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Outline 
!  Why introducing higher Fock components in QM formalism 

!  The Unquenched Quark Model (UQM) formalism 

!  Calculation of meson observables in the UQM 

!  Charmonium and bottomonium spectra with self-energy corrections 

!  The X(3872): quark structure and decays 
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Introduction of higher Fock 
components 

!  The QM reproduces quite well several observables: magnetic 
moments, baryon and meson spectra (lower parts), strong couplings 

!  Some observables may require corrections due to the coupling to the 
continuum, e.g. electromagnetic couplings  

!  Some observables necessarily require coupling to the continuum: 
strangeness content of nucleon e.m. form factors, flavor asymmetry 
of nucleon sea 

!  Coupling to the continuum ! Higher Fock components are 
introduced in meson (            )  and  baryon (              ) wave functions 
via a quark-antiquark pair-creation mechanism 

qqq− qqqq − qq

2 



Higher Fock components 
and meson spectroscopy 

!  Potential models reproduce very well meson spectrum (lower part) 

!  Example: Relativized QM’s global fit (isoscalars, vectors, strange, D, 
B, charmonium, …) with a single set of parameters 

           Godfrey and Isgur, PRD 32, 189 (1985) 

!  A few exceptions:  

 

!  Several interpretations: meson-meson molecules, tetraquarks, 
quarkonium + continuum components 

!  Necessary to estimate main decay modes within different 
interpretations to distinguish between them 
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State% Exp.%Mass%[MeV]% Rel.%QM%Mass%[MeV]%

X(3872)% 3871.69±0.17* 3950*

D0
*(2400)% 2318±29* 2398*

Ds0
*(2317)% 2317.7±0.6* 2482*

B2
*(5747)% 5743±5* 5796*



Unquenched quark model 
(UQM) formalism 

!  Hadron wave function in the UQM 

 

 

       Valence component       + sum over continuum components  

!  Coupling to continuum provided by 3P0 model (open-flavor decays) 

 

       The created quark-antiquark pair (34) has 3P0 quantum numbers 

       Quark form factor (created pair not point-like)   

       Effective paircreation strength γ0
eff (heavy pair-creation suppressed) 

        

free parameters and their sum with the self-energies fitted to
the physical masses of the mesons of interest, thus losing
predictive power, here we perform an explicit calculation of
the bare energies within a potential model [5]. Specifically,
the new results we provide in this paper are as follows:
(1) the first systematic unquenching of a relativistic
bottomonium quark model; (2) the first discussion of the
possibility of observing continuum effects in the χbð3PÞ
system; and (3) the first systematic calculation of the
open-bottom strong decay widths of bb̄ states within the
3P0 model.
In Sec. I, we discuss the previous attempts made to

unquench the quark model; in Sec. II, we recall the main
ingredients of our UQM formalism and, in particular, in
Secs. II B and II C the main modifications we introduced in
the 3P0 operator (mainly the use of an effective 3P0 strength
that suppresses heavy quark pair creation); in Sec. III, we
show our results for the open-bottom strong decay widths
(Sec. III A) and for the bottomonium spectrum with self-
energy corrections (Sec. III B) and finally discuss the nature
of the χbð3PÞ system (Sec. III C).

II. FORMALISM

A. Self-energies

The Hamiltonian we consider,

H ¼ H0 þ V; ð1Þ

is the sum of a first part, H0, acting only in the bare meson
space, and a second part, V, which can couple a meson state
jAi to the meson-meson continuum jBCi.
The dispersive equation, resulting from a nonrelativistic

Schrödinger equation, is

ΣðEaÞ ¼
X

BC

Z
∞

0
q2dq

jVa;bcðqÞj2

Ea − Ebc
; ð2Þ

where the bare energy Ea satisfies

Ma ¼ Ea þ ΣðEaÞ: ð3Þ

Ma is the physical mass of the meson A, with self-energy
ΣðEaÞ. In Eq. (2) one has to take the contributions from
various meson-meson intermediate states jBCi into account.
These channels, with relative momentum q between B and
C, have quantum numbers Jbc and l coupled to the total
angular momentum of the initial state jAi. Va;bc stands for
the coupling due to the operator V between the intermediate
state jBCi and the unperturbed quark-antiquark wave
function of the meson A; Ebc ¼ Eb þ Ec is the total energy
of the channel BC, calculated in the rest frame. Finally, if the
bare energy of the meson A, Ea, is greater than the threshold
Ebc, the self-energy of Eq. (2) contains poles and is a
complex number: in this case one has real loops instead of
virtual ones.

Since the physics of the dynamics depends on the matrix
elements Va;bcðqÞ, one has to choose a precise form for the
transition operator, V, which is responsible for the creation
of qq̄ pairs. Our choice is that of the UQM of Refs. [55,73].

B. An unquenched quark model for bottomonia

In the unquenched quark model for mesons [55,73] the
effects of quark-antiquark pairs are introduced explicitly
into the quark model through a QCD-inspired 3P0 pair-
creation mechanism. This approach, which is a generali-
zation of the unitarized quark model by Törnqvist and
Zenczykowski [56] (see also Ref. [75]) is based on a QM,
to which qq̄ pairs with vacuum quantum numbers are added
as a perturbation and where the pair-creation mechanism is
inserted at the quark level.
Under these assumptions, the meson wave function is

made up of a zeroth order quark-antiquark configuration
plus a sum over the possible higher Fock components, due
to the creation of 3P0 qq̄ pairs. Thus, one has

∣ψAi ¼ N
!
∣Aiþ

X

BClJ

Z
d~q∣BC~qlJi hBC~qlJ∣T

†∣Ai
Ea − Eb − Ec

"
;

ð4Þ

where T† stands for the 3P0 quark-antiquark pair-creation
operator [55,73], which depends on an effective pair-
creation strength γeff0 , A is the meson, B and C represent

the intermediate state mesons, and Ea, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ q2
q

and Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ q2
p

are the corresponding energies, ~q
and l are the relative radial momentum and orbital angular
momentum between B and C, and ~J ¼ ~Jb þ ~Jc þ ~l is the
total angular momentum. The wave functions of the
mesons A, B, and C can be written as harmonic oscillator
wave functions, which depend on a single oscillator
parameter α ¼ 0.5 GeV.
The 3P0 quark-antiquark pair-creation operator, T†, is

given by [55,73]

T† ¼ −3γeff0

Z
d~p3d~p4δð~p3 þ ~p4ÞC34F34e−r

2
qð~p3−~p4Þ2=6

× ½χ34 × Y1ð~p3 − ~p4Þ&
ð0Þ
0 b†3ð~p3Þd†4ð~p4Þ; ð5Þ

where b†3ð~p3Þ and d†4ð~p4Þ are the creation operators for a
quark and an antiquark with momenta ~p3 and ~p4, respec-
tively. The qq̄ pair is characterized by a color singlet wave
function C34, a flavor singlet wave function F34, a spin
triplet wave function χ34 with spin S ¼ 1 and a solid
spherical harmonic Y1ð~p3 − ~p4Þ, which indicates that the
quark and antiquark are in a relative P wave. Since the
operator T† creates a pair of constituent quarks with an
effective size, the pair-creation point has to be smeared out
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free parameters and their sum with the self-energies fitted to
the physical masses of the mesons of interest, thus losing
predictive power, here we perform an explicit calculation of
the bare energies within a potential model [5]. Specifically,
the new results we provide in this paper are as follows:
(1) the first systematic unquenching of a relativistic
bottomonium quark model; (2) the first discussion of the
possibility of observing continuum effects in the χbð3PÞ
system; and (3) the first systematic calculation of the
open-bottom strong decay widths of bb̄ states within the
3P0 model.
In Sec. I, we discuss the previous attempts made to

unquench the quark model; in Sec. II, we recall the main
ingredients of our UQM formalism and, in particular, in
Secs. II B and II C the main modifications we introduced in
the 3P0 operator (mainly the use of an effective 3P0 strength
that suppresses heavy quark pair creation); in Sec. III, we
show our results for the open-bottom strong decay widths
(Sec. III A) and for the bottomonium spectrum with self-
energy corrections (Sec. III B) and finally discuss the nature
of the χbð3PÞ system (Sec. III C).

II. FORMALISM

A. Self-energies

The Hamiltonian we consider,

H ¼ H0 þ V; ð1Þ

is the sum of a first part, H0, acting only in the bare meson
space, and a second part, V, which can couple a meson state
jAi to the meson-meson continuum jBCi.
The dispersive equation, resulting from a nonrelativistic

Schrödinger equation, is

ΣðEaÞ ¼
X

BC

Z
∞

0
q2dq

jVa;bcðqÞj2

Ea − Ebc
; ð2Þ

where the bare energy Ea satisfies

Ma ¼ Ea þ ΣðEaÞ: ð3Þ

Ma is the physical mass of the meson A, with self-energy
ΣðEaÞ. In Eq. (2) one has to take the contributions from
various meson-meson intermediate states jBCi into account.
These channels, with relative momentum q between B and
C, have quantum numbers Jbc and l coupled to the total
angular momentum of the initial state jAi. Va;bc stands for
the coupling due to the operator V between the intermediate
state jBCi and the unperturbed quark-antiquark wave
function of the meson A; Ebc ¼ Eb þ Ec is the total energy
of the channel BC, calculated in the rest frame. Finally, if the
bare energy of the meson A, Ea, is greater than the threshold
Ebc, the self-energy of Eq. (2) contains poles and is a
complex number: in this case one has real loops instead of
virtual ones.

Since the physics of the dynamics depends on the matrix
elements Va;bcðqÞ, one has to choose a precise form for the
transition operator, V, which is responsible for the creation
of qq̄ pairs. Our choice is that of the UQM of Refs. [55,73].

B. An unquenched quark model for bottomonia

In the unquenched quark model for mesons [55,73] the
effects of quark-antiquark pairs are introduced explicitly
into the quark model through a QCD-inspired 3P0 pair-
creation mechanism. This approach, which is a generali-
zation of the unitarized quark model by Törnqvist and
Zenczykowski [56] (see also Ref. [75]) is based on a QM,
to which qq̄ pairs with vacuum quantum numbers are added
as a perturbation and where the pair-creation mechanism is
inserted at the quark level.
Under these assumptions, the meson wave function is

made up of a zeroth order quark-antiquark configuration
plus a sum over the possible higher Fock components, due
to the creation of 3P0 qq̄ pairs. Thus, one has

∣ψAi ¼ N
!
∣Aiþ

X

BClJ

Z
d~q∣BC~qlJi hBC~qlJ∣T

†∣Ai
Ea − Eb − Ec

"
;

ð4Þ

where T† stands for the 3P0 quark-antiquark pair-creation
operator [55,73], which depends on an effective pair-
creation strength γeff0 , A is the meson, B and C represent

the intermediate state mesons, and Ea, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ q2
q

and Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ q2
p

are the corresponding energies, ~q
and l are the relative radial momentum and orbital angular
momentum between B and C, and ~J ¼ ~Jb þ ~Jc þ ~l is the
total angular momentum. The wave functions of the
mesons A, B, and C can be written as harmonic oscillator
wave functions, which depend on a single oscillator
parameter α ¼ 0.5 GeV.
The 3P0 quark-antiquark pair-creation operator, T†, is

given by [55,73]

T† ¼ −3γeff0

Z
d~p3d~p4δð~p3 þ ~p4ÞC34F34e−r

2
qð~p3−~p4Þ2=6

× ½χ34 × Y1ð~p3 − ~p4Þ&
ð0Þ
0 b†3ð~p3Þd†4ð~p4Þ; ð5Þ

where b†3ð~p3Þ and d†4ð~p4Þ are the creation operators for a
quark and an antiquark with momenta ~p3 and ~p4, respec-
tively. The qq̄ pair is characterized by a color singlet wave
function C34, a flavor singlet wave function F34, a spin
triplet wave function χ34 with spin S ¼ 1 and a solid
spherical harmonic Y1ð~p3 − ~p4Þ, which indicates that the
quark and antiquark are in a relative P wave. Since the
operator T† creates a pair of constituent quarks with an
effective size, the pair-creation point has to be smeared out
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C34 = color-singlet WF; F34 = flavor-
singlet WF; χ34 spin-triplet WF; b3

+ and 
d4

+ = quark and antiquark creation 
operators 



Hadron observables in the 
UQM 

!  Expectation value of an observable O, <ΨA|O|ΨA>, on the wave 
function 

 

 

!  Continuum + valence contributions  

        Santopinto and Bijker, PRC 80, 065210 (2009); Bijker and Santopinto,  

        PRC 82, 062202 (2010); Bijker, Ferretti and Santopinto, PRC 85,  

        035204 (2012) 
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free parameters and their sum with the self-energies fitted to
the physical masses of the mesons of interest, thus losing
predictive power, here we perform an explicit calculation of
the bare energies within a potential model [5]. Specifically,
the new results we provide in this paper are as follows:
(1) the first systematic unquenching of a relativistic
bottomonium quark model; (2) the first discussion of the
possibility of observing continuum effects in the χbð3PÞ
system; and (3) the first systematic calculation of the
open-bottom strong decay widths of bb̄ states within the
3P0 model.
In Sec. I, we discuss the previous attempts made to

unquench the quark model; in Sec. II, we recall the main
ingredients of our UQM formalism and, in particular, in
Secs. II B and II C the main modifications we introduced in
the 3P0 operator (mainly the use of an effective 3P0 strength
that suppresses heavy quark pair creation); in Sec. III, we
show our results for the open-bottom strong decay widths
(Sec. III A) and for the bottomonium spectrum with self-
energy corrections (Sec. III B) and finally discuss the nature
of the χbð3PÞ system (Sec. III C).

II. FORMALISM

A. Self-energies

The Hamiltonian we consider,

H ¼ H0 þ V; ð1Þ

is the sum of a first part, H0, acting only in the bare meson
space, and a second part, V, which can couple a meson state
jAi to the meson-meson continuum jBCi.
The dispersive equation, resulting from a nonrelativistic

Schrödinger equation, is

ΣðEaÞ ¼
X

BC

Z
∞

0
q2dq

jVa;bcðqÞj2

Ea − Ebc
; ð2Þ

where the bare energy Ea satisfies

Ma ¼ Ea þ ΣðEaÞ: ð3Þ

Ma is the physical mass of the meson A, with self-energy
ΣðEaÞ. In Eq. (2) one has to take the contributions from
various meson-meson intermediate states jBCi into account.
These channels, with relative momentum q between B and
C, have quantum numbers Jbc and l coupled to the total
angular momentum of the initial state jAi. Va;bc stands for
the coupling due to the operator V between the intermediate
state jBCi and the unperturbed quark-antiquark wave
function of the meson A; Ebc ¼ Eb þ Ec is the total energy
of the channel BC, calculated in the rest frame. Finally, if the
bare energy of the meson A, Ea, is greater than the threshold
Ebc, the self-energy of Eq. (2) contains poles and is a
complex number: in this case one has real loops instead of
virtual ones.

Since the physics of the dynamics depends on the matrix
elements Va;bcðqÞ, one has to choose a precise form for the
transition operator, V, which is responsible for the creation
of qq̄ pairs. Our choice is that of the UQM of Refs. [55,73].

B. An unquenched quark model for bottomonia

In the unquenched quark model for mesons [55,73] the
effects of quark-antiquark pairs are introduced explicitly
into the quark model through a QCD-inspired 3P0 pair-
creation mechanism. This approach, which is a generali-
zation of the unitarized quark model by Törnqvist and
Zenczykowski [56] (see also Ref. [75]) is based on a QM,
to which qq̄ pairs with vacuum quantum numbers are added
as a perturbation and where the pair-creation mechanism is
inserted at the quark level.
Under these assumptions, the meson wave function is

made up of a zeroth order quark-antiquark configuration
plus a sum over the possible higher Fock components, due
to the creation of 3P0 qq̄ pairs. Thus, one has

∣ψAi ¼ N
!
∣Aiþ

X

BClJ

Z
d~q∣BC~qlJi hBC~qlJ∣T

†∣Ai
Ea − Eb − Ec

"
;

ð4Þ

where T† stands for the 3P0 quark-antiquark pair-creation
operator [55,73], which depends on an effective pair-
creation strength γeff0 , A is the meson, B and C represent

the intermediate state mesons, and Ea, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ q2
q

and Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ q2
p

are the corresponding energies, ~q
and l are the relative radial momentum and orbital angular
momentum between B and C, and ~J ¼ ~Jb þ ~Jc þ ~l is the
total angular momentum. The wave functions of the
mesons A, B, and C can be written as harmonic oscillator
wave functions, which depend on a single oscillator
parameter α ¼ 0.5 GeV.
The 3P0 quark-antiquark pair-creation operator, T†, is

given by [55,73]

T† ¼ −3γeff0

Z
d~p3d~p4δð~p3 þ ~p4ÞC34F34e−r

2
qð~p3−~p4Þ2=6

× ½χ34 × Y1ð~p3 − ~p4Þ&
ð0Þ
0 b†3ð~p3Þd†4ð~p4Þ; ð5Þ

where b†3ð~p3Þ and d†4ð~p4Þ are the creation operators for a
quark and an antiquark with momenta ~p3 and ~p4, respec-
tively. The qq̄ pair is characterized by a color singlet wave
function C34, a flavor singlet wave function F34, a spin
triplet wave function χ34 with spin S ¼ 1 and a solid
spherical harmonic Y1ð~p3 − ~p4Þ, which indicates that the
quark and antiquark are in a relative P wave. Since the
operator T† creates a pair of constituent quarks with an
effective size, the pair-creation point has to be smeared out
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Meson spectrum with self-
energy corrections 

!  Hamiltonian 

       Bare spectrum (H0) + coupling to meson-meson continuum (V) 

!  Bare meson spectrum (Ea) calculated in the relativized QM 

 

!  Self-energy corrections calculated in the UQM 

!  Physical masses:  

!  Relativized QM parameters fitted to experimental masses 

        UQM parameters fitted to open-flavor strong decays 

free parameters and their sum with the self-energies fitted to
the physical masses of the mesons of interest, thus losing
predictive power, here we perform an explicit calculation of
the bare energies within a potential model [5]. Specifically,
the new results we provide in this paper are as follows:
(1) the first systematic unquenching of a relativistic
bottomonium quark model; (2) the first discussion of the
possibility of observing continuum effects in the χbð3PÞ
system; and (3) the first systematic calculation of the
open-bottom strong decay widths of bb̄ states within the
3P0 model.
In Sec. I, we discuss the previous attempts made to

unquench the quark model; in Sec. II, we recall the main
ingredients of our UQM formalism and, in particular, in
Secs. II B and II C the main modifications we introduced in
the 3P0 operator (mainly the use of an effective 3P0 strength
that suppresses heavy quark pair creation); in Sec. III, we
show our results for the open-bottom strong decay widths
(Sec. III A) and for the bottomonium spectrum with self-
energy corrections (Sec. III B) and finally discuss the nature
of the χbð3PÞ system (Sec. III C).

