-	-52	-41	-	-9	-8	_	-	-1	-111	3699	3588	3637
$\Psi(2^3S_1)$	1	-18	-42	-54	-2	-7	-10	_	-1	-	-134	3774	3640	3686
$h_c(1^1P_1)$	1^{+-}	_	-59	-48	_	-11	-10	_	-2	-	-130	3631	3501	3525
$\chi_{c0}(1^3P_0)$	0^{++}	-31	-	-72	-4	_	-15	0	-	-3	-125	3555	3430	3415
$\chi_{c1}(1^3P_1)$	1^{++}	-	-54	-53	-	-9	-11	_	-	-2	-129	3623	3494	3511
$\chi_{c2}(1^3P_2)$	2^{++}	-17	-40	-57	-3	-8	-10	0	-	-2	-137	3664	3527	3556
$h_c(2^1P_1)$	1^{+-}	-	-55	-76	—	-12	-8	—	-1	-	-152	4029	3877	_
$\chi_{c0}(2^3P_0)$	0^{++}	-23	-	-86	-1	_	-13	0	-	-1	-124	3987	3863	_
$\chi_{c1}(2^3P_1)$	1^{++}	-	-30	-66	-	-11	-9	—	-	-1	-117	4025	3908	3872
$\chi_{c2}(2^3P_2)$	2^{++}	-2	-42	-54	-4	-8	-10	0	-	-1	-121	4053	3932	3927
$\eta_{c2}(1^1D_2)$	2^{-+}	-	-99	-62	—	-12	-10	—	-	-1	-184	3925	3741	_
$\Psi(3770)(1^{3}D_{1})$	1	-11	-40	-84	-4	-2	-16	—	0	-	-157	3907	3750	3775
$\Psi_2(1^3D_2)$	2	-	-106	-61	-	-11	-11	—	-1	-	-190	3926	3736	-
$\Psi_3(1^3D_3)$	3	-25	-49	-88	-4	-8	-10	_	-1	-	-185	3936	3751	-

X(3872). Radiative transitions

- * Ferretti, Galatà and Santopinto, PRD 90, 054010 (2014)
- * QM calculation with relativized QM wave functions

$$\Gamma_{E1} = \frac{4}{3} C_{fi} \delta_{SS'} e_c^2 \alpha |\langle \psi_f | r | \psi_i \rangle|^2 E_{\gamma}^3 \frac{E_f^{(cc)}}{M_i^{(c\bar{c})}}$$

$$3 \int I^{c} S S^{c} C d^{c} (T f) f^{c} T f^{c} T f^{c} = \max(L, L')(2J'+1) \begin{cases} L' & J' & S \\ J & L & 1 \end{cases}^{2}$$

$$C_{fi} = \max(L, L')(2J'+1) \begin{cases} L' & J' & S \\ J & L & 1 \end{cases}^{2}$$

$$C_{fi} = \max(L, L')(2J'+1) \begin{cases} L' & J' & S \\ J & L & 1 \end{cases}^{2}$$

$$C_{fi} = \max(L, L')(2J'+1) \begin{cases} L' & J' & S \\ J & L & 1 \end{cases}^{2}$$

$$C_{fi} = \max(L, L')(2J'+1) \begin{cases} L' & J' & S \\ J & L & 1 \end{cases}^{2}$$

* Results

			Μ	olecular mode	l Molecu	Molecule + quarkonium component			
Transition	E_{γ} (MeV)	$\Gamma_{c\bar{c}}$ (KeV) present paper	$\Gamma_{D\bar{D}^*}$ (KeV) Ref. [7]	$\Gamma_{D\bar{D}^*}$ (KeV) Ref. [8]	$\Gamma_{D\bar{D}^*} (\text{KeV})$ Ref. [63]	$\Gamma_{c\bar{c}+D\bar{D}^*} \text{ (KeV)}$ Ref. [64]	Γ _{exp} (KeV) PDG [43]		
$\overline{X(3872)} \rightarrow J/\Psi\gamma$	697	11	8	64–190	125–251	2–17	≈7		
$X(3872) \rightarrow \Psi(2S)\gamma$	181	70	0.03			7–59	≈36		
$X(3872) \rightarrow \Psi(3770)\gamma$	101	4.0	0						
$\underline{X(3872)} \rightarrow \Psi_2(1^3 D_2) \gamma$	34	0.35	0						

[7] Swanson, Phys. Lett. B **588**, 189 (2004); [8] Aceti, Molina and Oset, PRD **86**, 113007 (2012); Dong *et al.*, PRD **77**, 094013 (2008); Dong *et al.*, J. Phys. G **38**, 015001 (2011).

