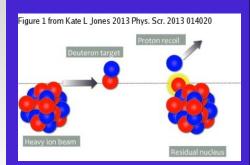
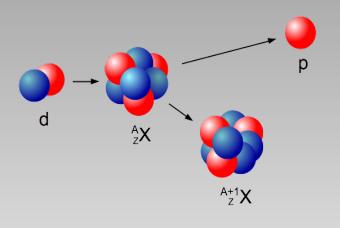
Ab initio many-body calculations of single-nucleon transfer reactions with deuteron projectile

[arXiv:1602.04404, accepted on PRC]


Francesco Raimondi (University of Surrey)

In collaboration with:

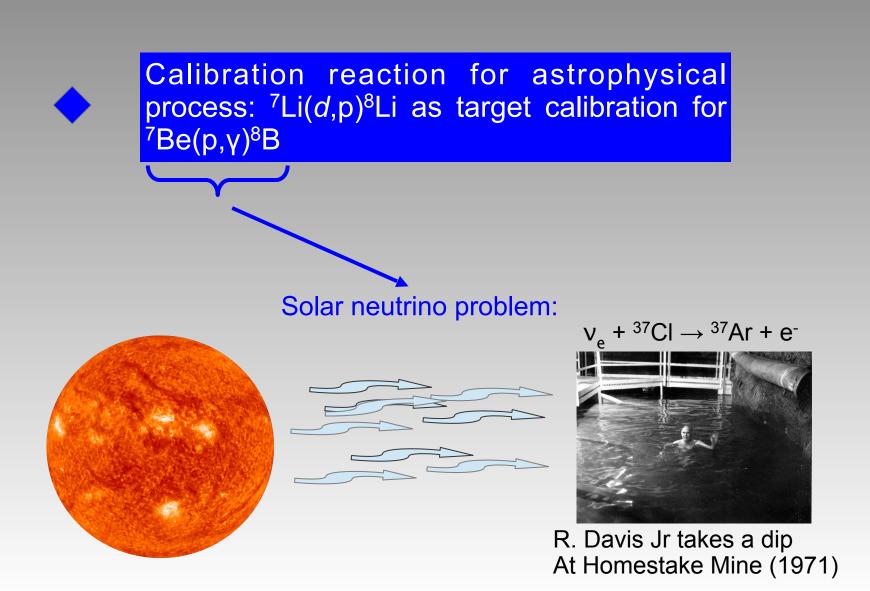
- G. Hupin (CEA, DAM),
- P. Navrátil (TRIUMF),
- S. Quaglioni (LLNL).



Outline

- Motivations for the study of transfer reactions and interest in ⁷Li(d,p)⁸Li reaction
- The No-Core Shell Model with Resonating Group Method (NCSM/RGM) and with continuum (NCSMC)
- Results on ⁷Li(d,p)⁸Li reactions and resonances of ⁹Be above d-⁷Li threshold:
 - (Eigen)phase shifts
 - Cross sections
- Conclusions & perspectives

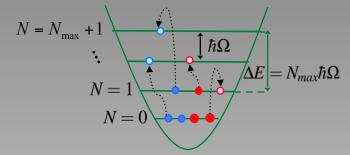
Deuteron-nucleus reaction: experimental motivations


Intense experimental activity (direct and inverse kinematics):

(d,p) reaction in direct kinematics

- Structure and spectroscopy of nuclei
- Nucleosynthesis and nuclear fusion applications (³H(d,n)⁴He reaction)
- Surrogate for (p/n) capture reactions
- Calibration reaction for measurement of processes of interest

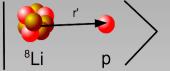
⁷Li(*d*,p)⁸Li transfer reaction

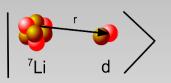


No-core shell model combined with the resonating group method (NCSM-RGM) and NCSM with continuum (NCSMC)

No-core shell model (NCSM):

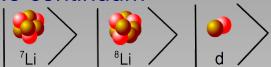
- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- Short- and medium-range correlations
- No continuum

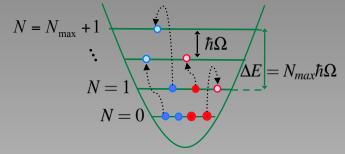



P. Navrátil at al. PRL **84**, 5728 (2000)

NCSM+Resonating group method (NCSM-RGM):