II. FORMALISM

A. Self-energies

The Hamiltonian we consider,

H ¼ H0 þ V; ð1Þ

is the sum of a first part, H0, acting only in the bare meson
space, and a second part, V, which can couple a meson state
jAi to the meson-meson continuum jBCi.
The dispersive equation, resulting from a nonrelativistic

Schrödinger equation, is

ΣðEaÞ ¼
X

BC

Z
∞

0
q2dq

jVa;bcðqÞj2

Ea − Ebc
; ð2Þ

where the bare energy Ea satisfies

Ma ¼ Ea þ ΣðEaÞ: ð3Þ

Ma is the physical mass of the meson A, with self-energy
ΣðEaÞ. In Eq. (2) one has to take the contributions from
various meson-meson intermediate states jBCi into account.
These channels, with relative momentum q between B and
C, have quantum numbers Jbc and l coupled to the total
angular momentum of the initial state jAi. Va;bc stands for
the coupling due to the operator V between the intermediate
state jBCi and the unperturbed quark-antiquark wave
function of the meson A; Ebc ¼ Eb þ Ec is the total energy
of the channel BC, calculated in the rest frame. Finally, if the
bare energy of the meson A, Ea, is greater than the threshold
Ebc, the self-energy of Eq. (2) contains poles and is a
complex number: in this case one has real loops instead of
virtual ones.

Since the physics of the dynamics depends on the matrix
elements Va;bcðqÞ, one has to choose a precise form for the
transition operator, V, which is responsible for the creation
of qq̄ pairs. Our choice is that of the UQM of Refs. [55,73].

B. An unquenched quark model for bottomonia

In the unquenched quark model for mesons [55,73] the
effects of quark-antiquark pairs are introduced explicitly
into the quark model through a QCD-inspired 3P0 pair-
creation mechanism. This approach, which is a generali-
zation of the unitarized quark model by Törnqvist and
Zenczykowski [56] (see also Ref. [75]) is based on a QM,
to which qq̄ pairs with vacuum quantum numbers are added
as a perturbation and where the pair-creation mechanism is
inserted at the quark level.
Under these assumptions, the meson wave function is

made up of a zeroth order quark-antiquark configuration
plus a sum over the possible higher Fock components, due
to the creation of 3P0 qq̄ pairs. Thus, one has

∣ψAi ¼ N
!
∣Aiþ

X

BClJ

Z
d~q∣BC~qlJi hBC~qlJ∣T

†∣Ai
Ea − Eb − Ec

"
;

ð4Þ

where T† stands for the 3P0 quark-antiquark pair-creation
operator [55,73], which depends on an effective pair-
creation strength γeff0 , A is the meson, B and C represent

the intermediate state mesons, and Ea, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ q2
q

and Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ q2
p

are the corresponding energies, ~q
and l are the relative radial momentum and orbital angular
momentum between B and C, and ~J ¼ ~Jb þ ~Jc þ ~l is the
total angular momentum. The wave functions of the
mesons A, B, and C can be written as harmonic oscillator
wave functions, which depend on a single oscillator
parameter α ¼ 0.5 GeV.
The 3P0 quark-antiquark pair-creation operator, T†, is

given by [55,73]

T† ¼ −3γeff0

Z
d~p3d~p4δð~p3 þ ~p4ÞC34F34e−r

2
qð~p3−~p4Þ2=6

× ½χ34 × Y1ð~p3 − ~p4Þ&
ð0Þ
0 b†3ð~p3Þd†4ð~p4Þ; ð5Þ

where b†3ð~p3Þ and d†4ð~p4Þ are the creation operators for a
quark and an antiquark with momenta ~p3 and ~p4, respec-
tively. The qq̄ pair is characterized by a color singlet wave
function C34, a flavor singlet wave function F34, a spin
triplet wave function χ34 with spin S ¼ 1 and a solid
spherical harmonic Y1ð~p3 − ~p4Þ, which indicates that the
quark and antiquark are in a relative P wave. Since the
operator T† creates a pair of constituent quarks with an
effective size, the pair-creation point has to be smeared out

J. FERRETTI AND E. SANTOPINTO PHYSICAL REVIEW D 90, 094022 (2014)

094022-2

by a Gaussian factor, whose width rq has been determined
from meson decays to be in the range 0.25–0.35 fm
[60,75,76]. In our calculation, we take the value rq ¼
0.335 fm [55]. The pair-creation strength, γeff0 ¼ mn

mi
γ0, is

fitted to the strong decay ϒð4SÞ → BB̄, and the value for γ0
is extracted.
In short, the two main differences from the old 3P0

model are the introduction of a quark form factor, as
already done by many authors such as Törnqvist and
Zenczykowski [56], Silvestre-Brac and Gignoux [60],
and Geiger and Isgur [75,76], and the use of the effective
strength γeff0 ¼ mn

mi
γ0, since it is well known that heavy

flavor pair creation is suppressed. We think that both these
improvements, i.e., the introduction of the quark form
factor and the effective strength γeff0 , already used in
Refs. [55,73], can make the model more realistic.
The matrix elements of the pair-creation operator T†

were derived in explicit form in the harmonic oscillator
basis in Ref. [77], using standard Jacobi coordinates.
In the UQM, the coupling Va;bc between the meson-

meson continuum, BC, and the unperturbed wave function
of the meson A can be written as

Va;bcðqÞ ¼
X

lJ

hBC~qlJjT†jAi: ð6Þ

In general, two different diagrams can contribute to the
transition matrix element hBC~qlJjT†jAi (see Fig. 1): in the
first one, the quark in A ends up in B, while in the second
one it ends up in C. In the majority of cases, one of these
two diagrams vanishes; however, for some matrix elements,
both must be taken into account [73], as, for example, in the
case of the coupling ηb → ϒϒ, where the initial jbb̄i state is
coupled to the final state jbb̄; bb̄i and the created pair is a
bb̄ one.
Finally, by substituting Eq. (6) into Eq. (2), we have

ΣðEaÞ ¼
X

BClJ

Z
∞

0
q2dq

jhBC~qlJjT†jAij2

Ea − Eb − Ec
: ð7Þ

The values of the pair-creation model’s parameters, used
to compute the strong decays of Sec. III A and the vertices
hBC~qlJjT†jAi of Eq. (7), are reported in Table I.

C. 3P0 pair-creation model

In the 3P0 pair-creation model [78], the open flavor
strong decays of bb̄mesons take place via the production of
a light qq̄ pair (i.e., q ¼ u, d, or s), with vacuum, i.e., 3P0,
quantum numbers, followed by the separation of the initial
meson into two open-bottom mesons.
Themost recent variants of the 3P0 model include a quark

form factor in the transition operator [55,70–73,75,76]
that takes the nonpointlike nature of the constituent quarks
into account, and an effective pair-production strength
γeff0 that suppresses unphysical heavy qq̄ pair creation
[49,55,73].
In particular, in Ref. [49] it is stated that in the old 3P0

model approach the pair creation is flavor independent,
which implies an enhancement of the creation of heavy
quarks in comparison with that of light quarks, without a
fundamental reason for that. Thus, an effective pair-
creation strength γeff0 [49,55,73], defined as

γeff0 ¼ mn

mi
γ0; ð8Þ

is introduced, with i ¼ n (i.e., u or d), s, c, and b (see
Table I). This problem has already been recognized and
corrected by several authors [49,55,73]. The same mecha-
nism as in Eq. (8), including also a quark form factor, is
used in the calculations of the present paper and of
Refs. [55,73].

D. Godfrey and Isgur’s relativized quark model

The relativized QM [5] is a potential model for qq̄meson
spectroscopy, which was developed in 1985 by Godfrey
and Isgur (see also Ref. [11]).
The starting Hamiltonian of the model [5] is given by

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

2

q
þ Vconf þ Vhyp þ Vso; ð9Þ

where m1 and m2 are the masses of the constituent quark
and antiquark inside the meson, q is their relative

(a) (b)

FIG. 1. Two diagrams can contribute to the process A → BC. qi
and q̄i stand for the various initial (i ¼ 1–4) and final ði ¼ 5–8)
quarks or antiquarks, respectively. Picture from Ref. [73].
Copyright 2012, American Physical Society.
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by a Gaussian factor, whose width rq has been determined
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[60,75,76]. In our calculation, we take the value rq ¼
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mi
γ0, is
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and Geiger and Isgur [75,76], and the use of the effective
strength γeff0 ¼ mn

mi
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flavor pair creation is suppressed. We think that both these
improvements, i.e., the introduction of the quark form
factor and the effective strength γeff0 , already used in
Refs. [55,73], can make the model more realistic.
The matrix elements of the pair-creation operator T†

were derived in explicit form in the harmonic oscillator
basis in Ref. [77], using standard Jacobi coordinates.
In the UQM, the coupling Va;bc between the meson-

meson continuum, BC, and the unperturbed wave function
of the meson A can be written as

Va;bcðqÞ ¼
X

lJ

hBC~qlJjT†jAi: ð6Þ

In general, two different diagrams can contribute to the
transition matrix element hBC~qlJjT†jAi (see Fig. 1): in the
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bb̄ one.
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ΣðEaÞ ¼
X

BClJ

Z
∞

0
q2dq

jhBC~qlJjT†jAij2

Ea − Eb − Ec
: ð7Þ

The values of the pair-creation model’s parameters, used
to compute the strong decays of Sec. III A and the vertices
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free parameters and their sum with the self-energies fitted to
the physical masses of the mesons of interest, thus losing
predictive power, here we perform an explicit calculation of
the bare energies within a potential model [5]. Specifically,
the new results we provide in this paper are as follows:
(1) the first systematic unquenching of a relativistic
bottomonium quark model; (2) the first discussion of the
possibility of observing continuum effects in the χbð3PÞ
system; and (3) the first systematic calculation of the
open-bottom strong decay widths of bb̄ states within the
3P0 model.
In Sec. I, we discuss the previous attempts made to

unquench the quark model; in Sec. II, we recall the main
ingredients of our UQM formalism and, in particular, in
Secs. II B and II C the main modifications we introduced in
the 3P0 operator (mainly the use of an effective 3P0 strength
that suppresses heavy quark pair creation); in Sec. III, we
show our results for the open-bottom strong decay widths
(Sec. III A) and for the bottomonium spectrum with self-
energy corrections (Sec. III B) and finally discuss the nature
of the χbð3PÞ system (Sec. III C).

II. FORMALISM

A. Self-energies

The Hamiltonian we consider,

H ¼ H0 þ V; ð1Þ

is the sum of a first part, H0, acting only in the bare meson
space, and a second part, V, which can couple a meson state
jAi to the meson-meson continuum jBCi.
The dispersive equation, resulting from a nonrelativistic

Schrödinger equation, is

ΣðEaÞ ¼
X

BC

Z
∞

0
q2dq

jVa;bcðqÞj2

Ea − Ebc
; ð2Þ

where the bare energy Ea satisfies

Ma ¼ Ea þ ΣðEaÞ: ð3Þ

Ma is the physical mass of the meson A, with self-energy
ΣðEaÞ. In Eq. (2) one has to take the contributions from
various meson-meson intermediate states jBCi into account.
These channels, with relative momentum q between B and
C, have quantum numbers Jbc and l coupled to the total
angular momentum of the initial state jAi. Va;bc stands for
the coupling due to the operator V between the intermediate
state jBCi and the unperturbed quark-antiquark wave
function of the meson A; Ebc ¼ Eb þ Ec is the total energy
of the channel BC, calculated in the rest frame. Finally, if the
bare energy of the meson A, Ea, is greater than the threshold
Ebc, the self-energy of Eq. (2) contains poles and is a
complex number: in this case one has real loops instead of
virtual ones.

Since the physics of the dynamics depends on the matrix
elements Va;bcðqÞ, one has to choose a precise form for the
transition operator, V, which is responsible for the creation
of qq̄ pairs. Our choice is that of the UQM of Refs. [55,73].

B. An unquenched quark model for bottomonia

In the unquenched quark model for mesons [55,73] the
effects of quark-antiquark pairs are introduced explicitly
into the quark model through a QCD-inspired 3P0 pair-
creation mechanism. This approach, which is a generali-
zation of the unitarized quark model by Törnqvist and
Zenczykowski [56] (see also Ref. [75]) is based on a QM,
to which qq̄ pairs with vacuum quantum numbers are added
as a perturbation and where the pair-creation mechanism is
inserted at the quark level.
Under these assumptions, the meson wave function is

made up of a zeroth order quark-antiquark configuration
plus a sum over the possible higher Fock components, due
to the creation of 3P0 qq̄ pairs. Thus, one has

∣ψAi ¼ N
!
∣Aiþ

X

BClJ

Z
d~q∣BC~qlJi hBC~qlJ∣T

†∣Ai
Ea − Eb − Ec

"
;

ð4Þ

where T† stands for the 3P0 quark-antiquark pair-creation
operator [55,73], which depends on an effective pair-
creation strength γeff0 , A is the meson, B and C represent

the intermediate state mesons, and Ea, Eb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b þ q2
q

and Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

c þ q2
p

are the corresponding energies, ~q
and l are the relative radial momentum and orbital angular
momentum between B and C, and ~J ¼ ~Jb þ ~Jc þ ~l is the
total angular momentum. The wave functions of the
mesons A, B, and C can be written as harmonic oscillator
wave functions, which depend on a single oscillator
parameter α ¼ 0.5 GeV.
The 3P0 quark-antiquark pair-creation operator, T†, is

given by [55,73]

T† ¼ −3γeff0

Z
d~p3d~p4δð~p3 þ ~p4ÞC34F34e−r

2
qð~p3−~p4Þ2=6

× ½χ34 × Y1ð~p3 − ~p4Þ&
ð0Þ
0 b†3ð~p3Þd†4ð~p4Þ; ð5Þ

where b†3ð~p3Þ and d†4ð~p4Þ are the creation operators for a
quark and an antiquark with momenta ~p3 and ~p4, respec-
tively. The qq̄ pair is characterized by a color singlet wave
function C34, a flavor singlet wave function F34, a spin
triplet wave function χ34 with spin S ¼ 1 and a solid
spherical harmonic Y1ð~p3 − ~p4Þ, which indicates that the
quark and antiquark are in a relative P wave. Since the
operator T† creates a pair of constituent quarks with an
effective size, the pair-creation point has to be smeared out

J. FERRETTI AND E. SANTOPINTO PHYSICAL REVIEW D 90, 094022 (2014)

094022-2

6 



Charmonium spectrum with 
self-energy corrections 

!  Ferretti, Galatà and Santopinto, PRC 88, 015207 (2013) 

7 

0!" 1!! 1"! 0"" 1"" 2"" 2!" 2!! 3!! JPC

X!3872"

2.8

3.2

3.6

4.0

M!GeV"

INTERPRETATION OF THE X(3872) AS A . . . PHYSICAL REVIEW C 88, 015207 (2013)

TABLE III. Strong decay widths in heavy meson pairs (in MeV) for 3S, 2P , 1D, and 2D charmonium states. The values of the model
parameters are given in Table II. The symbol–in the table means that a certain decay is forbidden by selection rules or that the decay cannot
take place because it is below threshold.

State DD DD∗ D∗D∗ DsDs DsD
∗
s D∗

s D
∗
s Total Expt.