 $\langle \psi_f | r | \psi_i \rangle = \int_0^\infty r^2 dr \psi^*_{n_f, L_f}(r) r \psi_{n_i, L_i}(r)$

X(3872). Open-flavor decays

- * Ferretti, Galatà and Santopinto, PRD 90, 054010 (2014)
- ★ Consider the process $X(3872) \rightarrow D^0(\overline{D}{}^0\pi^0)_{\overline{D}{}^{0*}}$
- * Quasi two-body decay width: Phase-space available for D⁰* to decay into D⁰\pi⁰ $\Gamma_{X(3872)}^{QTB} = \int_{0}^{q_{\text{max}}} dqq^{2} \frac{2\sum_{\ell,J} |\langle D^{0}\bar{D}^{0*}\vec{q}\ell J|T^{\dagger}|X(3872)\rangle|^{2}\Gamma_{\bar{D}^{0*}\to\bar{D}^{0}\pi^{0}}(q)}{[M_{a}-E_{b}(q)-E_{c}(q)]^{2}+\frac{1}{4}\Gamma_{\bar{D}^{0*}}^{2}}$

 $\langle D^0 \bar{D}^{0*} \vec{q}_0 \ell J | T^{\dagger} | X(3872) \rangle \colon X(3872) \to D^0 \bar{D}^{0*}$ decay width

Factor of 2: X(3872) decays into $D^0 \overline{D}^{0*}$ or $\overline{D}^0 D^{0*}$

 $\Gamma_{\bar{D}^{0*}\to\bar{D}^{0}\pi^{0}}(q)$: energy-dependent width of unstable \bar{D}^{0*} to decay into $\bar{D}^{0}\pi^{0}$ Result: $\Gamma_{X(3872)\to D(\bar{D}\pi)_{\bar{D}^{*}}} = 0.54 - 0.70 \text{ MeV}$ in accordance with $\Gamma_{X(3872)} < 1.2 \text{ MeV}$ (PDG)

X(3872). Continuum components

* Ferretti, Galatà and Santopinto, PRD 90, 054010 (2014)

* X(3872) WF has a 45% charmonium component PLUS

$Dar{D}^*$	$D^*ar{D}^*$	$D_s ar{D}_s^*$	$D_s^*ar{D}_s^*$	$J/\Psi J/\Psi$
0.13	0.35	0.06	0.01	0.0003

continuum components

* Continuum components calculated via

$$P_a^{BC} = \sum_{BC\ell J} \int_0^\infty q^2 dq \frac{|\langle BC\vec{q}\ell J | T^\dagger | A \rangle|^2}{(E_a - E_b - E_c)^2 + \frac{1}{4}\Gamma_{D^*}^2}$$

X(3872). Hidden-flavor decays

- * Ferretti, Guerrieri, Pilloni and Santopinto, in preparation
- * X(3872) \rightarrow J/ $\Psi \omega$ and J/ $\Psi \rho$ hidden-flavor decays calculated in the UQM formalism + meson-meson low-energy scattering in a non-relativistic potential
- * UQM provides weight of $D^0 \overline{D}^{0*}$ component in X(3872)'s WF
- * $D^0 \overline{D}^{0*}$ component dissociates in J/ $\Psi \omega$ or J/ $\Psi \rho$
- * Dissociation matrix elements calculated as low-energy scattering of $D^0 \overline{D}^{0*}$ in a nonrelativistic potential model

Barnes and Swanson, PRD 46, 131 (1992); Barnes et al., PRC 68, 014903 (2003).

X(3872). Hidden-flavor decays

* Ferretti, Guerrieri, Pilloni and Santopinto, in preparation

***** Diagrams:

***** Results:

Transition	Γ^{UQM} (KeV)	Γ^{exp} (KeV)
$X(3872) \rightarrow J/\Psi\rho$ $X(3872) \rightarrow J/\Psi\omega$	10 6	$\approx 31 \\ \approx 22$

Source	Value of $\frac{\Gamma_{X(3872) \to J/\Psi}}{\Gamma_{X(3872) \to J/\Psi}}$
Experiment [3] Ref. [25] Ref. [37] Ref. [50] Ref. [51] Ref. [52] Present work	$\begin{array}{c} 0.8 \pm 0.3 \\ \approx 2 \\ 1.0 \pm 0.3 \\ 5.5 - 6.6 \\ 0.42 \\ 1.27 - 2.24 \\ 0.6 \end{array}$

Bottomonium spectrum with self-energy corrections

* Ferretti and Santopinto, PRD 90, 094022 (2014)

$m_{b} = 5.024 \text{ GeV}$	$b = 0.156 \text{ GeV}^2$	$\alpha_{\rm s}^{\rm cr} = 0.60$
$\Lambda = 0.200 \text{ GeV}$	c = -0.280 GeV	$\sigma_0 = 0.146 \text{ GeV}$
s = 4.36	$\epsilon_c = -0.242$	$\epsilon_t = 0.030$
$\epsilon_{\mathrm{so}(V)} = -0.053$	$\epsilon_{\mathrm{so}(S)} = 0.019$	
D 1 (' '	101	1