NCSM with continuum (NCSMC):

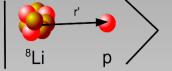

S. Baroni, P. Navrátil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013)

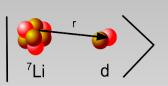

$$|\Psi_A^{J^\pi T}\rangle\!=\!\sum_{\lambda}c_{\lambda}|\bigotimes_{^{9}\!\text{Be}}\rangle\!+\!\sum_{\tilde{\nu}}\int dr\,r^2\frac{g_{\tilde{\nu}}^{J^\pi T}(r)}{r}\,\hat{\mathcal{A}}_{\tilde{\nu}}\,|\bigotimes_{^{7}\!\text{Li}}\,\stackrel{\bullet}{\text{d}}\rangle +\!\sum_{\tilde{\nu}'}\int dr'\,r'^2\frac{g_{\tilde{\nu}'}^{J^\pi T}(r')}{r'}\,\hat{\mathcal{A}}_{\tilde{\nu}'}\,|\bigotimes_{^{8}\!\text{Li}}\,\stackrel{\circ}{\text{p}}\rangle$$

No-core shell model combined with the resonating group method (NCSM-RGM) and NCSM with continuum (NCSMC)

No-core shell model (NCSM):

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- Short- and medium-range correlations
- No continuum





P. Navrátil at al. PRL 84, 5728 (2000)

NCSM+Resonating group method (NCSM-RGM):

- Microscopic approach to describe the scattering of clusters
- Long range correlations (relative motion of clusters)
 K. Wildermuth, Y.C. Tang A unified theory of the nucleus 1977

NCSM with continuum (NCSMC):

S. Baroni, P. Navrátil, and S. Quaglioni, PRL 110, 022505 (2013); PRC 87, 034326 (2013)

$$|\Psi_A^{J^\pi T}\rangle = \sum_{\lambda} c_{\lambda} |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}} \int dr \, r \underbrace{g_{\tilde{\nu}}^{J^\pi T}(r)}_{\mathbf{T}} \hat{\mathcal{A}}_{\tilde{\nu}} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}}\rangle + \sum_{\tilde{\nu}'} \int dr' \, r' \underbrace{g_{\tilde{\nu}'}^{J^\pi T}(r')}_{\mathbf{T}'} \hat{\mathcal{A}}_{\tilde{\nu}'} \, |\mathbf{\hat{p}$$

Variational amplitudes (unknowns of the many-body problem)

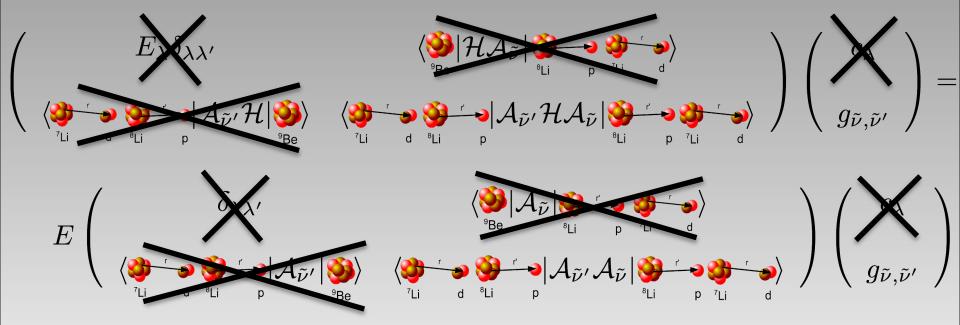
NCSM-RGM and NCSMC equations

$$\mathcal{H} = T_{\mathrm{rel}}(r) + \mathcal{V}_{\mathrm{rel}} + ar{V}_{\mathrm{C}}(r) + H_{(A-a)} + H_{(a)}$$
 Internal A microscopic