ηc(31S0) – 38.8 52.3 – – – 91.1 –
"(4040)(33S1) 0.2 37.2 39.6 3.3 – – 80.3 80 ± 10
hc(21P1) – 64.6 – – – – 64.6 –
χc0(23P0) 97.7 – – – – – 97.7 –
χc2(23P2) 27.2 9.8 – – – – 37.0 –
"(3770)(13D1) 27.7 – – – – – 27.7 27.2 ± 1.0
"3(13D3) 1.7 – – – – – 1.7 –
ηc2(21D2) – 62.7 46.4 – 8.8 – 117.9 –
"(4160)(23D1) 11.2 0.4 39.4 2.1 5.6 – 58.7 103 ± 8
"2(23D2) – 43.5 49.3 – 11.3 – 104.1 –
"3(23D3) 17.2 58.3 48.1 3.6 2.6 – 129.8 –

Our idea is thus to see whether the introduction of loop
corrections into the QM can help clarify the problem of the
nature of the X(3872). Indeed, we think that the uncommon
properties of the X(3872) are due to its proximity to the
DD̄∗ decay threshold and cannot easily be explained within a
standard quark-antiquark picture for mesons.

In our calculation of Table V, we have re-fitted the spectrum
of charmonia through Eq. (2b); here, the mass of a meson
results from the sum of a bare energy term computed within
the relativized QM of Ref. [2], with a self-energy correction
computed within the unquenched quark model formalism of
Refs. [31,51]. According to our results for the masses of the
23P1 and 11D2 states, i.e., 3.908 and 3.741 GeV, respectively,
the X(3872) is compatible with the meson χc1(2P ) and
includes an extra component due to the coupling to the meson-
meson continuum, which is responsible for the downward
energy shift.

In Table VI our UQM result for χc1(2P )’s mass, that in
our picture corresponds to the X(3872), is compared to those
obtained by other authors, introducing continuum coupling
effects in their calculations.

In particular, in Refs. [20,23] the authors calculated the
charmonium spectrum, including the influence of open-charm
channels. The bare masses were calculated within the Cornell
potential [35], while the continuum coupling effects were
evaluated within a refined version of the Cornell coupled-
channel model [35]. The result they obtained for the mass of
the χc1(23P1) meson seems incompatible with such an inter-
pretation for the X(3872); on the contrary, the authors stated
that the assignments 13D2 and 13D3 seem most promising for
the identification of the X(3872).

TABLE IV. Values of Godfrey and Isgur’s model parameters,
obtained by fitting the results of Eq. (2b) to the experimental data [50].

mc = 1.562 GeV b = 0.1477 GeV2 αcr
s = 0.600

% = 0.200 GeV c = 0.069 GeV σ0 = 1.463 GeV
s = 2.437 ϵc = −0.2500 ϵt = 0.0300
ϵso(V ) = −0.0314 ϵso(S) = 0.0637

In Ref. [22] the author calculated the spectrum of cc̄
mesons up to 2P states, considering the effects of open-
charm loops on charmonium masses. The bare energies were
computed within the standard nonrelativistic potential model,
including spin-orbit, tensor and hyperfine interactions. The
vertices, that describe the coupling of the cc̄ meson to the
continuum, were computed within a 3P0-type model for pair
creation. The result for 23P1’s mass the author obtained, i.e.,
3990 MeV, seems incompatible with X(3872)’s experimental
mass.

In Ref. [26], the authors computed the self-energy cor-
rections to the masses of charmonium states, considering the
effects of open and nearby closed meson-meson channels. The
authors extracted potential model’s predictions for the bare
masses from Ref. [56] and computed the meson-meson loop
corrections within an approach related to the Dyson summation
for the inverse meson propagator. Their result for the mass of
the χc1(23P1) seems compatible with the interpretation of the
X(3872) as a 23P1 cc̄ state.

Apart from Ref. [26], that uses a different method, the main
difference between our result and those of Refs. [20,22,23] is
due to the presence of the constituent quark form factors in the
3P0 operator [16,52,54] that we have used.

The second possibility is to treat the X(3872) as a DD̄∗

molecular state with 1++ quantum numbers [25,29]. Accord-
ing to Ref. [72], the DD̄∗ system with 1++ quantum numbers
can be found by pion exchange and forms a meson molecule.
More recent molecular model calculations [73], including
quark exchange kernels for the transitions DD̄∗ → ρJ/",
ωJ/", need to introduce a large isospin mixing due to the mass
difference between D0D̄∗0 and D+D̄∗− to correctly predict
the ωJ/" decay mode of the X(3872) [38]. Nevertheless,
in Ref. [25] the authors observe that the one-pion exchange
binding mechanism should be taken with greater caution in
the DD̄∗ case than in the NN case (see also Refs. [40,74,75]).

Another important test for the properties of the X(3872)
consists of estimating its strong and radiative decay rates
[38,40,41]. In Ref. [41], the authors re-examine the re-
scattering mechanism for the X(3872), which decays to
J/ψρ(ω) through the exchange of D(∗) mesons between
intermediate states D(D̄) and D̄∗(D∗). Their results for the
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TABLE I. Masses of open charm mesons used in
the calculations.

State Mass (GeV) Source

D 1.867 [50]
D∗(2007) 2.009 [50]
Ds 1.969 [50]
D∗

s 2.112 [50]

depending on the relative momentum q0 between B and C and
on the energies of the two intermediate state mesons, Eb =√

M2
b + q2

0 and Ec =
√

M2
c + q2

0 (see Table I for the values
of Mb and Mc). The operator T † inside the 3P0 amplitudes
⟨BCq⃗0 ℓJ |T †|A⟩ is that of Eq. (4), which also contains the
quark form factor of Refs. [52,54]. The introduction of this
quark form factor, which is just a Gaussian function in the
relative momentum between the quark and the antiquark of
the created pair, in the 3P0 model transition operator deter-
mines slightly different values for the model parameters (see
Table II). Specifically, the value of the pair-creation strength γ0,
which is fitted to the reproduction of the experimental strong
decay widths of Table III, is greater than that which would be
obtained in the standard 3P0 model [55,56], i.e., γ0 = 0.4.

Another difference between our calculation and those of
Refs. [55,56] is the substitution of the pair-creation strength
γ0 with the effective strength γ eff

0 of Appendix B. The
introduction of this effective mechanism suppresses those
diagrams in which a heavy qq̄ pair is created. More details
on this mechanism can be found in Refs. [22,31].

Finally, the results of our calculation, obtained with the
values of the model parameters of Table II, are reported
in Table III. This set of parameters is also used in the
self-energy calculation of Sec. III B to compute the vertices
⟨BCq⃗ ℓJ |T †|A⟩ of Eqs. (6) and (15).

B. Bare energy calculation within the relativized quark model.
Self-energies of cc̄ states

The relativized QM [2], which is described in Sec. II C, is
here used to compute the bare energies of the cc̄ states that we
need in the self-energy calculation. In our study, we computed
the bare energies Ea’s of Eq. (2b) as the eigenvalues of Eq. (7).
At variance with QM calculations, such as that of Ref. [2],
we did not fit the eigenvalues of Eq. (7) to the experimental
data [50]. In our case, the quantities fitted to the spectrum of
charmonia [50] are the masses Ma’s of Eq. (2b) and therefore

TABLE II. Parameters of the 3P0 model.

Parameter Value

γ0 0.510
α 0.500 GeV
rq 0.335 fm
mn 0.330 GeV
ms 0.550 GeV
mc 1.50 GeV

the fitting procedure is an iterative one. Our resulting values
for the parameters of Godfrey and Isgur’s model are shown in
Table IV.

Once the values of the bare energies are known, it is possible
to calculate the self-energies $(Ea)’s of 1S, 2S, 1P , 2P ,
and 1D cc̄ states through Eq. (6). If the bare energy of the
meson A is above the threshold BC, i.e., Ea > Mb + Mc,
the contribution to the self-energy due to the meson-meson
channel BC is computed as

$(Ea; BC) = P
∫ ∞

Mb+Mc

dEbc

Ea − Ebc

qEbEc

Ebc

|⟨BCq⃗ ℓJ |T †|A⟩|2

+ 2π i

{
qEbEc

Ea

|⟨BCq⃗ ℓJ |T †|A⟩|2
}

Ebc=Ea

,

(15)

where the symbol P represents the principal part
integral, which can be computed numerically, and
2π i{ qEbEc

Ea
|⟨BCq⃗ ℓJ |T †|A⟩|2}Ebc=Ea

is the imaginary part of
the self-energy, related to the decay width by

&A→BC = Im [$(Ea; BC)] . (16)

Finally, the results of our UQM calculation, obtained with
the set of parameters of Tables II and IV and with the effective
pair-creation strength γ eff

0 of Appendix B, are shown in Table V
and Fig. 2.

C. Nature of the X(3872) resonance

The quark structure of the X(3872) resonance, observed
for the first time by the Belle Collaboration in the decay of
the B meson [37] and then confirmed by CDF [67], D0 [68],
and BABAR [69], still remains an open puzzle. Indeed, at the
moment, there are two possible interpretations for the meson:
a weakly bound 1++ molecule [25,29,30,38] or a charmonium
state, with 1++ quantum numbers [41]. Before the recent
results by the LHCb collaboration [42] were published, there
were actually two possible sets of quantum numbers for the
charmonium hypothesis: 1++ or 2−+ [70], while the others
were excluded by more than 3σ [71]. It is thus necessary,
to study properties of the X(3872) such as the decay modes,
to make an assumption regarding its quark structure that is
compatible with the quantum numbers.

The first and easiest possibility is to consider the X(3872)
as a cc̄ state [41]. In our theorethical analisys, we kept
a priori the possibility of both the 1++ or 2−+ quantum
numbers. However, our conclusions were that the 2−+ quantum
numbers had to be rejected and that the only ones compatible
with the measured mass of the X(3872) are the 1++. This is
in agreement with the results of the LHCb collaboration [42].
Thus, we considered either the possibility that the X(3872)
would correspond to a 23P1 resonance [χc1(2P ), JPC = 1++]
or to a 11D2 (JPC = 2−+) one, according to the estimations
of the QM [2,56]. Indeed, QM predictions show that 23P1 and
11D2 states are the only ones compatible with 1++ or 2−+

quantum numbers and lying approximately in the same energy
region as the X(3872). The relativized QM [2] predicts these
states to be at energies of 3.95 and 3.84 GeV, respectively.

015207-4
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State% Exp.%Mass%[MeV]% Rel.%QM%Mass%[MeV]% UQM%Mass%[MeV]%

X(3872)% 3871.69±0.17* 3950* 3908*
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TABLE V. Self-energies, !(Ea) (in MeV; see column 12), for charmonium states due to coupling to the meson-meson continuum, calculated
with the effective pair-creation strength of Eq. (B1) and the values of the UQM parameters of Table II. Columns 3–11 show the contributions
to !(Ea) from various channels BC, such as DD̄, DD̄∗, and so on. In column 13 are reported the values of the bare energies Ea , calculated
within the relativized QM [2], with the values of the model parameters of Table IV. In column 14 are reported the theoretical estimations Ma

of the masses of the cc̄ states, which are the sum of the self-energies !(Ea) and the bare energies Ea . Finally, in column 15 are reported the
experimental values of the masses of the cc̄ states, as from the PDG [50].

State J PC DD̄ D̄D∗ D̄∗D∗ DsD̄s DsD̄
∗
s D∗

s D̄
∗
s ηcηc ηcJ/# J/# J/# !(Ea) Ea Ma Mexpt.

DD̄∗ D̄sD
∗
s

ηc(11S0) 0−+ – −34 −31 – −8 −8 – – −2 −83 3062 2979 2980
J/#(13S1) 1−− −8 −27 −41 −2 −6 −10 – −2 – −96 3233 3137 3097
ηc(21S0) 0−+ – −52 −41 – −9 −8 – – −1 −111 3699 3588 3637
#(23S1) 1−− −18 −42 −54 −2 −7 −10 – −1 – −134 3774 3640 3686
hc(11P1) 1+− – −59 −48 – −11 −10 – −2 – −130 3631 3501 3525
χc0(13P0) 0++ −31 – −72 −4 – −15 0 – −3 −125 3555 3430 3415
χc1(13P1) 1++ – −54 −53 – −9 −11 – – −2 −129 3623 3494 3511
χc2(13P2) 2++ −17 −40 −57 −3 −8 −10 0 – −2 −137 3664 3527 3556
hc(21P1) 1+− – −55 −76 – −12 −8 – −1 – −152 4029 3877 –
χc0(23P0) 0++ −23 – −86 −1 – −13 0 – −1 −124 3987 3863 –
χc1(23P1) 1++ – −30 −66 – −11 −9 – – −1 −117 4025 3908 3872
χc2(23P2) 2++ −2 −42 −54 −4 −8 −10 0 – −1 −121 4053 3932 3927
ηc2(11D2) 2−+ – −99 −62 – −12 −10 – – −1 −184 3925 3741 –
#(3770)(13D1) 1−− −11 −40 −84 −4 −2 −16 – 0 – −157 3907 3750 3775
#2(13D2) 2−− – −106 −61 – −11 −11 – −1 – −190 3926 3736 –
#3(13D3) 3−− −25 −49 −88 −4 −8 −10 – −1 – −185 3936 3751 –

ratio Rρ/ω ≈ 1, between the decay modes X(3872) → J/ψρ
and X(3872) → J/ψω, and for the rate X(3872) → D0D̄0π0,
favor a charmonium cc̄ interpretation for the X(3872). In
Ref. [40], the author uses semiquantitative methods to study
some properties of the X(3872); he points out that the binding
mechanism and the production rates are incompatible with
the molecule interpretation. However, these results have been
criticized in several works [43,74,76–79]. In particular in
Ref. [78], the authors point out that the production rates in the
molecular interpretation are compatible with Tevatron data
once the charm-meson re-scattering effects are taken into
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X 3872
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M
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FIG. 2. (Color online) Comparison between the calculated
masses (black lines) of 1S, 2S, 1P , 2P , and 1D charmonium states
via Eq. (2b) and the experimental ones [50] (blue boxes). The new
values of the parameters of Godfrey and Isgur’s model are taken from
Table IV.

account. In Refs. [80,81] the authors observe also prompt
production from the CDF collaboration and discuss whether a
meson-meson molecule with a dimension of a few fm and
intrinsic fragility can be promptly produced. By contrast,
Refs. [25,29,30,38] suggest a molecular interpretation for the
X(3872).

Finally, we do not think that our previous arguments can,
on their own, clarify the picture of the X(3872) resonance
completely. Thus, we think that it may be necessary to
analyze other properties of this meson, such as strong and
electromagnetic decays, to draw a definitive conclusion.

D. Discussion of the results

In this paper we have presented the results of an unquenched
quark model calculation of the self-energy corrections to the
spectrum of 1S, 2S, 1P , 2P , and 1D charmonium states. In
the unquenched quark model, developed in the baryon sector
in Ref. [51] and in the meson sector in Ref. [31], the effects
of quark-antiquark sea pairs are introduced explicitly into the

TABLE VI. Our UQM result for the mass of the
χc1(23P1) meson, that in our picture corresponds to the
X(3872), is compared to those of other calculations.

χc1(23P1)’s mass (MeV) Reference

3908 This paper
4007.5 [20]
3990 [22]
3920.5 [23]
3896 [26]

015207-6
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ec = c-quark charge; α = fine structure constant; Ef = energy of 
final charmonium state; Mi = mass of initial charmonium state 

Molecular model 

for the choices of MXð3872Þ ¼ 3871.85 MeV [43,48] and
MXð3872Þ ¼ 3871.95 MeV [43,49], respectively. The upper
limits of Eqs. (9) are calculated with ΓD̄0$ ¼ 0.25 MeV, but
it is worthwhile noting that, considering a larger value for
the width, the results remain quite stable and change only
by 20% [see the lower limits of Eqs. (9), calculated with
ΓD̄0$ ¼ 2.1 MeV]. Finally, these results are in accordance
with ΓXð3872Þ < 1.2 MeV [43,48].