Relativized QM parameters

Parameter	Value
γ ₀	0.732
α	0.500 GeV
r_a	0.335 fm
m_n	0.330 GeV
m_s	0.550 GeV
m _c	1.50 GeV
m_b	4.70 GeV

³P₀ model parameters

* Threshold effects for $\chi_b(3P)$ states

Ferretti, Galatà and Santopinto, PRD 90, 054010 (2014)

Bottomonium spectrum with self-energy corrections

* Ferretti and Santopinto, PRD 90, 094022 (2014)

State	J^{PC}	$B\bar{B}$	$B\bar{B}^*\ \bar{B}B^*$	$B^*\bar{B}^*$	$B_s \bar{B}_s$	$B_s \bar{B}_s^* \ \bar{B}_s B_s^*$	$B_s^* \bar{B}_s^*$	$B_c \bar{B}_c$	$B_c \bar{B}_c^* \ \bar{B}_c B_c^*$	$B_c^* \bar{B}_c^*$	$\eta_b \eta_b$	$\eta_b \Upsilon$	ΥΥ	$\Sigma(E_a)$	E_a	M_{a}	$M_{\rm exp}$.
$\eta_b(1^1S_0)$	0-+		-26	-26	_	-5	-5	_	-1	-1	_	_	0	-64	9455	9391	9391
$\Upsilon(1^3S_1)$	1	-5	-19	-32	-1	-4	-7	0	0	-1		0		-69	9558	9489	9460
$\eta_b(2^1S_0)$	0^{-+}		-43	-41	—	-8	-7	—	-1	-1	—	—	0	-101	10081	9980	9999
$\Upsilon(2^3S_1)$	1	-8	-31	-51	-2	-6	-9	0	0	-1	—	0	—	-108	10130	10022	10023
$\eta_b(3^1S_0)$	0^{-+}		-59	-52	—	-8	-8	—	-1	-1	—	—	0	-129	10467	10338	—
$\Upsilon(3^3S_1)$	1	-14	-45	-68	-2	-6	-10	0	0	-1	—	0	—	-146	10504	10358	10355
$h_b(1^1P_1)$	1+-		-49	-47	—	-9	-8	—	-1	-1	—	0	—	-115	10000	9885	9899
$\chi_{b0}(1^3P_0)$	0^{++}	-22	—	-69	-3	—	-13	0	—	-1	0	—	0	-108	9957	9849	9859
$\chi_{b1}(1^3P_1)$	1^{++}	—	-46	-49	—	-8	-9	—	-1	-1	—	—	0	-114	9993	9879	9893
$\chi_{b2}(1^3P_2)$	2^{++}	-11	-32	-55	-2	-6	-9	0	-1	-1	0	—	0	-117	10017	9900	9912
$h_b(2^1P_1)$	1^{+-}	—	-66	-59	—	-10	-9	—	-1	-1	—	0		-146	10393	10247	10260
$\chi_{b0}(2^3P_0)$	0^{++}	-33		-85	-4		-14	0		-1	0		0	-137	10363	10226	10233
$\chi_{b1}(2^3P_1)$	1^{++}	—	-63	-60	—	-9	-10		-1	-1	—		0	-144	10388	10244	10255
$\chi_{b2}(2^3P_2)$	2^{++}	-16	-42	-72	-2	-6	-10	0	0	-1	0		0	-149	10406	10257	10269
$h_b(3^1P_1)$	1+-	—	-18	-73	—	-11	-10		-1	-1	—	0	_	-114	10705	10591	—
$\chi_{b0}(3^3P_0)$	0^{++}	-4		-160	-6		-15	0		-1	0		0	-186	10681	10495	—
$\chi_{b1}(3^3P_1)$	1^{++}	—	-25	-74	—	-11	-10		0	-1	—		0	-121	10701	10580	—
$\chi_{b2}(3^3P_2)$	2^{++}	-19	-16	-79	-3	-8	-12	0	0	-1	0		0	-138	10716	10578	—
$\Upsilon_2(1^1D_2)$	2-+	—	-72	-66	—	-11	-10		-1	-1	—		0	-161	10283	10122	—
$\Upsilon(1^3D_1)$	1	-24	-22	-90	-3	-3	-16	0	0	-1	—	0	—	-159	10271	10112	—
$\Upsilon_2(1^3D_2)$	2	—	-70	-68	—	-10	-11	—	-1	-1	—	0	—	-161	10282	10121	10164
$\Upsilon_3(1^3D_3)$	3	-18	-43	-78	-3	-8	-11	0	-1	-1	—	0		-163	10290	10127	—

Conclusion

- * Importance of introducing higher Fock components in QM formalism
- * The Unquenched Quark Model (UQM)
- * Calculation of meson observables in the UQM
- * Charmonium and bottomonium spectra with self-energy corrections
- * The X(3872): quark structure and decays

Thank you for your attention!