Internal A-nucleon microscopic Hamiltonian

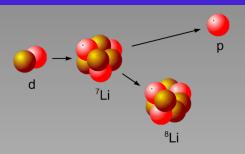
Coupled-channel equations solved for the amplitude c_{λ} and g_{ν}

$$\left(\begin{array}{c|c} E_{\lambda} \delta_{\lambda \lambda'} & \left\langle \begin{array}{c} |\mathcal{H} \mathcal{A}_{\tilde{\nu}} | \begin{array}{c} |\mathcal{V} \\ \circ_{\mathsf{Be}} \end{array} \right\rangle \\ \langle \begin{array}{c} |\mathcal{H} \mathcal{A}_{\tilde{\nu}'} | \begin{array}{c} |\mathcal{H} \mathcal{H} \mathcal{A}_{\tilde{\nu}'} | \begin{array}{c} |\mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} | \begin{array}{c} |\mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} | \begin{array}{c} |\mathcal{H} \mathcal{H} \mathcal{H} \mathcal{H} | \begin{array}{c} |\mathcal{H} | \begin{array}{c} |\mathcal{H}$$

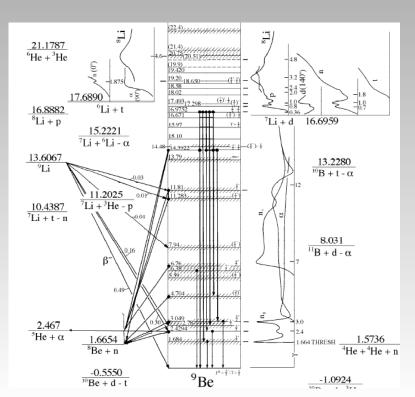

Coupled-channel microscopic *R*-matrix method on Lagrange mesh provides Scattering matrix and Asymptotic Normalization Coefficients by matching internal solution to known asymptotic M. Hesse, J.M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl Phys. A 640, 37 (1988)

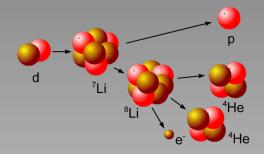
NCSM-RGM and NCSMC equations

$$\mathcal{H} = T_{\text{rel}}(r) + \mathcal{V}_{\text{rel}} + \bar{V}_{\text{C}}(r) + H_{(A-a)} + H_{(a)}$$


Internal A-nucleon microscopic Hamiltonian

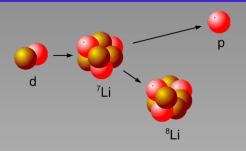
Coupled-channel equations solved for the amplitude c_{λ} and g_{ν}

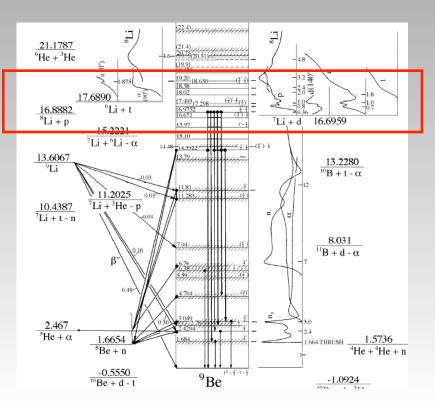


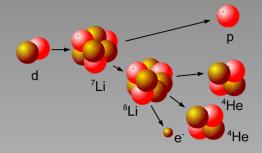

Coupled-channel microscopic *R*-matrix method on Lagrange mesh provides Scattering matrix and Asymptotic Normalization Coefficients by matching internal solution to known asymptotic M. Hesse, J.M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl Phys. A 640, 37 (1988)