E. QM calculation of Xð3872Þ’s and χ bð3PÞ’s E1
radiative transitions

In this section,we showourQM results forXð3872Þ’s and
χbð3PÞ’s radiative transitions. The E1 radiative transitions
of the Xð3872Þ are calculated according to [47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2cαjhψfjrjψ iij2E3

γ

Eðcc̄Þ
f

Mðcc̄Þ
i

: ð10aÞ

Here, ec ¼ 2
3 is the c-quark charge in units of e, α is the fine

structure constant, Eγ is the final photon energy, E
ðcc̄Þ
f is the

total energy of the final cc̄ state, Mðcc̄Þ
i is the mass of the

initial cc̄ state, the matrix element

hψfjrjψ ii ¼
Z

∞

0
r2drψ$

nf;Lf
ðrÞrψni;Li

ðrÞ ð10bÞ

involves the initial and final radial wave functions, and the
angular matrix element Cfi is given by

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
!
L0 J0 S
J L 1

"
2

: ð10cÞ

We calculate the matrix elements of Eqs. (10) assuming,
for the initial and final states, the wave functions of Godfrey

and Isgur’s relativized QM [15,19]. Finally, our results,
obtained with the following values of the masses, are
reported in Table IV: MXð3872Þ ¼ 3871.85 MeV [43,48],
MJ=Ψ ¼ 3096.92 MeV [43], MΨð2SÞ ¼ 3686.11 MeV
[43], MΨð3770Þ ¼ 3773.15 MeV [43], and MΨ2ð13D2Þ ¼
3838 MeV [7]. Other results for the radiative decays of
the Xð3872Þ, in the cc̄ interpretation, can be found in
Refs. [12,59–62]. Our theoretical result for the ratio between
ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ is compared to the exper-
imental data in Table V. The calculation of radiative and
strong decays of the Xð3872Þ, including also loop correc-
tions, will be the subject of a subsequent paper.
The radiative transitions of χbð3PÞ states can be calcu-

lated analogously. In this case, Eq. (10a) can be rewritten as
[47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2bαjhψfjrjψ iij2E3

γ

Eðbb̄Þ
f

Mðbb̄Þ
i

; ð11Þ

where eb ¼ − 1
3 is the b-quark charge in units of e, Eðbb̄Þ

f is

the total energy of the final bb̄ state, and Mðbb̄Þ
i is the mass

of the initial bb̄ state. We calculate the matrix elements of
Eqs. (10) assuming, for the initial and final states, the wave
functions of Godfrey and Isgur’s relativized QM [15,19].
Finally, our results, obtained with the values of the masses
of Table VI, are reported in Table VII.

F. Continuum components of the Xð3872Þ
In this section, we provide an estimation of the con-

tinuum components of the Xð3872Þ within the UQM
formalism [15,36–40].
In Refs. [40,67], it is shown that the coupling T† of the

UQM gives rise to a continuum component in an initially

TABLE IV. E1 radiative transitions of the Xð3872Þ, calculated with Eq. (10) (see column 3). We assume Godfrey and Isgur’s
relativized QM wave functions [15,19]. In columns 4, 5, and 6 are reported the molecular model predictions of Refs. [7,8], and [63],
respectively, and in column 7 are reported the predictions of Ref. [64], where the Xð3872Þ is described as a superposition of molecular
and cc̄ components. The experimental values of column 8 are only estimated from the upper or lower limits given by the PDG [43] for
each decay.

Transition Eγ (MeV)
Γcc̄ (KeV)

present paper
ΓDD̄$ (KeV)
Ref. [7]

ΓDD̄$ (KeV)
Ref. [8]

ΓDD̄$ (KeV)
Ref. [63]

Γcc̄þDD̄$ (KeV)
Ref. [64]

Γexp (KeV)
PDG [43]

Xð3872Þ → J=Ψγ 697 11 8 64–190 125–251 2–17 ≈7
Xð3872Þ → Ψð2SÞγ 181 70 0.03 7–59 ≈36
Xð3872Þ → Ψð3770Þγ 101 4.0 0
Xð3872Þ → Ψ2ð13D2Þγ 34 0.35 0

TABLE V. The theoreetical and experimental values for the ratio between the widths ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ are compared.
The result “Exp. I” of column 5 is given by the ratio between 36 and 7 KeV of Table IV, column 7.

Ratio Present paper Ref. [7] Ref. [64] Exp. I [43] Exp. II [43,65] Exp. III [66]
ΓXð3872Þ→Ψð2SÞγ
ΓXð3872Þ→J=Ψγ

6.4 0.004 ≈3.5 ≈5.1 3.4& 1.4 2.46& 0.64& 0.29
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for the choices of MXð3872Þ ¼ 3871.85 MeV [43,48] and
MXð3872Þ ¼ 3871.95 MeV [43,49], respectively. The upper
limits of Eqs. (9) are calculated with ΓD̄0$ ¼ 0.25 MeV, but
it is worthwhile noting that, considering a larger value for
the width, the results remain quite stable and change only
by 20% [see the lower limits of Eqs. (9), calculated with
ΓD̄0$ ¼ 2.1 MeV]. Finally, these results are in accordance
with ΓXð3872Þ < 1.2 MeV [43,48].

E. QM calculation of Xð3872Þ’s and χ bð3PÞ’s E1
radiative transitions

In this section,we showourQM results forXð3872Þ’s and
χbð3PÞ’s radiative transitions. The E1 radiative transitions
of the Xð3872Þ are calculated according to [47,56–58]
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Here, ec ¼ 2
3 is the c-quark charge in units of e, α is the fine

structure constant, Eγ is the final photon energy, E
ðcc̄Þ
f is the

total energy of the final cc̄ state, Mðcc̄Þ
i is the mass of the

initial cc̄ state, the matrix element

hψfjrjψ ii ¼
Z

∞

0
r2drψ$

nf;Lf
ðrÞrψni;Li

ðrÞ ð10bÞ

involves the initial and final radial wave functions, and the
angular matrix element Cfi is given by

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
!
L0 J0 S
J L 1

"
2

: ð10cÞ

We calculate the matrix elements of Eqs. (10) assuming,
for the initial and final states, the wave functions of Godfrey

and Isgur’s relativized QM [15,19]. Finally, our results,
obtained with the following values of the masses, are
reported in Table IV: MXð3872Þ ¼ 3871.85 MeV [43,48],
MJ=Ψ ¼ 3096.92 MeV [43], MΨð2SÞ ¼ 3686.11 MeV
[43], MΨð3770Þ ¼ 3773.15 MeV [43], and MΨ2ð13D2Þ ¼
3838 MeV [7]. Other results for the radiative decays of
the Xð3872Þ, in the cc̄ interpretation, can be found in
Refs. [12,59–62]. Our theoretical result for the ratio between
ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ is compared to the exper-
imental data in Table V. The calculation of radiative and
strong decays of the Xð3872Þ, including also loop correc-
tions, will be the subject of a subsequent paper.
The radiative transitions of χbð3PÞ states can be calcu-

lated analogously. In this case, Eq. (10a) can be rewritten as
[47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2bαjhψfjrjψ iij2E3

γ

Eðbb̄Þ
f

Mðbb̄Þ
i

; ð11Þ

where eb ¼ − 1
3 is the b-quark charge in units of e, Eðbb̄Þ

f is

the total energy of the final bb̄ state, and Mðbb̄Þ
i is the mass

of the initial bb̄ state. We calculate the matrix elements of
Eqs. (10) assuming, for the initial and final states, the wave
functions of Godfrey and Isgur’s relativized QM [15,19].
Finally, our results, obtained with the values of the masses
of Table VI, are reported in Table VII.

F. Continuum components of the Xð3872Þ
In this section, we provide an estimation of the con-

tinuum components of the Xð3872Þ within the UQM
formalism [15,36–40].
In Refs. [40,67], it is shown that the coupling T† of the

UQM gives rise to a continuum component in an initially

TABLE IV. E1 radiative transitions of the Xð3872Þ, calculated with Eq. (10) (see column 3). We assume Godfrey and Isgur’s
relativized QM wave functions [15,19]. In columns 4, 5, and 6 are reported the molecular model predictions of Refs. [7,8], and [63],
respectively, and in column 7 are reported the predictions of Ref. [64], where the Xð3872Þ is described as a superposition of molecular
and cc̄ components. The experimental values of column 8 are only estimated from the upper or lower limits given by the PDG [43] for
each decay.

Transition Eγ (MeV)
Γcc̄ (KeV)

present paper
ΓDD̄$ (KeV)
Ref. [7]

ΓDD̄$ (KeV)
Ref. [8]

ΓDD̄$ (KeV)
Ref. [63]

Γcc̄þDD̄$ (KeV)
Ref. [64]

Γexp (KeV)
PDG [43]

Xð3872Þ → J=Ψγ 697 11 8 64–190 125–251 2–17 ≈7
Xð3872Þ → Ψð2SÞγ 181 70 0.03 7–59 ≈36
Xð3872Þ → Ψð3770Þγ 101 4.0 0
Xð3872Þ → Ψ2ð13D2Þγ 34 0.35 0

TABLE V. The theoreetical and experimental values for the ratio between the widths ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ are compared.
The result “Exp. I” of column 5 is given by the ratio between 36 and 7 KeV of Table IV, column 7.

Ratio Present paper Ref. [7] Ref. [64] Exp. I [43] Exp. II [43,65] Exp. III [66]
ΓXð3872Þ→Ψð2SÞγ
ΓXð3872Þ→J=Ψγ

6.4 0.004 ≈3.5 ≈5.1 3.4& 1.4 2.46& 0.64& 0.29
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for the choices of MXð3872Þ ¼ 3871.85 MeV [43,48] and
MXð3872Þ ¼ 3871.95 MeV [43,49], respectively. The upper
limits of Eqs. (9) are calculated with ΓD̄0$ ¼ 0.25 MeV, but
it is worthwhile noting that, considering a larger value for
the width, the results remain quite stable and change only
by 20% [see the lower limits of Eqs. (9), calculated with
ΓD̄0$ ¼ 2.1 MeV]. Finally, these results are in accordance
with ΓXð3872Þ < 1.2 MeV [43,48].

E. QM calculation of Xð3872Þ’s and χ bð3PÞ’s E1
radiative transitions

In this section,we showourQM results forXð3872Þ’s and
χbð3PÞ’s radiative transitions. The E1 radiative transitions
of the Xð3872Þ are calculated according to [47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2cαjhψfjrjψ iij2E3

γ

Eðcc̄Þ
f

Mðcc̄Þ
i

: ð10aÞ

Here, ec ¼ 2
3 is the c-quark charge in units of e, α is the fine

structure constant, Eγ is the final photon energy, E
ðcc̄Þ
f is the

total energy of the final cc̄ state, Mðcc̄Þ
i is the mass of the

initial cc̄ state, the matrix element

hψfjrjψ ii ¼
Z

∞

0
r2drψ$

nf;Lf
ðrÞrψni;Li

ðrÞ ð10bÞ

involves the initial and final radial wave functions, and the
angular matrix element Cfi is given by

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
!
L0 J0 S
J L 1

"
2

: ð10cÞ

We calculate the matrix elements of Eqs. (10) assuming,
for the initial and final states, the wave functions of Godfrey

and Isgur’s relativized QM [15,19]. Finally, our results,
obtained with the following values of the masses, are
reported in Table IV: MXð3872Þ ¼ 3871.85 MeV [43,48],
MJ=Ψ ¼ 3096.92 MeV [43], MΨð2SÞ ¼ 3686.11 MeV
[43], MΨð3770Þ ¼ 3773.15 MeV [43], and MΨ2ð13D2Þ ¼
3838 MeV [7]. Other results for the radiative decays of
the Xð3872Þ, in the cc̄ interpretation, can be found in
Refs. [12,59–62]. Our theoretical result for the ratio between
ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ is compared to the exper-
imental data in Table V. The calculation of radiative and
strong decays of the Xð3872Þ, including also loop correc-
tions, will be the subject of a subsequent paper.
The radiative transitions of χbð3PÞ states can be calcu-

lated analogously. In this case, Eq. (10a) can be rewritten as
[47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2bαjhψfjrjψ iij2E3

γ

Eðbb̄Þ
f

Mðbb̄Þ
i

; ð11Þ

where eb ¼ − 1
3 is the b-quark charge in units of e, Eðbb̄Þ

f is

the total energy of the final bb̄ state, and Mðbb̄Þ
i is the mass

of the initial bb̄ state. We calculate the matrix elements of
Eqs. (10) assuming, for the initial and final states, the wave
functions of Godfrey and Isgur’s relativized QM [15,19].
Finally, our results, obtained with the values of the masses
of Table VI, are reported in Table VII.

F. Continuum components of the Xð3872Þ
In this section, we provide an estimation of the con-

tinuum components of the Xð3872Þ within the UQM
formalism [15,36–40].
In Refs. [40,67], it is shown that the coupling T† of the

UQM gives rise to a continuum component in an initially

TABLE IV. E1 radiative transitions of the Xð3872Þ, calculated with Eq. (10) (see column 3). We assume Godfrey and Isgur’s
relativized QM wave functions [15,19]. In columns 4, 5, and 6 are reported the molecular model predictions of Refs. [7,8], and [63],
respectively, and in column 7 are reported the predictions of Ref. [64], where the Xð3872Þ is described as a superposition of molecular
and cc̄ components. The experimental values of column 8 are only estimated from the upper or lower limits given by the PDG [43] for
each decay.

Transition Eγ (MeV)
Γcc̄ (KeV)

present paper
ΓDD̄$ (KeV)
Ref. [7]

ΓDD̄$ (KeV)
Ref. [8]

ΓDD̄$ (KeV)
Ref. [63]

Γcc̄þDD̄$ (KeV)
Ref. [64]

Γexp (KeV)
PDG [43]

Xð3872Þ → J=Ψγ 697 11 8 64–190 125–251 2–17 ≈7
Xð3872Þ → Ψð2SÞγ 181 70 0.03 7–59 ≈36
Xð3872Þ → Ψð3770Þγ 101 4.0 0
Xð3872Þ → Ψ2ð13D2Þγ 34 0.35 0

TABLE V. The theoreetical and experimental values for the ratio between the widths ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ are compared.
The result “Exp. I” of column 5 is given by the ratio between 36 and 7 KeV of Table IV, column 7.

Ratio Present paper Ref. [7] Ref. [64] Exp. I [43] Exp. II [43,65] Exp. III [66]
ΓXð3872Þ→Ψð2SÞγ
ΓXð3872Þ→J=Ψγ

6.4 0.004 ≈3.5 ≈5.1 3.4& 1.4 2.46& 0.64& 0.29
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for the choices of MXð3872Þ ¼ 3871.85 MeV [43,48] and
MXð3872Þ ¼ 3871.95 MeV [43,49], respectively. The upper
limits of Eqs. (9) are calculated with ΓD̄0$ ¼ 0.25 MeV, but
it is worthwhile noting that, considering a larger value for
the width, the results remain quite stable and change only
by 20% [see the lower limits of Eqs. (9), calculated with
ΓD̄0$ ¼ 2.1 MeV]. Finally, these results are in accordance
with ΓXð3872Þ < 1.2 MeV [43,48].

E. QM calculation of Xð3872Þ’s and χ bð3PÞ’s E1
radiative transitions

In this section,we showourQM results forXð3872Þ’s and
χbð3PÞ’s radiative transitions. The E1 radiative transitions
of the Xð3872Þ are calculated according to [47,56–58]
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3 is the c-quark charge in units of e, α is the fine
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angular matrix element Cfi is given by
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We calculate the matrix elements of Eqs. (10) assuming,
for the initial and final states, the wave functions of Godfrey

and Isgur’s relativized QM [15,19]. Finally, our results,
obtained with the following values of the masses, are
reported in Table IV: MXð3872Þ ¼ 3871.85 MeV [43,48],
MJ=Ψ ¼ 3096.92 MeV [43], MΨð2SÞ ¼ 3686.11 MeV
[43], MΨð3770Þ ¼ 3773.15 MeV [43], and MΨ2ð13D2Þ ¼
3838 MeV [7]. Other results for the radiative decays of
the Xð3872Þ, in the cc̄ interpretation, can be found in
Refs. [12,59–62]. Our theoretical result for the ratio between
ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ is compared to the exper-
imental data in Table V. The calculation of radiative and
strong decays of the Xð3872Þ, including also loop correc-
tions, will be the subject of a subsequent paper.
The radiative transitions of χbð3PÞ states can be calcu-

lated analogously. In this case, Eq. (10a) can be rewritten as
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where eb ¼ − 1
3 is the b-quark charge in units of e, Eðbb̄Þ

f is

the total energy of the final bb̄ state, and Mðbb̄Þ
i is the mass

of the initial bb̄ state. We calculate the matrix elements of
Eqs. (10) assuming, for the initial and final states, the wave
functions of Godfrey and Isgur’s relativized QM [15,19].
Finally, our results, obtained with the values of the masses
of Table VI, are reported in Table VII.

F. Continuum components of the Xð3872Þ
In this section, we provide an estimation of the con-

tinuum components of the Xð3872Þ within the UQM
formalism [15,36–40].
In Refs. [40,67], it is shown that the coupling T† of the

UQM gives rise to a continuum component in an initially

TABLE IV. E1 radiative transitions of the Xð3872Þ, calculated with Eq. (10) (see column 3). We assume Godfrey and Isgur’s
relativized QM wave functions [15,19]. In columns 4, 5, and 6 are reported the molecular model predictions of Refs. [7,8], and [63],
respectively, and in column 7 are reported the predictions of Ref. [64], where the Xð3872Þ is described as a superposition of molecular
and cc̄ components. The experimental values of column 8 are only estimated from the upper or lower limits given by the PDG [43] for
each decay.
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Xð3872Þ → Ψð2SÞγ 181 70 0.03 7–59 ≈36
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TABLE V. The theoreetical and experimental values for the ratio between the widths ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ are compared.
The result “Exp. I” of column 5 is given by the ratio between 36 and 7 KeV of Table IV, column 7.
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]

ΓQTB
Xð3872Þ ¼

Z
qmax

0
dqq2
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l;JjhD0D̄0"~qlJjT†jXð3872Þij2ΓD̄0"→D̄0π0ðqÞ
½Ma − EbðqÞ − EcðqÞ(2 þ 1

4Γ
2
D̄0"

: ð6Þ

The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
momentum of D̄0", ranging from 0 to

qmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Xð3872Þ − ðMD̄0 þMπ0 þMD0Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Xð3872Þ − ðMD̄0 þMπ0 −MD0Þ2

q

2MXð3872Þ
: ð7Þ

Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.

State Mass (MeV) [36] Γð3P0Þ (MeV)

χb0ð3PÞ 10495 —
χb1ð3PÞ 10580 —
χb2ð3PÞ 10578 13
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.

State Mass (MeV) [36] Γð3P0Þ (MeV)

χb0ð3PÞ 10495 —
χb1ð3PÞ 10580 —
χb2ð3PÞ 10578 13
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
momentum of D̄0", ranging from 0 to
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
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Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ
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model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
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decay is forbidden by selection rules or that it cannot take place
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χb0ð3PÞ 10495 —
χb1ð3PÞ 10580 —
χb2ð3PÞ 10578 13
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]

ΓQTB
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
momentum of D̄0", ranging from 0 to
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.
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χb2ð3PÞ 10578 13
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
momentum of D̄0", ranging from 0 to
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Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]
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The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
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qmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Xð3872Þ − ðMD̄0 þMπ0 þMD0Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Xð3872Þ − ðMD̄0 þMπ0 −MD0Þ2

q

2MXð3872Þ
: ð7Þ

Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.
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involved in the calculation of Eq. (5), are chosen as
MD0 ¼ MD̄0 ¼ 1864.86 MeV [43] and MD0" ¼ MD̄0" ¼
2006.98 MeV [43]. Since we are studying the decay of
a resonance very close to the D0D̄0" threshold, even small
differences in the value of the mass of the Xð3872Þ can
substantially modify the results. Since our UQM mass for
the Xð3872Þ, i.e., 3908 MeV, is larger then the actual mass,
we decided to do the calculations using the two latest
experimental measures reported by the Particle Data Group
(PDG) [43] for Xð3872Þ’s mass: MXð3872Þ ¼ 3871.85 MeV
[48] andMXð3872Þ ¼ 3871.95 MeV [49]. Thus, in this case,
the model provides us the matrix elements, while the phase
space is taken from the experiments. The operator T† inside
the 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is that of
Refs. [15,40], which contains also a quark form factor and
an effective pair-creation strength γeff0 .
Finally, the result of our calculation, obtained with the

values of the 3P0 model’s parameters of Ref. [15], are

ΓXð3872Þ→D0D̄0" ¼ 2.5 MeV; ð5aÞ

ΓXð3872Þ→D0D̄0" ¼ 8.3 MeV; ð5bÞ

respectively, for the choice of MXð3872Þ ¼ 3871.85 MeV
and MXð3872Þ ¼ 3871.95 MeV. These results must be com-
pared to the existing experimental data: ΓXð3872Þ→D0D̄0" ¼
3.9þ2.8þ0.2

−1.4−1.1 MeV [43,50] and ΓXð3872Þ→D0D̄0" ¼ 3.0þ1.9
−1.4 &

0.9 MeV [43,51]. On the contrary, the open charm decays
into D0D̄0 and DþD− are forbidden by selection rules.
One can see in Eqs. (5) that the results change from 2.5 to

8.3 MeV by just increasing of 0.1 MeV the Xð3872Þ’s
mass. Moreover, it is clear that the possibility for the D̄0" to
decay subsequently into D̄0π0 can still change these widths

considerably. This is the reasonwhy in Sec. II Dwe calculate
the quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0" within
the 3P0 model formalism [52,53], but also integrate over the
width of the D̄0" decaying into D̄0π0.
The open bottom strong decay widths of χbð3PÞ states

are calculated via Eqs. (3), and for the masses of the χbð3PÞ
states, we use our UQM predictions of Ref. [36]. Finally,
our results are reported in Table III. In the case of our
relativized QM predictions of Table II, χbð3PÞ’s masses
are all below the BB̄ decay threshold.

D. Quasi two-body decay Xð3872Þ → D0ðD̄0π0ÞD̄0"

The calculation of Eqs. (5) of the Xð3872Þ → D0D̄0"

(D̄0D0") width does not consider the fact that there is
phase space available for the final-state meson D̄0" (D0")
to decay into D̄0π0 (D0π0). The quasi-two-body decay
formalism makes it possible to consider the possibility
for the D̄0" meson to decay then into D̄0π0. The width
ΓXð3872Þ→DðD̄πÞD̄" ¼ ΓQTB

Xð3872Þ can be written as [52–55]

ΓQTB
Xð3872Þ ¼

Z
qmax

0
dqq2

2
P

l;JjhD0D̄0"~qlJjT†jXð3872Þij2ΓD̄0"→D̄0π0ðqÞ
½Ma − EbðqÞ − EcðqÞ(2 þ 1

4Γ
2
D̄0"

: ð6Þ

The 3P0 amplitude hD0D̄0"~q0lJjT†jXð3872Þi is the same as in Eq. (3), where the factor of 2 is introduced because the
Xð3872Þ decays intoD0D̄0" or D̄0D0", ΓD̄0"→D̄0π0ðqÞ is the 3P0 energy-dependent width of the unstable daughter meson D̄0"

(D0") to decay into D̄0π0 (D0π0), ΓD0" is the total width of the meson D̄0" (D0"), and, finally, the integration variable q is the
momentum of D̄0", ranging from 0 to

qmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Xð3872Þ − ðMD̄0 þMπ0 þMD0Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
Xð3872Þ − ðMD̄0 þMπ0 −MD0Þ2

q

2MXð3872Þ
: ð7Þ

Since the PDG [43] only provides an upper limit for the
total width of the D̄0" (D0"), i.e.,

ΓD̄0" < 2.1 MeV; ð8Þ

in our calculation of Eq. (6), we take the value of ΓD̄0" in the
interval 0.25–2.1 MeV. In correspondence, our final results
for the width of the Xð3872Þ, obtained via Eq. (6) and the

relativistic phase space factor of Eq. (3b) for the width
ΓD̄0"→D̄0π0ðqÞ, are

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.50 − 0.61 MeV; ð9aÞ

ΓXð3872Þ→DðD̄πÞD̄" ¼ 0.54 − 0.70 MeV; ð9bÞ

TABLE III. 3P0 model predictions for the open bottom strong
decays of χbð3PÞ states into BB̄ mesons. The values of the 3P0

model parameters and the UQM predictions for the masses of
χbð3PÞ resonances are taken from Ref. [36]. The results are
expressed in MeV. The symbol − means that the corresponding
decay is forbidden by selection rules or that it cannot take place
because it is below the threshold.

State Mass (MeV) [36] Γð3P0Þ (MeV)

χb0ð3PÞ 10495 —
χb1ð3PÞ 10580 —
χb2ð3PÞ 10578 13

J. FERRETTI, G. GALATÀ, AND E. SANTOPINTO PHYSICAL REVIEW D 90, 054010 (2014)

054010-4

for the choices of MXð3872Þ ¼ 3871.85 MeV [43,48] and
MXð3872Þ ¼ 3871.95 MeV [43,49], respectively. The upper
limits of Eqs. (9) are calculated with ΓD̄0$ ¼ 0.25 MeV, but
it is worthwhile noting that, considering a larger value for
the width, the results remain quite stable and change only
by 20% [see the lower limits of Eqs. (9), calculated with
ΓD̄0$ ¼ 2.1 MeV]. Finally, these results are in accordance
with ΓXð3872Þ < 1.2 MeV [43,48].

E. QM calculation of Xð3872Þ’s and χ bð3PÞ’s E1
radiative transitions

In this section,we showourQM results forXð3872Þ’s and
χbð3PÞ’s radiative transitions. The E1 radiative transitions
of the Xð3872Þ are calculated according to [47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2cαjhψfjrjψ iij2E3

γ

Eðcc̄Þ
f

Mðcc̄Þ
i

: ð10aÞ

Here, ec ¼ 2
3 is the c-quark charge in units of e, α is the fine

structure constant, Eγ is the final photon energy, E
ðcc̄Þ
f is the

total energy of the final cc̄ state, Mðcc̄Þ
i is the mass of the

initial cc̄ state, the matrix element

hψfjrjψ ii ¼
Z

∞

0
r2drψ$

nf;Lf
ðrÞrψni;Li

ðrÞ ð10bÞ

involves the initial and final radial wave functions, and the
angular matrix element Cfi is given by

Cfi ¼ maxðL;L0Þð2J0 þ 1Þ
!
L0 J0 S
J L 1

"
2

: ð10cÞ

We calculate the matrix elements of Eqs. (10) assuming,
for the initial and final states, the wave functions of Godfrey

and Isgur’s relativized QM [15,19]. Finally, our results,
obtained with the following values of the masses, are
reported in Table IV: MXð3872Þ ¼ 3871.85 MeV [43,48],
MJ=Ψ ¼ 3096.92 MeV [43], MΨð2SÞ ¼ 3686.11 MeV
[43], MΨð3770Þ ¼ 3773.15 MeV [43], and MΨ2ð13D2Þ ¼
3838 MeV [7]. Other results for the radiative decays of
the Xð3872Þ, in the cc̄ interpretation, can be found in
Refs. [12,59–62]. Our theoretical result for the ratio between
ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ is compared to the exper-
imental data in Table V. The calculation of radiative and
strong decays of the Xð3872Þ, including also loop correc-
tions, will be the subject of a subsequent paper.
The radiative transitions of χbð3PÞ states can be calcu-

lated analogously. In this case, Eq. (10a) can be rewritten as
[47,56–58]

ΓE1 ¼
4

3
CfiδSS0e2bαjhψfjrjψ iij2E3

γ

Eðbb̄Þ
f

Mðbb̄Þ
i

; ð11Þ

where eb ¼ − 1
3 is the b-quark charge in units of e, Eðbb̄Þ

f is

the total energy of the final bb̄ state, and Mðbb̄Þ
i is the mass

of the initial bb̄ state. We calculate the matrix elements of
Eqs. (10) assuming, for the initial and final states, the wave
functions of Godfrey and Isgur’s relativized QM [15,19].
Finally, our results, obtained with the values of the masses
of Table VI, are reported in Table VII.

F. Continuum components of the Xð3872Þ
In this section, we provide an estimation of the con-

tinuum components of the Xð3872Þ within the UQM
formalism [15,36–40].
In Refs. [40,67], it is shown that the coupling T† of the

UQM gives rise to a continuum component in an initially

TABLE IV. E1 radiative transitions of the Xð3872Þ, calculated with Eq. (10) (see column 3). We assume Godfrey and Isgur’s
relativized QM wave functions [15,19]. In columns 4, 5, and 6 are reported the molecular model predictions of Refs. [7,8], and [63],
respectively, and in column 7 are reported the predictions of Ref. [64], where the Xð3872Þ is described as a superposition of molecular
and cc̄ components. The experimental values of column 8 are only estimated from the upper or lower limits given by the PDG [43] for
each decay.

Transition Eγ (MeV)
Γcc̄ (KeV)

present paper
ΓDD̄$ (KeV)
Ref. [7]

ΓDD̄$ (KeV)
Ref. [8]

ΓDD̄$ (KeV)
Ref. [63]

Γcc̄þDD̄$ (KeV)
Ref. [64]

Γexp (KeV)
PDG [43]

Xð3872Þ → J=Ψγ 697 11 8 64–190 125–251 2–17 ≈7
Xð3872Þ → Ψð2SÞγ 181 70 0.03 7–59 ≈36
Xð3872Þ → Ψð3770Þγ 101 4.0 0
Xð3872Þ → Ψ2ð13D2Þγ 34 0.35 0

TABLE V. The theoreetical and experimental values for the ratio between the widths ΓXð3872Þ→Ψð2SÞγ and ΓXð3872Þ→J=Ψγ are compared.
The result “Exp. I” of column 5 is given by the ratio between 36 and 7 KeV of Table IV, column 7.

Ratio Present paper Ref. [7] Ref. [64] Exp. I [43] Exp. II [43,65] Exp. III [66]
ΓXð3872Þ→Ψð2SÞγ
ΓXð3872Þ→J=Ψγ

6.4 0.004 ≈3.5 ≈5.1 3.4& 1.4 2.46& 0.64& 0.29

QUARK STRUCTURE OF THE Xð3872Þ AND … PHYSICAL REVIEW D 90, 054010 (2014)

054010-5



X(3872). Continuum 
components 

!  Ferretti, Galatà and Santopinto, PRD 90, 054010 (2014) 

!  X(3872) WF has a 45% charmonium component PLUS 

 

      continuum components 

!  Continuum components calculated via 

 

11 

where f0ðEbcÞ is the first derivative of the function of
Eq. (17) with respect to Ebc.
This procedure eventually fails when one tries to

compute the continuum components of a channel very
close to the threshold, such asD#D̄#, because the integral of
Eq. (16) diverges; this is the narrow resonance limit. Thus,
following Sec. II D, we suggest a possible prescription to
compute the continuum component of the D#D̄# channel.
We add the quantity 1

4Γ
2
D# (with ΓD# ranging from 0.25 to

2.1 MeV) to the energy denominator of Eq. (14a), analo-
gously to what is done in Eq. (6):

PBC
a ¼

X

BClJ

Z
∞

0
q2dq

jhBC~qlJjT†jAij2

ðEa − Eb − EcÞ2 þ 1
4Γ

2
D#

: ð20Þ

The result we get is

PD#D̄#
a ¼ 0.62 ð21aÞ

for ΓD# ¼ 0.25 MeV and

PD#D̄#
a ¼ 0.35 ð21bÞ

for ΓD# ¼ 2.1 MeV.
Finally, the probability to find the state associated with

the Xð3872Þ [see Eq. (13)] in its meson-meson continuum
components is reported in Table VIII.

III. CONCLUSION

In this paper, we analyzed some properties of the
Xð3872Þ, to understand its nature and quark structure:
cc̄ state (plus higher Fock components) or DD̄# molecule?
The starting point of our analysis was obviously the

spectrum. Specifically, we calculated the spectrum of cc̄
mesons with self-energy corrections and argued that,
according to our results, the Xð3872Þ is compatible with
the meson χc1ð2PÞ and includes an extra component due
to the coupling to the meson-meson continuum, which is
responsible for the downward energy shift [15].
In our picture, the Xð3872Þ is a cc̄ seed core plus meson-

meson higher Fock components. In particular, if one
interprets these meson-meson components as molecular
ones, then one can say that in our picture the state
associated with the Xð3872Þ is dominated by molecular
components (probability 55%), since the cc̄ core proba-
bility is only 45% (see Table VIII).
The radiative and strong decays of the Xð3872Þ offer a

promising method to distinguish the charmonium and
molecular model assignments for this state [7]. The
calculation of the decays, including also continuum

TABLE VII. E1 radiative transitions of the χbð3PÞ’s, calculated with Eq. (10). We use the QM and UQM
predictions for the masses of the χbð3PÞ’s from Table VI and the wave functions of the relativized QM.

Transition EγðQMÞ (MeV) Γbb̄ðQMÞ (KeV) EγðUQMÞ (MeV) Γbb̄ðUQMÞ (KeV)
χb0ð33P0Þ → Υð13S1Þγ 983 0.6 984 0.2
χb0ð33P0Þ → Υð23S1Þγ 460 1.2 461 0.7
χb0ð33P0Þ → Υð33S1Þγ 138 6.1 139 6.4
χb0ð33P0Þ → Υð13D1Þγ 344 0.2 376 0.2
χb0ð33P0Þ → Υð23D1Þγ 69 0.9 & & & & & &
χb1ð33P1Þ → Υð13S1Þγ 971 2.1 1061 1.7
χb1ð33P1Þ → Υð23S1Þγ 477 2.5 542 2.7
χb1ð33P1Þ → Υð33S1Þγ 155 7.4 223 22.8
χb1ð33P1Þ → Υð13D1Þγ 361 0 458 0
χb1ð33P1Þ → Υð23D1Þγ 86 0.4 & & & & & &
χb1ð33P1Þ → Υ2ð13D2Þγ 341 0 408 0.1
χb1ð33P1Þ → Υ2ð23D2Þγ 79 1.0 & & & & & &
χb2ð33P2Þ → Υð13S1Þγ 1010 3.9 1059 3.6
χb2ð33P2Þ → Υð23S1Þγ 489 3.8 540 4.0
χb2ð33P2Þ → Υð33S1Þγ 168 8.2 221 19.6
χb2ð33P2Þ → Υð13D1Þγ 373 0 456 0
χb2ð33P2Þ → Υð23D1Þγ 99 0 & & & & & &
χb2ð33P2Þ → Υ2ð13D2Þγ 354 0 406 0
χb2ð33P2Þ → Υ2ð23D2Þγ 92 0.3 & & & & & &
χb2ð33P2Þ → Υ3ð13D3Þγ 357 0 441 0
χb2ð33P2Þ → Υ3ð23D3Þγ 86 1.4 & & & & & &

TABLE VIII. Probability to find the state associated with the
Xð3872Þ [see Eq. (13)] in its meson-meson continuum compo-
nents. The result for the D#D̄# channel is obtained considering
the width ΓD# of Eq. (20) equal to 2.1 MeV.