⁷Li(*d*,p)⁸Li reaction and structure of ⁹Be

"Model space" reaction

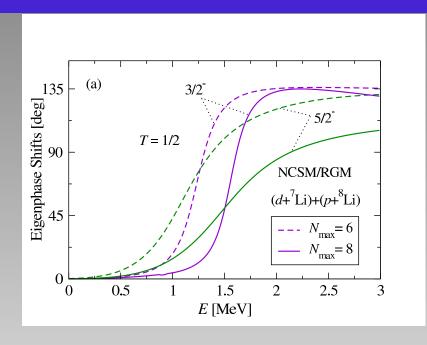


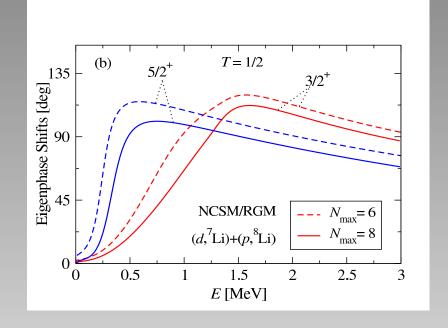

"Real world" reaction


⁹Be ground state is stable All excited states are unbound

⁷Li(*d*,p)⁸Li reaction and structure of ⁹Be

"Model space" reaction

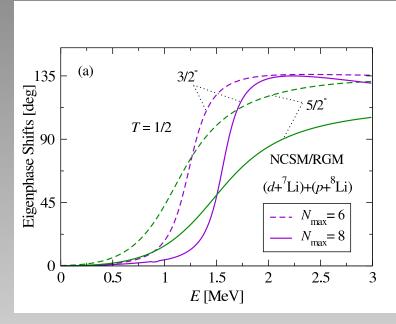

"Real world" reaction

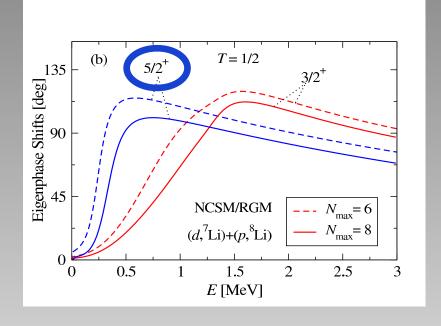

⁹Be ground state is stable All excited states are unbound

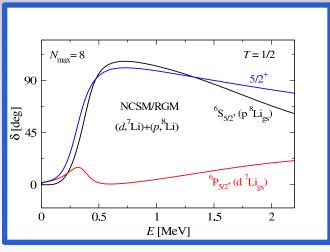
Inclusion of the continuum:

- Low-energy spectrum: n-8Be (n-α-α)
- High-energy spectrum: d-7Li, p-8Li

(d, ⁷Li) + (p, ⁸Li) coupled NCSM-RGM calculation Eigenphase shifts

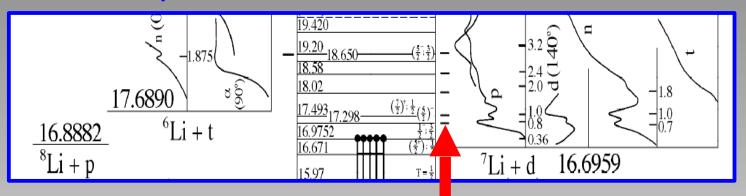

Model space (N_{max}=6,8 $\hbar\Omega$ =20 MeV): $|d(d^*)+^7Li_{gs}>+|d(d^*)+^7Li_{lex}>+|p+^8Li_{gs}>+|p+^8Li_{lex}>+|p+$


Virtual breakup of the deuteron: 4 pseudostates


Chiral nuclear interaction:

Entem-Machleidt SRG-evolved (Λ=2.02 fm⁻¹) NN force at N³LO (cutoff 500 MeV)

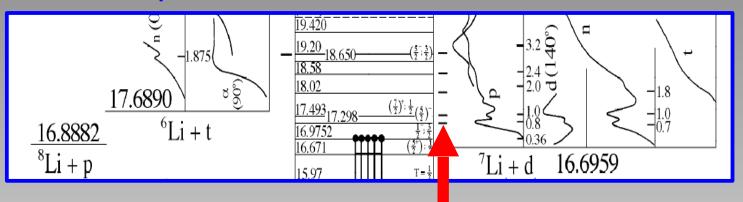
(d, ⁷Li) + (p, ⁸Li) coupled NCSM-RGM calculation Eigenphase shifts

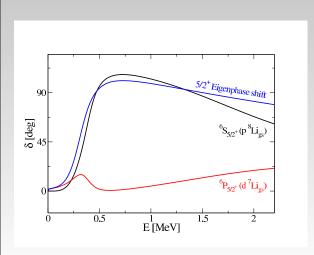

Dominant partial waves above p + 8Li threshold: 3/2^{-,+}, 5/2^{-,+}

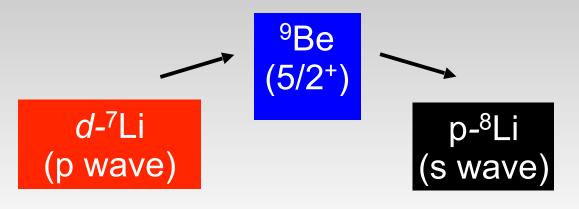
Main phase shifts for 5/2+:

- P-wave in (d, ⁷Li)
- Resonant S-wave in (p, ⁸Li)

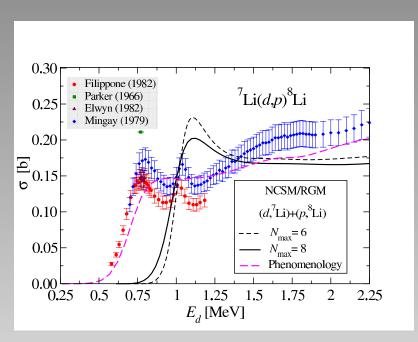
Spin-parity assignment of 0.78 MeV resonance of ⁹Be


⁹Be spectrum above *d*-⁷Li threshold

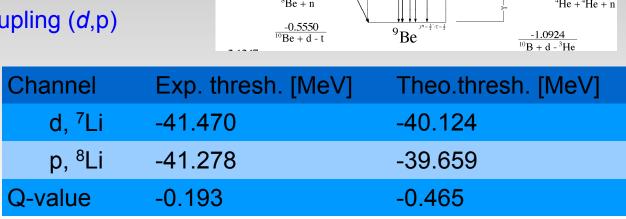

Low peak in the experimental total cross section: E(5/2-)~0.78 MeV above the threshold (Uncertain spin-parity assignment)

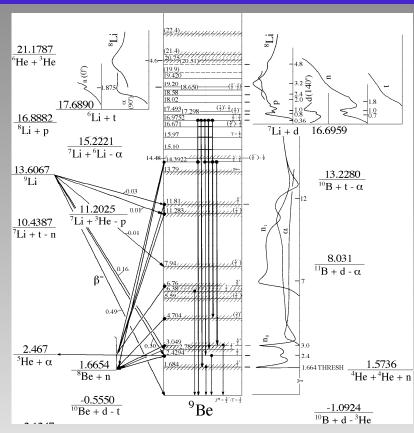

Spin-parity assignment of 0.78 MeV resonance of 9Be

⁹Be spectrum above *d*-⁷Li threshold

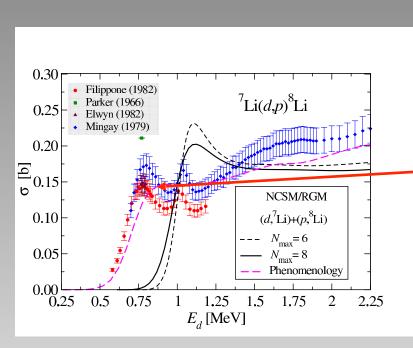


Low peak in the experimental total cross section: E(5/2-)~0.78 MeV above the threshold (<u>Uncertain</u> spin-parity assignment)


⁷Li(d,p)⁸Li total cross section

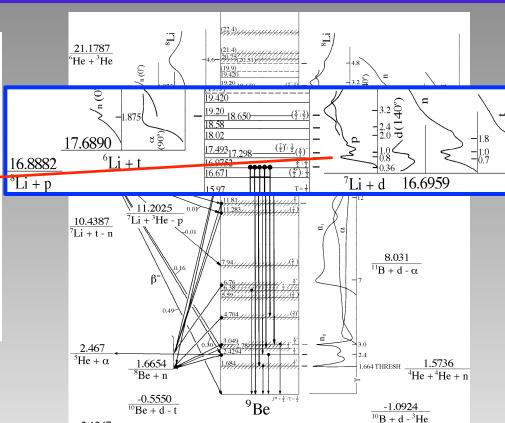


Included channels:


- (1) p, ⁸Li (2) d, ⁷Li (3) coupling (d,p)
- (4) virtual breakup of d

Not-included channels: (1)8Be, n (2) 6Li, t

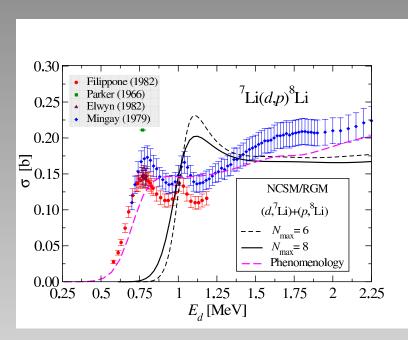
⁷Li(*d*,p)⁸Li total cross section


Included channels:

(1) p, ⁸Li (2) d, ⁷Li (3) coupling (d,p)

(4) virtual breakup of d

Not-included channels:


(1)8Be, n (2) 6Li, t

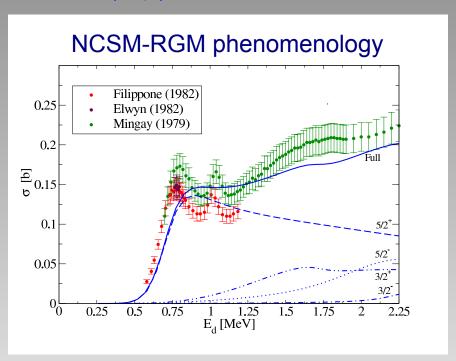
Experimental recommended value 0.147±0.011 b (Γ≈0.2 MeV) at 0.78 MeV of deuteron kinetic energy

Calibration peak for ⁷Be(p,γ)⁸B radiative capture reaction

⁷Li(*d*,p)⁸Li total cross section

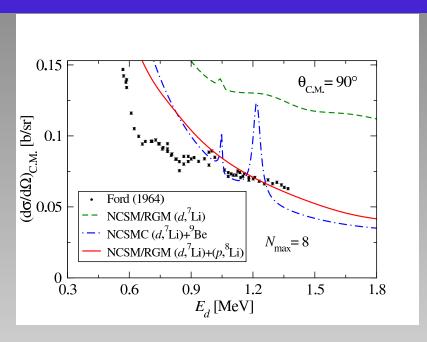
- Included channels:
- (1) p, ⁸Li (2) d, ⁷Li (3) coupling (d,p)
- (4) virtual breakup of d
- Not-included channels: (1)8Be, n (2) 6Li, t

- Position of the first resonant peak overestimated by ~ 0.33 MeV (see Q-value)
- Peak at 17.493 MeV (⁹Be spectrum) not reproduced (missing ⁸Be(α-α)-n? 3N forces?)


d, ⁷Li, ⁸Li NCSM energies adjusted to reproduce the experimental Q-value of the reaction

position of first peak slightly overestimated

Channel	Exp. thresh. [MeV]	Theo.thresh. [MeV]
d, ⁷ Li	-41.470	-40.124
p, ⁸ Li	-41.278	-39.659
Q-value	-0.193	-0.465


Impact of different partial waves on NCSM-RGM total cross section

⁷Li(*d*,p)⁸Li cross section

- Confirmed dominant role played by 5/2+ partial wave
- Below ~2 MeV the cross section is dominated by positive-parity partial waves
- Increasing trend up to deuteron break-up fairly well reproduced (contribution from 5/2- and 3/2+ partial wave)

⁷Li(*d*,*d*)⁷Li cross section (NCSMC)

Experimental resonant peaks at 0.8 MeV (S-wave) and 1.0 MeV (P-wave) ('elastic' process not ideal probe for the ⁹Be resonant states)

- Peak structure (1 MeV and 1.2 MeV) in uncoupled calculations (J=7/2 in D-wave and 5/2 in P-wave). ...shifted at higher energy (missing bare 3N? SRG parameter dependence?)
- Effect of the short-range correlations in NCSMC calculation: Increased lifetime of the resonance too narrow peaks (lack of p-8Li decay channel. other mass partition?)
- Qualitative trend of the data reproduced by NCSMC and coupled NCSM-RGM calculations ...still not-converged calculation at N_{max}=8

Conclusions & Perspectives

First application of the NCSM-RGM for deuteron-projectile and p-shell nucleus as target

Study of the ⁷Li(*d*,p)⁸Li transfer reaction and of the ⁹Be resonances above *d*-⁷Li threshold:

Discussion of the spin-parity assignment of E_d=0.78 MeV resonance

To be done:

- Complete the calculation of the ⁷Li(d,p)⁸Li transfer reaction in the NCSMC framework
- Include 3N force also for p-shell nuclei