DD̄# D#D̄# DsD̄#
s D#

sD̄#
s J=ΨJ=Ψ

0.13 0.35 0.06 0.01 0.0003
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where f0ðEbcÞ is the first derivative of the function of
Eq. (17) with respect to Ebc.
This procedure eventually fails when one tries to

compute the continuum components of a channel very
close to the threshold, such asD#D̄#, because the integral of
Eq. (16) diverges; this is the narrow resonance limit. Thus,
following Sec. II D, we suggest a possible prescription to
compute the continuum component of the D#D̄# channel.
We add the quantity 1

4Γ
2
D# (with ΓD# ranging from 0.25 to

2.1 MeV) to the energy denominator of Eq. (14a), analo-
gously to what is done in Eq. (6):

PBC
a ¼

X

BClJ

Z
∞

0
q2dq

jhBC~qlJjT†jAij2

ðEa − Eb − EcÞ2 þ 1
4Γ

2
D#

: ð20Þ

The result we get is

PD#D̄#
a ¼ 0.62 ð21aÞ

for ΓD# ¼ 0.25 MeV and

PD#D̄#
a ¼ 0.35 ð21bÞ

for ΓD# ¼ 2.1 MeV.
Finally, the probability to find the state associated with

the Xð3872Þ [see Eq. (13)] in its meson-meson continuum
components is reported in Table VIII.

III. CONCLUSION

In this paper, we analyzed some properties of the
Xð3872Þ, to understand its nature and quark structure:
cc̄ state (plus higher Fock components) or DD̄# molecule?
The starting point of our analysis was obviously the

spectrum. Specifically, we calculated the spectrum of cc̄
mesons with self-energy corrections and argued that,
according to our results, the Xð3872Þ is compatible with
the meson χc1ð2PÞ and includes an extra component due
to the coupling to the meson-meson continuum, which is
responsible for the downward energy shift [15].
In our picture, the Xð3872Þ is a cc̄ seed core plus meson-

meson higher Fock components. In particular, if one
interprets these meson-meson components as molecular
ones, then one can say that in our picture the state
associated with the Xð3872Þ is dominated by molecular
components (probability 55%), since the cc̄ core proba-
bility is only 45% (see Table VIII).
The radiative and strong decays of the Xð3872Þ offer a

promising method to distinguish the charmonium and
molecular model assignments for this state [7]. The
calculation of the decays, including also continuum

TABLE VII. E1 radiative transitions of the χbð3PÞ’s, calculated with Eq. (10). We use the QM and UQM
predictions for the masses of the χbð3PÞ’s from Table VI and the wave functions of the relativized QM.

Transition EγðQMÞ (MeV) Γbb̄ðQMÞ (KeV) EγðUQMÞ (MeV) Γbb̄ðUQMÞ (KeV)
χb0ð33P0Þ → Υð13S1Þγ 983 0.6 984 0.2
χb0ð33P0Þ → Υð23S1Þγ 460 1.2 461 0.7
χb0ð33P0Þ → Υð33S1Þγ 138 6.1 139 6.4
χb0ð33P0Þ → Υð13D1Þγ 344 0.2 376 0.2
χb0ð33P0Þ → Υð23D1Þγ 69 0.9 & & & & & &
χb1ð33P1Þ → Υð13S1Þγ 971 2.1 1061 1.7
χb1ð33P1Þ → Υð23S1Þγ 477 2.5 542 2.7
χb1ð33P1Þ → Υð33S1Þγ 155 7.4 223 22.8
χb1ð33P1Þ → Υð13D1Þγ 361 0 458 0
χb1ð33P1Þ → Υð23D1Þγ 86 0.4 & & & & & &
χb1ð33P1Þ → Υ2ð13D2Þγ 341 0 408 0.1
χb1ð33P1Þ → Υ2ð23D2Þγ 79 1.0 & & & & & &
χb2ð33P2Þ → Υð13S1Þγ 1010 3.9 1059 3.6
χb2ð33P2Þ → Υð23S1Þγ 489 3.8 540 4.0
χb2ð33P2Þ → Υð33S1Þγ 168 8.2 221 19.6
χb2ð33P2Þ → Υð13D1Þγ 373 0 456 0
χb2ð33P2Þ → Υð23D1Þγ 99 0 & & & & & &
χb2ð33P2Þ → Υ2ð13D2Þγ 354 0 406 0
χb2ð33P2Þ → Υ2ð23D2Þγ 92 0.3 & & & & & &
χb2ð33P2Þ → Υ3ð13D3Þγ 357 0 441 0
χb2ð33P2Þ → Υ3ð23D3Þγ 86 1.4 & & & & & &

TABLE VIII. Probability to find the state associated with the
Xð3872Þ [see Eq. (13)] in its meson-meson continuum compo-
nents. The result for the D#D̄# channel is obtained considering
the width ΓD# of Eq. (20) equal to 2.1 MeV.

DD̄# D#D̄# DsD̄#
s D#

sD̄#
s J=ΨJ=Ψ

0.13 0.35 0.06 0.01 0.0003
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2

X(3872) → J/Ψω decay and the isospin-violating pro-
cess X(3872) → J/Ψρ proceed through the exchange
of D0/D0∗ mesons between D0D̄0∗ intermediate states
[36, 37]. In our study, inspired by the rescattering mech-
anism, we do something similar. In particular, the UQM
is used to include higher Fock (or continuum) compo-
nents, like DD̄, DD̄∗, D∗D̄∗, and so on, in the pure cc̄
wave function of the χc1(23P1). Then, one of these com-
ponents (D0D̄0∗) dissociates into a cc̄ state (J/Ψ) plus a
light meson (ρ or ω). The dissociation matrix elements
are calculated as the low-energy scattering of the D0 and
D̄0∗ mesons in a non-relativistic potential model [38, 39].
Finally, our results are compared with the existing ex-

perimental data [3]. It is worthwhile noting that our
result for the ratio between the X(3872) → J/Ψω and
X(3872) → J/Ψρ decays, i.e. 0.6, is in accordance with
the present experimental data, i.e. 0.8±0.3 [3, 40], within
the experimental error. See Sec. IV. In Sec. V, we dis-
cuss the possible importance of another type of contribu-
tions to the amplitudes.

Parameter Value

γ0 0.510
α 0.500 GeV
rq 0.335 fm
mn 0.330 GeV
ms 0.550 GeV
mc 1.50 GeV

TABLE I: Pair-creation model parameters, used in our UQM
calculations. The values of the model parameters are taken
from Ref. [15].

II. FORMALISM

A. UQM formalism

In the UQM for mesons [15, 16, 32, 33], the effects of qq̄
sea pairs are introduced explicitly into the quark model
through a QCD-inspired 3P0 pair-creation mechanism.
The meson wave function,

| ψA⟩ = N
[

| A⟩+
∑

BCℓJbc

∫

dq⃗ | BCq⃗ ℓJbc⟩

⟨BCq⃗ ℓJbc | T † | A⟩
Ea − Eb − Ec

]

, (1)

is made up of a quark-antiquark valence configuration,
|A⟩, plus a sum over the possible higher Fock (or con-
tinuum) components, |BCq⃗ ℓJbc⟩, due to the creation of
3P0 qq̄ pairs. The intermediate state mesons B and C
have relative momentum q⃗, relative orbital angular mo-
mentum ℓ, total angular momentum Jbc and energies

Eb,c =
√

M2
b,c + q2; T † is the 3P0 quark-antiquark pair-

creation operator of Refs. [15, 16, 32, 33, 41, 42]. The

wave functions of the mesons A, B and C are written
as harmonic oscillator wave functions, with a single os-
cillator parameter α = 0.5 GeV [15, 16]. See App. A.
Finally, the UQM parameters are reported in Table I.
See also App. B, where we provide the relevant flavor
matrix elements.

B. Diagrammatic approach to meson-meson
scattering

In this section, we briefly remind the diagrammatic
approach to meson-meson scattering of Refs. [38, 39],
where the low-energy scattering of qq̄ mesons is described
in terms of Born-order diagrams in a non relativistic po-
tential model. The Hamiltonian of the model is

H = H0 +HI

=
∑
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where λai and λaj are Gell-Mann color matrices and rij is
the relative coordinate between the quarks i and j.
We have to compute the matrix elements

⟨DE|HI |BC⟩ = δ(P⃗i − P⃗f ) hfi , (3)

where Pi = P⃗b + P⃗c and P⃗f = P⃗d + P⃗e. There are four
Born diagrams which contribute to the O(HI) BC →
DE scattering amplitude (see Fig. 1). The matrix ele-
ments hfi of a particular diagram can be written as the
product of five contributions

hfi(particular diagram) = SIflavorIcolorIspinIspace , (4)

where S = −1, resulting from the permutation of fermion
operators in the scattering matrix elements, is the ”sig-
nature” phase, and Iflavor , Icolor, Ispin and Ispace are
flavor, color, spin and spatial matrix elements, respec-
tively [38]. The color matrix element of the Gell-Mann

color matrices λa
i
2 and

λa
j

2 can be written as

Icolor =

{

+ 4
9 transfer diagrams

− 4
9 capture diagrams

. (5)

The flavor and spin matrix elements are reported in
Apps. B and C, respectively.
Finally, the spatial matrix element of the spin-spin po-

tential in momentum space
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are given by [38]
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X(3872) → J/Ψω decay and the isospin-violating pro-
cess X(3872) → J/Ψρ proceed through the exchange
of D0/D0∗ mesons between D0D̄0∗ intermediate states
[36, 37]. In our study, inspired by the rescattering mech-
anism, we do something similar. In particular, the UQM
is used to include higher Fock (or continuum) compo-
nents, like DD̄, DD̄∗, D∗D̄∗, and so on, in the pure cc̄
wave function of the χc1(23P1). Then, one of these com-
ponents (D0D̄0∗) dissociates into a cc̄ state (J/Ψ) plus a
light meson (ρ or ω). The dissociation matrix elements
are calculated as the low-energy scattering of the D0 and
D̄0∗ mesons in a non-relativistic potential model [38, 39].
Finally, our results are compared with the existing ex-

perimental data [3]. It is worthwhile noting that our
result for the ratio between the X(3872) → J/Ψω and
X(3872) → J/Ψρ decays, i.e. 0.6, is in accordance with
the present experimental data, i.e. 0.8±0.3 [3, 40], within
the experimental error. See Sec. IV. In Sec. V, we dis-
cuss the possible importance of another type of contribu-
tions to the amplitudes.
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γ0 0.510
α 0.500 GeV
rq 0.335 fm
mn 0.330 GeV
ms 0.550 GeV
mc 1.50 GeV

TABLE I: Pair-creation model parameters, used in our UQM
calculations. The values of the model parameters are taken
from Ref. [15].

II. FORMALISM

A. UQM formalism

In the UQM for mesons [15, 16, 32, 33], the effects of qq̄
sea pairs are introduced explicitly into the quark model
through a QCD-inspired 3P0 pair-creation mechanism.
The meson wave function,
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, (1)

is made up of a quark-antiquark valence configuration,
|A⟩, plus a sum over the possible higher Fock (or con-
tinuum) components, |BCq⃗ ℓJbc⟩, due to the creation of
3P0 qq̄ pairs. The intermediate state mesons B and C
have relative momentum q⃗, relative orbital angular mo-
mentum ℓ, total angular momentum Jbc and energies

Eb,c =
√

M2
b,c + q2; T † is the 3P0 quark-antiquark pair-

creation operator of Refs. [15, 16, 32, 33, 41, 42]. The

wave functions of the mesons A, B and C are written
as harmonic oscillator wave functions, with a single os-
cillator parameter α = 0.5 GeV [15, 16]. See App. A.
Finally, the UQM parameters are reported in Table I.
See also App. B, where we provide the relevant flavor
matrix elements.

B. Diagrammatic approach to meson-meson
scattering

In this section, we briefly remind the diagrammatic
approach to meson-meson scattering of Refs. [38, 39],
where the low-energy scattering of qq̄ mesons is described
in terms of Born-order diagrams in a non relativistic po-
tential model. The Hamiltonian of the model is
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=
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where λai and λaj are Gell-Mann color matrices and rij is
the relative coordinate between the quarks i and j.
We have to compute the matrix elements

⟨DE|HI |BC⟩ = δ(P⃗i − P⃗f ) hfi , (3)

where Pi = P⃗b + P⃗c and P⃗f = P⃗d + P⃗e. There are four
Born diagrams which contribute to the O(HI) BC →
DE scattering amplitude (see Fig. 1). The matrix ele-
ments hfi of a particular diagram can be written as the
product of five contributions

hfi(particular diagram) = SIflavorIcolorIspinIspace , (4)

where S = −1, resulting from the permutation of fermion
operators in the scattering matrix elements, is the ”sig-
nature” phase, and Iflavor , Icolor, Ispin and Ispace are
flavor, color, spin and spatial matrix elements, respec-
tively [38]. The color matrix element of the Gell-Mann

color matrices λa
i
2 and

λa
j

2 can be written as

Icolor =

{

+ 4
9 transfer diagrams

− 4
9 capture diagrams

. (5)

The flavor and spin matrix elements are reported in
Apps. B and C, respectively.
Finally, the spatial matrix element of the spin-spin po-

tential in momentum space

Vss = − 8παs
3mimj

S⃗i · S⃗j
1

(2π)3

∫
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= − 1
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is made up of a quark-antiquark valence configuration,
|A⟩, plus a sum over the possible higher Fock (or con-
tinuum) components, |BCq⃗ ℓJbc⟩, due to the creation of
3P0 qq̄ pairs. The intermediate state mesons B and C
have relative momentum q⃗, relative orbital angular mo-
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wave functions of the mesons A, B and C are written
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See also App. B, where we provide the relevant flavor
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B. Diagrammatic approach to meson-meson
scattering

In this section, we briefly remind the diagrammatic
approach to meson-meson scattering of Refs. [38, 39],
where the low-energy scattering of qq̄ mesons is described
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where λai and λaj are Gell-Mann color matrices and rij is
the relative coordinate between the quarks i and j.
We have to compute the matrix elements

⟨DE|HI |BC⟩ = δ(P⃗i − P⃗f ) hfi , (3)

where Pi = P⃗b + P⃗c and P⃗f = P⃗d + P⃗e. There are four
Born diagrams which contribute to the O(HI) BC →
DE scattering amplitude (see Fig. 1). The matrix ele-
ments hfi of a particular diagram can be written as the
product of five contributions

hfi(particular diagram) = SIflavorIcolorIspinIspace , (4)

where S = −1, resulting from the permutation of fermion
operators in the scattering matrix elements, is the ”sig-
nature” phase, and Iflavor , Icolor, Ispin and Ispace are
flavor, color, spin and spatial matrix elements, respec-
tively [38]. The color matrix element of the Gell-Mann

color matrices λa
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2 and
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2 can be written as

Icolor =
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The flavor and spin matrix elements are reported in
Apps. B and C, respectively.
Finally, the spatial matrix element of the spin-spin po-

tential in momentum space
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FIG. 1: Four Born diagrams that contribute to the scattering amplitude.

Ic1,ss = − 1
(2π)3

8παs
3m1m4
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∫

d3k′ Φ∗
d

(
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d3k Φ∗
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(
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) , (7a)
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, (7d)

where the subscripts c1, c2, t1 and t2 stand for the 1 and
2 capture and 1 and 2 tranfer diagrams of Fig. 1. In
Eqs. (7a) and (7b), we use the special case of Fourier
transform

∫

d3p Φ (p⃗) = (2π)3/2Ψ(0) , (8)

where Ψ(0) is the coordinate space wave function evalu-
ated in the origin. As discussed in Ref. [39], the spatial

matrix elements of the Coulomb

VCoul (|r⃗ij |) = − 4αs

3rij
(9)

and linear confining

Vconf (|r⃗ij |) = βrij (10)

potentials can be easily computed in coordinate space
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∫
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Ψb(x⃗b)Ψc(x⃗c)Ψ

∗
d(r⃗ )Ψ

∗
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i
2 (P⃗d+µcP⃗b)·x⃗be

i
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Ic2 =

∫
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∗
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e(r⃗ ) v(r) e
i
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i
2 (P⃗d+µbP⃗b)·x⃗ceiP⃗b·r⃗ , (11b)

2

X(3872) → J/Ψω decay and the isospin-violating pro-
cess X(3872) → J/Ψρ proceed through the exchange
of D0/D0∗ mesons between D0D̄0∗ intermediate states
[36, 37]. In our study, inspired by the rescattering mech-
anism, we do something similar. In particular, the UQM
is used to include higher Fock (or continuum) compo-
nents, like DD̄, DD̄∗, D∗D̄∗, and so on, in the pure cc̄
wave function of the χc1(23P1). Then, one of these com-
ponents (D0D̄0∗) dissociates into a cc̄ state (J/Ψ) plus a
light meson (ρ or ω). The dissociation matrix elements
are calculated as the low-energy scattering of the D0 and
D̄0∗ mesons in a non-relativistic potential model [38, 39].
Finally, our results are compared with the existing ex-

perimental data [3]. It is worthwhile noting that our
result for the ratio between the X(3872) → J/Ψω and
X(3872) → J/Ψρ decays, i.e. 0.6, is in accordance with
the present experimental data, i.e. 0.8±0.3 [3, 40], within
the experimental error. See Sec. IV. In Sec. V, we dis-
cuss the possible importance of another type of contribu-
tions to the amplitudes.

Parameter Value

γ0 0.510
α 0.500 GeV
rq 0.335 fm
mn 0.330 GeV
ms 0.550 GeV
mc 1.50 GeV

TABLE I: Pair-creation model parameters, used in our UQM
calculations. The values of the model parameters are taken
from Ref. [15].

II. FORMALISM

A. UQM formalism

In the UQM for mesons [15, 16, 32, 33], the effects of qq̄
sea pairs are introduced explicitly into the quark model
through a QCD-inspired 3P0 pair-creation mechanism.
The meson wave function,

| ψA⟩ = N
[

| A⟩+
∑

BCℓJbc

∫

dq⃗ | BCq⃗ ℓJbc⟩

⟨BCq⃗ ℓJbc | T † | A⟩
Ea − Eb − Ec

]

, (1)

is made up of a quark-antiquark valence configuration,
|A⟩, plus a sum over the possible higher Fock (or con-
tinuum) components, |BCq⃗ ℓJbc⟩, due to the creation of
3P0 qq̄ pairs. The intermediate state mesons B and C
have relative momentum q⃗, relative orbital angular mo-
mentum ℓ, total angular momentum Jbc and energies

Eb,c =
√

M2
b,c + q2; T † is the 3P0 quark-antiquark pair-

creation operator of Refs. [15, 16, 32, 33, 41, 42]. The

wave functions of the mesons A, B and C are written
as harmonic oscillator wave functions, with a single os-
cillator parameter α = 0.5 GeV [15, 16]. See App. A.
Finally, the UQM parameters are reported in Table I.
See also App. B, where we provide the relevant flavor
matrix elements.

B. Diagrammatic approach to meson-meson
scattering

In this section, we briefly remind the diagrammatic
approach to meson-meson scattering of Refs. [38, 39],
where the low-energy scattering of qq̄ mesons is described
in terms of Born-order diagrams in a non relativistic po-
tential model. The Hamiltonian of the model is

H = H0 +HI

=
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i +
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,
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where λai and λaj are Gell-Mann color matrices and rij is
the relative coordinate between the quarks i and j.
We have to compute the matrix elements

⟨DE|HI |BC⟩ = δ(P⃗i − P⃗f ) hfi , (3)

where Pi = P⃗b + P⃗c and P⃗f = P⃗d + P⃗e. There are four
Born diagrams which contribute to the O(HI) BC →
DE scattering amplitude (see Fig. 1). The matrix ele-
ments hfi of a particular diagram can be written as the
product of five contributions

hfi(particular diagram) = SIflavorIcolorIspinIspace , (4)

where S = −1, resulting from the permutation of fermion
operators in the scattering matrix elements, is the ”sig-
nature” phase, and Iflavor , Icolor, Ispin and Ispace are
flavor, color, spin and spatial matrix elements, respec-
tively [38]. The color matrix element of the Gell-Mann

color matrices λa
i
2 and

λa
j

2 can be written as

Icolor =

{

+ 4
9 transfer diagrams

− 4
9 capture diagrams

. (5)

The flavor and spin matrix elements are reported in
Apps. B and C, respectively.
Finally, the spatial matrix element of the spin-spin po-

tential in momentum space

Vss = − 8παs
3mimj

S⃗i · S⃗j
1

(2π)3

∫

d3rijeip⃗ij ·r⃗ijδ(r⃗ij)

= − 1
(2π)3

8παs
3mimj

S⃗i · S⃗j
(6)

are given by [38]
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computed with the non-relativistic potential model for-
malism of Refs. [38, 39] and Sec. II B. For simplicity,
we consider a single harmonic oscillator parameter, α, for
the wave functions of the five mesons, A, B, C, D and E
(see Table I).
Analogously to what is done in the positronium case

[49], the decay amplitude is written as

Γ =

[

∫

P 2
b dPb

|⟨A|T †|BC⟩|2

(Ma−Ebc)2+
Γ2
a
4

|v⃗b − v⃗c|σbc→de] |ΨBC(0)|2
, (14)

where the term in square brackets is the convolution
product between a distribution function, describing the
probability to find the |BC⟩ state in the wave function of
|A⟩, the term |⃗vb − v⃗c| is the difference between the ve-

locities of the mesons B and C, and the term Γ2
a
4 [where

Γa is the experimental total width of the X(3872)] in
the denominator is necessary for the convergence of the
calculation, the mass of the X(3872) being very close to
the D0D̄0∗ threshold [16]. As in the positronium case
[49], there is a weight |ΨBC(0)|2, which is given by the
square of the harmonic oscillator wave function of the BC
meson-meson molecule, evaluated in the origin. The har-
monic oscillator parameter of ΨBC(r⃗), αbc, is determined
from the condition

∫

d3r Ψ∗
BC(r⃗) r ΨBC(r⃗) = ⟨r⟩molecule

X(3872) , (15)

where ⟨r⟩molecule
X(3872) ≈ 10 fm is the dimension of the

X(3872) as if it was a D0D̄0∗ meson-meson molecule [7].
To get results, the width of Eq. (14) has to be integrated
over the Breit-Wigner mass distribution of the ρ and ω
mesons, because MJ/Ψ +Mρ/ω > MD0 +MD̄0∗ .
Finally, the results of our calculation are compared

with the experimental data [3] in Table II. It is worth-
while noting that our result for the ratio between the
X(3872)→ J/Ψω and X(3872)→ J/Ψρ decays,

Γth
X(3872)→J/Ψω

Γth
X(3872)→J/Ψρ

= 0.6 , (16)

is compatible with the present experimental data [3, 40]

Γexp
X(3872)→J/Ψω

Γexp
X(3872)→J/Ψρ

= 0.8± 0.3 (17)

within the experimental error. See also Table III, where
the result of Eq. (16) is compared to those of other cal-
culations.

V. J/Ψω TRANSITION OF THE X(3872) FROM
cc̄ ANNIHILATION

In this section, we discuss the possible contribution to
the X(3872) → J/Ψω amplitude due to the X(3872) →

Transition ΓUQM (KeV) Γexp (KeV)

X(3872) → J/Ψρ 10 ≈ 31
X(3872) → J/Ψω 6 ≈ 22

TABLE II: Our theoretical (UQM) results for the hadronic
decaysX(3872) → J/Ψρ andX(3872) → J/Ψω are compared
to the experimental data [3].

Source Value of
ΓX(3872)→J/Ψω

ΓX(3872)→J/Ψρ

Experiment [3] 0.8± 0.3
Ref. [25] ≈ 2
Ref. [37] 1.0± 0.3
Ref. [50] 5.5− 6.6
Ref. [51] 0.42
Ref. [52] 1.27 − 2.24

Present work 0.6

TABLE III: Our theoretical result for the ratio between the
amplitudes X(3872) → J/Ψω and X(3872) → J/Ψρ is com-
pared to those of other studies and the experimental data [3].

J/Ψ ggg → J/Ψω transition. These type of transitions
arise from the interaction between the heavy quarks and
gluons, and can be seen as two-stage factorized processes.
First, the heavy-quark pair annihilates into gluons, then
the gluons fragment into specific hadronic final states.
The leading term in the Hamiltonian, relevant to

chromo-electric E1 transitions, is [53, 54]

HE1 = −1

2
ξar⃗ · E⃗a(0) , (18)

where r⃗ is the relative coordinate between the quark and
the antiquark, E⃗ the chromo-electric component of the
gluon field strength tensor and ξa the difference of the
color generators acting on the quark and antiquark. Con-
sidering (18) as a perturbation of the Hamiltonian that
describes the qq̄ interaction, one gets the amplitude [53]

A = ⟨f | ξariGrjξ
b |i⟩ ⟨h|παsE

a
i E

b
j |0⟩ , (19)

where i and j are three-vector indices, |i⟩ and |f⟩ the
initial and final quarkonium states, G the Green function
of the unperturbed system and |h⟩ the light hadron state.
In Ref. [55], the authors gave an estimation of the

X(3872) → χc1(1P )ππ transition; the same can be
done for η and single pion transitions. Unfortunately,
the ω amplitude cannot be directly predicted with an
explicit calculation, because the corresponding transi-
tion operator in unknown. The reason is that, un-
like the η transition, in this case one cannot use the

5

computed with the non-relativistic potential model for-
malism of Refs. [38, 39] and Sec. II B. For simplicity,
we consider a single harmonic oscillator parameter, α, for
the wave functions of the five mesons, A, B, C, D and E
(see Table I).
Analogously to what is done in the positronium case

[49], the decay amplitude is written as

Γ =

[

∫

P 2
b dPb

|⟨A|T †|BC⟩|2

(Ma−Ebc)2+
Γ2
a
4

|v⃗b − v⃗c|σbc→de] |ΨBC(0)|2
, (14)

where the term in square brackets is the convolution
product between a distribution function, describing the
probability to find the |BC⟩ state in the wave function of
|A⟩, the term |⃗vb − v⃗c| is the difference between the ve-

locities of the mesons B and C, and the term Γ2
a
4 [where

Γa is the experimental total width of the X(3872)] in
the denominator is necessary for the convergence of the
calculation, the mass of the X(3872) being very close to
the D0D̄0∗ threshold [16]. As in the positronium case
[49], there is a weight |ΨBC(0)|2, which is given by the
square of the harmonic oscillator wave function of the BC
meson-meson molecule, evaluated in the origin. The har-
monic oscillator parameter of ΨBC(r⃗), αbc, is determined
from the condition

∫

d3r Ψ∗
BC(r⃗) r ΨBC(r⃗) = ⟨r⟩molecule

X(3872) , (15)

where ⟨r⟩molecule
X(3872) ≈ 10 fm is the dimension of the

X(3872) as if it was a D0D̄0∗ meson-meson molecule [7].
To get results, the width of Eq. (14) has to be integrated
over the Breit-Wigner mass distribution of the ρ and ω
mesons, because MJ/Ψ +Mρ/ω > MD0 +MD̄0∗ .
Finally, the results of our calculation are compared

with the experimental data [3] in Table II. It is worth-
while noting that our result for the ratio between the
X(3872)→ J/Ψω and X(3872)→ J/Ψρ decays,

Γth
X(3872)→J/Ψω

Γth
X(3872)→J/Ψρ

= 0.6 , (16)

is compatible with the present experimental data [3, 40]

Γexp
X(3872)→J/Ψω

Γexp
X(3872)→J/Ψρ

= 0.8± 0.3 (17)

within the experimental error. See also Table III, where
the result of Eq. (16) is compared to those of other cal-
culations.

V. J/Ψω TRANSITION OF THE X(3872) FROM
cc̄ ANNIHILATION

In this section, we discuss the possible contribution to
the X(3872) → J/Ψω amplitude due to the X(3872) →
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X(3872) → J/Ψρ 10 ≈ 31
X(3872) → J/Ψω 6 ≈ 22

TABLE II: Our theoretical (UQM) results for the hadronic
decaysX(3872) → J/Ψρ andX(3872) → J/Ψω are compared
to the experimental data [3].

Source Value of
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TABLE III: Our theoretical result for the ratio between the
amplitudes X(3872) → J/Ψω and X(3872) → J/Ψρ is com-
pared to those of other studies and the experimental data [3].

J/Ψ ggg → J/Ψω transition. These type of transitions
arise from the interaction between the heavy quarks and
gluons, and can be seen as two-stage factorized processes.
First, the heavy-quark pair annihilates into gluons, then
the gluons fragment into specific hadronic final states.
The leading term in the Hamiltonian, relevant to

chromo-electric E1 transitions, is [53, 54]

HE1 = −1

2
ξar⃗ · E⃗a(0) , (18)

where r⃗ is the relative coordinate between the quark and
the antiquark, E⃗ the chromo-electric component of the
gluon field strength tensor and ξa the difference of the
color generators acting on the quark and antiquark. Con-
sidering (18) as a perturbation of the Hamiltonian that
describes the qq̄ interaction, one gets the amplitude [53]

A = ⟨f | ξariGrjξ
b |i⟩ ⟨h|παsE

a
i E

b
j |0⟩ , (19)

where i and j are three-vector indices, |i⟩ and |f⟩ the
initial and final quarkonium states, G the Green function
of the unperturbed system and |h⟩ the light hadron state.
In Ref. [55], the authors gave an estimation of the

X(3872) → χc1(1P )ππ transition; the same can be
done for η and single pion transitions. Unfortunately,
the ω amplitude cannot be directly predicted with an
explicit calculation, because the corresponding transi-
tion operator in unknown. The reason is that, un-
like the η transition, in this case one cannot use the
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Relativized QM parameters 

3P0 model parameters 

by a Gaussian factor, whose width rq has been determined
from meson decays to be in the range 0.25–0.35 fm
[60,75,76]. In our calculation, we take the value rq ¼
0.335 fm [55]. The pair-creation strength, γeff0 ¼ mn

mi
γ0, is

fitted to the strong decay ϒð4SÞ → BB̄, and the value for γ0
is extracted.
In short, the two main differences from the old 3P0

model are the introduction of a quark form factor, as
already done by many authors such as Törnqvist and
Zenczykowski [56], Silvestre-Brac and Gignoux [60],
and Geiger and Isgur [75,76], and the use of the effective
strength γeff0 ¼ mn

mi
γ0, since it is well known that heavy

flavor pair creation is suppressed. We think that both these
improvements, i.e., the introduction of the quark form
factor and the effective strength γeff0 , already used in
Refs. [55,73], can make the model more realistic.
The matrix elements of the pair-creation operator T†

were derived in explicit form in the harmonic oscillator
basis in Ref. [77], using standard Jacobi coordinates.
In the UQM, the coupling Va;bc between the meson-

meson continuum, BC, and the unperturbed wave function
of the meson A can be written as

Va;bcðqÞ ¼
X

lJ

hBC~qlJjT†jAi: ð6Þ

In general, two different diagrams can contribute to the
transition matrix element hBC~qlJjT†jAi (see Fig. 1): in the
first one, the quark in A ends up in B, while in the second
one it ends up in C. In the majority of cases, one of these
two diagrams vanishes; however, for some matrix elements,
both must be taken into account [73], as, for example, in the
case of the coupling ηb → ϒϒ, where the initial jbb̄i state is
coupled to the final state jbb̄; bb̄i and the created pair is a
bb̄ one.
Finally, by substituting Eq. (6) into Eq. (2), we have

ΣðEaÞ ¼
X

BClJ

Z
∞

0
q2dq

jhBC~qlJjT†jAij2

Ea − Eb − Ec
: ð7Þ

The values of the pair-creation model’s parameters, used
to compute the strong decays of Sec. III A and the vertices
hBC~qlJjT†jAi of Eq. (7), are reported in Table I.

C. 3P0 pair-creation model

In the 3P0 pair-creation model [78], the open flavor
strong decays of bb̄mesons take place via the production of
a light qq̄ pair (i.e., q ¼ u, d, or s), with vacuum, i.e., 3P0,
quantum numbers, followed by the separation of the initial
meson into two open-bottom mesons.
Themost recent variants of the 3P0 model include a quark

form factor in the transition operator [55,70–73,75,76]
that takes the nonpointlike nature of the constituent quarks
into account, and an effective pair-production strength
γeff0 that suppresses unphysical heavy qq̄ pair creation
[49,55,73].
In particular, in Ref. [49] it is stated that in the old 3P0

model approach the pair creation is flavor independent,
which implies an enhancement of the creation of heavy
quarks in comparison with that of light quarks, without a
fundamental reason for that. Thus, an effective pair-
creation strength γeff0 [49,55,73], defined as

γeff0 ¼ mn

mi
γ0; ð8Þ

is introduced, with i ¼ n (i.e., u or d), s, c, and b (see
Table I). This problem has already been recognized and
corrected by several authors [49,55,73]. The same mecha-
nism as in Eq. (8), including also a quark form factor, is
used in the calculations of the present paper and of
Refs. [55,73].

D. Godfrey and Isgur’s relativized quark model

The relativized QM [5] is a potential model for qq̄meson
spectroscopy, which was developed in 1985 by Godfrey
and Isgur (see also Ref. [11]).
The starting Hamiltonian of the model [5] is given by

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

2

q
þ Vconf þ Vhyp þ Vso; ð9Þ

where m1 and m2 are the masses of the constituent quark
and antiquark inside the meson, q is their relative

(a) (b)

FIG. 1. Two diagrams can contribute to the process A → BC. qi
and q̄i stand for the various initial (i ¼ 1–4) and final ði ¼ 5–8)
quarks or antiquarks, respectively. Picture from Ref. [73].
Copyright 2012, American Physical Society.

TABLE I. Pair-creation model parameters.

Parameter Value

γ0 0.732
α 0.500 GeV
rq 0.335 fm
mn 0.330 GeV
ms 0.550 GeV
mc 1.50 GeV
mb 4.70 GeV
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masses of the decaying and final state mesons provide
minimum and maximum values for the theoretical decay
width, from which one can extract the theoretical error.
To obtain results for the masses of the higher lying bb̄

resonances, we use the relativized QM of Ref. [5], whose
mass formula we have refitted to the most recent exper-
imental data (see Table IV). Something similar was done in
Ref. [81] for charmonia.
This refit was necessary to compute the strong decays,

which require precise values for the masses of the decaying
mesons, including the higher-lying states. Indeed, the 85
original results of Godfrey and Isgur [5] show a deviation
from the most recent experimental data of the order of

50 MeV in the case of 4S states. The prediction of Godfrey
and Isgur for the mass of ϒð4SÞ (10.63 GeV [5]) is
approximately 50 MeV higher than the corresponding
experimental data (10579.4# 1.2 MeV [79]); moreover,
their theoretical prediction for the mass of ηbð4SÞ
(10.62 GeV) is 40 MeV higher than the mass of ϒð4SÞ,
while in contrast an ηbð4SÞ state should be lower in energy.
The value of ηbð4SÞ’s mass, which was absent in the

TABLE III. Strong decay widths (in MeV) in heavy meson pairs for higher bottomonium states. Column 2 shows the values of the
masses of the decaying bb̄ states: when available, we used the experimental values from PDG [79] (†); otherwise the theoretical
predictions of the relativized QM [5], whose mass formula we have refitted to the most recent experimental data (parameters as from
Table IV). Columns 3–8 show the decay width contributions from various BC channels, such as BB̄ and BB̄$. The values of the 3P0

model parameters, fitted to experimental data for the strong decay widths of bb̄ resonances (see Appendix B), are shown in Table I.
The symbol—in the table means that a certain decay is forbidden by selection rules or that the decay cannot take place because it is
below the threshold.

Meson Mass [MeV] JPC BB̄ BB̄$ B̄B$ B$B̄$ BsB̄s BsB̄$
s B̄sB$

s B$
s B̄$

s

ϒð10580Þ or ϒð43S1Þ 10.595 1−− 20 — — — — —
E10579.4# 1.2†

χb2ð23F2Þ 10585 2þþ 34 — — — — —

ϒð33D1Þ 10661 1−− 23 4 15 — — —

ϒ2ð33D2Þ 10667 2−− — 37 30 — — —

ϒ2ð31D2Þ 10668 2−þ — 55 57 — — —

ϒ3ð33D3Þ 10673 3−− 15 56 113 — — —

Eχb0ð43P0Þ 10726 0þþ 26 — 24 — — —

ϒ3ð23G3Þ 10727 3−− 3 43 39 — — —

χb1ð43P1Þ 10740 1þþ — 20 1 — — —

hbð41P1Þ 10744 1þ− — 33 5 — — —

χb2ð43P2Þ 10751 2þþ 10 28 5 1 — —

χb2ð33F2Þ 10800 2þþ 5 26 53 2 2 —

ϒ3ð31F3Þ 10803 3þ− — 28 46 — 3 —

ϒð10860Þ or ϒð53S1Þ 10876# 11† 1−− 1 21 45 0 3 1
ϒ2ð43D2Þ 10876 2−− — 28 36 — 4 4
ϒ2ð41D2Þ 10877 2−þ — 22 37 — 4 3
ϒ3ð43D3Þ 10881 3−− 1 4 49 0 1 2
ϒ3ð33G3Þ 10926 3−− 7 0 13 2 0 5
ϒð11020Þ or ϒð63S1Þ 11019# 8† 1−− 0 8 26 0 0 2

TABLE IV. Resulting values of Godfrey and Isgur’s model [5]
parameters, obtained by refitting the mass formula of Eq. (9) with
the most recent experimental data [79].

mb¼ 5.024 GeV b ¼ 0.156 GeV2 αcrs ¼ 0.60
Λ ¼ 0.200 GeV c ¼ −0.280 GeV σ0 ¼ 0.146 GeV
s ¼ 4.36 ϵc ¼ −0.242 ϵt ¼ 0.030
ϵsoðVÞ ¼ −0.053 ϵsoðSÞ ¼ 0.019

TABLE V. Our results for the open-bottom strong decay widths
of Table III are compared to the existing experimental data [79].
We also provide an estimation of the theoretical error, which is
determined considering the upper and lower limits on the values
of the experimental masses from PDG [79]. Different combina-
tions between the upper and lower limits of the masses of the
decaying and final state mesons provide minimum and maximum
values for the theoretical decay width, from which one can extract
the theoretical error.

State Γtheor ð3P0Þ [MeV] Γexp [MeV]

ϒð43S1Þ 20.49þ0.01
−0.12 20.5# 2.5

ϒð10860Þ 71.08þ24.34
−13.83 42þ29

−24

HIGHER MASS BOTTOMONIA PHYSICAL REVIEW D 90, 094022 (2014)

094022-5

original paper of 1985 [5], was extracted by running a
numerical program that calculates Godfrey and Isgur
model’s spectrum with the original values of the parameters
as reported in Ref. [5]. The 4S resonances are important,
being the lowest energy bb̄ states that decay into two open-
bottom mesons. Since we are interested in calculating
observables (the strong decay widths) that have a strong
dependence on the masses of the mesons involved in the
calculation, we thought that it was important to update the
1985 results of Godfrey and Isgur in the bb̄ sector. At that
time, many bb̄ states were still unobserved. Moreover, since
the results of Godfrey and Isgur differ from the experimental
data in the 4S case, we think that this might also be the case
of other higher lying radial excitations, such as 4P. Thus, in
our fit, we preferred to get a better reproduction of the radial
excitations instead of the low-lying ones, because the latter
are useless in computing the decays.

B. Bare and self-energy calculation of bb̄ states

The relativized QM [5] is now used to compute the bare
energies of the bb̄ mesons, Ea’s, at each step of an iterative
procedure. Indeed, in this case, the quantities fitted to the
spectrum of bottomonia [79,80] are the physical masses
Ma’s of Eq. (3), and therefore the fitting procedure is an
iterative one.
Indeed, once the values of the bare energies are known, it

is possible to calculate the self-energies ΣðEaÞ’s of the bb̄
states through Eq. (7), summing over a complete set of
accessible SUfð5Þ ⊗ SUspinð2Þ 1S intermediate states. If
the bare energy of the initial meson A is above the threshold
BC, i.e., Ea > Mb þMc, the self-energy contribution due
to the meson-meson BC channel is computed as

ΣðEaÞðBCÞ ¼ P
Z

∞

MbþMc

dEbc

Ea − Ebc

qEbEc

Ebc
jhBC~qlJjT†jAij2

þ 2πi
!
qEbEc

Ea
jhBC~qlJjT†jAij2

"

Ebc¼Ea

;

ð17Þ

where the symbol P indicates a principal part
integral, calculated numerically, and 2πifqEbEc

Ea
jhBC~qlJjT†

jAij2gEbc¼Ea
is the imaginary part of the self-energy.

Finally, the results of our calculation, obtained with the
set of parameters of Tables I and VI and the effective pair-
creation strength of Eq. (8), are given in Table VII and
Fig. 2. This means that the vertices hBC~qlJjT†jAi of
Eqs. (7) and (17) are computed with the same set of 3P0

model parameters as in Sec. III A, fitted to the experimental
ϒð4SÞ → BB̄ strong decay width [79] (see Appendix B).

C. χ bð3PÞ system
The χbð3PÞ system was discovered by the ATLAS

Collaboration in 2012 [83] and then confirmed by the

D0 Collaboration [84]. Since the χbð3PÞ resonances lie
quite close to BB̄, BB̄%, and B%B̄% decay thresholds, their
wave functions may contain important continuum compo-
nents, as we have shown in the cc̄ sector in the case of the
Xð3872Þ [55]. We think that the present experimental data
[83,84] cannot exclude this possibility. In particular, in
Ref. [84] the authors state, “Further analysis is underway
to determine whether this structure is due to the χbð3PÞ
system or some exotic bottom-quark state.” Thus, we think
that our results for these states, and in particular for
the splittings between them, can be used to discuss this
particular problem (see Fig. 3 and Tables VIII, IX, and X).
Indeed, the magnitude of the splittings between χbð3PÞ
states of the multiplet is still unknown (see Ref. [16]).
As shown in Table VIII, our UQM result for the mass

barycenter of the χbð3PÞ system [obtained by averaging the
theoretical values of the masses of the χb0ð3PÞ, χb1ð3PÞ,
and χb2ð3PÞmesons, from Table VII] is in good accordance
with the present experimental data: Mχbð3PÞ ¼ 10.530&
0.005ðstatÞ & 0.009ðsystÞ GeV [83] and Mχbð3PÞ ¼
10.551& 0.014ðstatÞ & 0.017ðsystÞ GeV [84]. It is inter-
esting to observe that, in the case of the χbð3PÞ system,
important threshold effects break the scheme for the
splittings between χb2ð3PÞ − χb1ð3PÞ and χb1ð3PÞ −
χb0ð3PÞ resonances, which holds in the χbð1PÞ and
χbð2PÞ cases. See also Table IX, which reports results
for the mass barycenters of χbð1PÞ, χbð2PÞ, and χbð3PÞ
systems and the mass splittings between the members of the

FIG. 2 (color online). Comparison between the calculated
masses (black lines) of 1S, 2S, 3S, 1P, 2P, 3P, and 1D
bottomonium states via Eq. (3) and the experimental ones
[79,80] (boxes). The new values of Godfrey and Isgur’s model
parameters are taken from Table VI. Also shown is the lowest
strong decay thresholds.

TABLE VI. Values of Godfrey and Isgur’s model parameters,
obtained by fitting the results of Eq. (3) to the experimental data
[79,80].

mb ¼ 4.568 GeV b ¼ 0.1986 GeV2 αcrs ¼ 0.600
Λ ¼ 0.200 GeV c ¼ 0.628 GeV σ0 ¼ 0.0127 GeV
s ¼ 2.655 ϵc ¼ −0.2948 ϵt ¼ 0.0129
ϵsoðVÞ ¼ − 0.0715 ϵsoðSÞ ¼ 0.0573
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of the properties of bb̄ mesons based on a 3P0-type model
for the decay vertices has parameters that should be fitted in
the most appropriate sector; thus the bb̄ sector in this case,
which considers the decay(s) of a bb̄ meson(s); and (2)
because bb̄ mesons have open-bottom decay thresholds that
are located at high energies in comparison with the masses of
the mesons belonging to the cc̄ sector; i.e., the first bb̄

meson decaying into a BB̄ pair is a 4S one. Thus, if one
wants to get reliable results for the open-bottom strong
decays of higher bottomonia, one should fit the parameters in
such a way as to get a good reproduction of the widths of
these high radial (and orbital) excitations. In the charmonium
case, the lowest energy state decaying into an open charm
DD̄ pair is the ψð3770Þ, i.e., a 1D state. In general, 1D states
lie at lower energies than 4S ones.
These continuum coupling effects are particularly impor-

tant in the case of suspected non-qq̄ states, such as the

TABLE VII. Self-energies, ΣðEaÞ (in MeV; see column 15), for 1S, 2S, 3S, 1P, 2P, 3P, and 1D bottomonium states due to coupling to
the meson-meson continuum, calculated with the effective pair-creation strength of Eq. (8) and the values of the UQM parameters of
Table I. Columns 3–14 show the contributions to ΣðEaÞ from various channels BC, such as BB̄ and BB̄#. In column 16 are reported the
values of the bare energies, Ea, calculated within the relativized QM [5], with the values of the model parameters of Table VI. In column
17 are reported the theoretical estimations Ma of the masses of the bb̄ states, which are the sum of the self-energies ΣðEaÞ and the bare
energies Ea (see also Fig. 2). Finally, in column 18 are reported the experimental values of the masses of the bb̄ states [79,80].
The symbol—means that the contribution from a channel is suppressed by selection rules (spins, G parity, …).

State JPC BB̄ BB̄# B̄B# B#B̄# BsB̄s BsB̄#
s B̄sB#

s B#
s B̄#

s BcB̄c BcB̄#
c B̄cB#

c B#
cB̄#

c ηbηb ηbϒ ϒϒ ΣðEaÞ Ea Ma Mexp.

ηbð11S0Þ 0−þ — −26 −26 — −5 −5 — −1 −1 — — 0 −64 9455 9391 9391
ϒð13S1Þ 1−− −5 −19 −32 −1 −4 −7 0 0 −1 — 0 — −69 9558 9489 9460
ηbð21S0Þ 0−þ — −43 −41 — −8 −7 — −1 −1 — — 0 −101 10081 9980 9999
ϒð23S1Þ 1−− −8 −31 −51 −2 −6 −9 0 0 −1 — 0 — −108 10130 10022 10023
ηbð31S0Þ 0−þ — −59 −52 — −8 −8 — −1 −1 — — 0 −129 10467 10338 —
ϒð33S1Þ 1−− −14 −45 −68 −2 −6 −10 0 0 −1 — 0 — −146 10504 10358 10355
hbð11P1Þ 1þ− — −49 −47 — −9 −8 — −1 −1 — 0 — −115 10000 9885 9899
χb0ð13P0Þ 0þþ −22 — −69 −3 — −13 0 — −1 0 — 0 −108 9957 9849 9859
χb1ð13P1Þ 1þþ — −46 −49 — −8 −9 — −1 −1 — — 0 −114 9993 9879 9893
χb2ð13P2Þ 2þþ −11 −32 −55 −2 −6 −9 0 −1 −1 0 — 0 −117 10017 9900 9912
hbð21P1Þ 1þ− — −66 −59 — −10 −9 — −1 −1 — 0 — −146 10393 10247 10260
χb0ð23P0Þ 0þþ −33 — −85 −4 — −14 0 — −1 0 — 0 −137 10363 10226 10233
χb1ð23P1Þ 1þþ — −63 −60 — −9 −10 — −1 −1 — — 0 −144 10388 10244 10255
χb2ð23P2Þ 2þþ −16 −42 −72 −2 −6 −10 0 0 −1 0 — 0 −149 10406 10257 10269
hbð31P1Þ 1þ− — −18 −73 — −11 −10 — −1 −1 — 0 – −114 10705 10591 —
χb0ð33P0Þ 0þþ −4 — −160 −6 — −15 0 — −1 0 — 0 −186 10681 10495 —
χb1ð33P1Þ 1þþ — −25 −74 — −11 −10 — 0 −1 — — 0 −121 10701 10580 —
χb2ð33P2Þ 2þþ −19 −16 −79 −3 −8 −12 0 0 −1 0 — 0 −138 10716 10578 —
ϒ2ð11D2Þ 2−þ — −72 −66 — −11 −10 — −1 −1 — — 0 −161 10283 10122 —
ϒð13D1Þ 1−− −24 −22 −90 −3 −3 −16 0 0 −1 — 0 — −159 10271 10112 —
ϒ2ð13D2Þ 2−− — −70 −68 — −10 −11 — −1 −1 — 0 — −161 10282 10121 10164
ϒ3ð13D3Þ 3−− −18 −43 −78 −3 −8 −11 0 −1 −1 — 0 — −163 10290 10127 —

TABLE VIII. Mass barycenters of χbð1PÞ, χbð2PÞ, and χbð3PÞ
systems (column 1) and mass splittings between the members of
the χbð1PÞ, χbð2PÞ, and χbð3PÞ multiplets (columns 2 and 3),
from Table VII. These are the results of our UQM calculation of
the bb̄ spectrum with self-energy corrections of Table VII.
The results are expressed in MeV. The notation ΔM21ð1PÞ
stands for the mass difference between the χb2ð1PÞ and
χb1ð1PÞ resonances, ΔM10ð1PÞ for the mass difference between
the χb1ð1PÞ and χb0ð1PÞ resonances, and so on.

Mth
χbð1PÞ ΔM21ð1PÞ ΔM10ð1PÞ

9876 21 30

Mth
χbð2PÞ ΔM21ð2PÞ ΔM10ð2PÞ

10242 13 18

Mth
χbð3PÞ ΔM21ð3PÞ ΔM10ð3PÞ

10551 −2 85

TABLE IX. Mass barycenters of χbð1PÞ, χbð2PÞ, and χbð3PÞ
systems (column 1) and mass splittings between the members of
the χbð1PÞ, χbð2PÞ, and χbð3PÞ multiplets (columns 2 and 3),
from Table III. These are the results of our refit of Godfrey and
Isgur’s mass formula, with the model parameters of Table IV.
The results are expressed in MeV.

Mχbð1PÞ ΔM21ð1PÞ ΔM10ð1PÞ
9894 21 30

Mχbð2PÞ ΔM21ð2PÞ ΔM10ð2PÞ
10241 21 14

Mχbð3PÞ ΔM21ð1PÞ ΔM10ð1PÞ
10510 17 13
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!  Importance of introducing higher Fock components in QM 
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