On-line monitoring for particle beams

Valeria Rosso
Department of Physics “E. Fermi”, University of Pisa and INFN, Italy

The 3° ELIMED Workshop:
Medical and multidisciplinary applications of laser-driven ion beams at ELI-Beamlines
Uncertainties-monitoring in particle therapy

- CT HU (e.g. calibration apparatus)
- Conversion to proton stopping power
- Dose calculation uncertainties

- Daily positioning on the couch
- Internal organ motion
- Tumour regression
- Weight loss

- RBE values
- Tumor heterogeneity
- Contouring uncertainties
- Reconstruction artifacts in CT
- Machine related

Safety margins: 3% + 3mm

Particle Beam

511 keV

Charged particles

Neutron

Prompt

511 keV
A Prompt Gamma Camera for real-time range control in Proton therapy

Intended application: Measurement of the position at which the proton beam stops in the patient

Camera configuration
Knife-edge slit collimation and 1D detection of γ-ray profiles

Points of attention:
Simplicity, cost effectiveness

Collimator, software and project PI

Detector and Electronics

Clinical partner

and others...
The Gamma Camera: detector and electronics

500 cm³ LYSO distributed in 2 rows of 20 slabs

53 kg W collimator in 5:4 magnification for a 10 cm FOV

Light readout of one extremity of each LYSO slab by a row of 7 SiPM

40 independent acquisition channels operating in two modes (slow calibration and fast counting)
Experimental validation

Shift measurements

Planning uncertainty > 5 mm (margin of 3.5% + 2 mm)
Measurement uncertainty (1.5\(\sigma\)) \(\approx 2.0\) mm

Nasal cavity
The **Inside** Project

INnovative Solutions for In-beam Dosimetry in Hadrontherapy

Features:
- integrated in the nozzle
- operated beam-on
- **provide in vivo particle range on-line**

MULTIMODAL RANGE MONITORING SYSTEM

- Prompt secondary particles emission
- \(\beta^+ \) activity distribution
- DOSE PROFILER + Tracker + Calorimeter
- IN-BEAM PET HEADS

More on INSIDE
http://131.114.131.146/insidewiki
<table>
<thead>
<tr>
<th></th>
<th>IN-BEAM PET HEADS</th>
<th>DOSE PROFILER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>β+ decay</td>
<td>Secondary (charged) particles</td>
</tr>
<tr>
<td>Acquisition</td>
<td>In-spill, inter-spill, after-treatment</td>
<td>In-spill</td>
</tr>
<tr>
<td>Position</td>
<td>□ heads face to face □ perpendicular to the beam axis □ fitted position wrt the isocenter</td>
<td>□ forward direction □ 60° wrt the beam axis.</td>
</tr>
<tr>
<td>Distance from beam isocenter</td>
<td>25 cm</td>
<td>~ 40 cm</td>
</tr>
<tr>
<td>Output</td>
<td>3D activity map / profile</td>
<td>Emission point distribution</td>
</tr>
</tbody>
</table>
INSIDE IN-BEAM PET SYSTEM SPECIFICATIONS
Proton as a projectile

\[^{16}\text{O} \ (p,n) \ ^{15}\text{O} \quad T_{1/2-15-O}=121.8 \text{ s} \]

\[^{12}\text{C} \ (p,n) \ ^{11}\text{C} \quad T_{1/2-11-C}=1222.8 \text{ s} \]

Measuring the β^+ activated volume it’s possible to monitor the treatment
In-beam PET at CNAO
PET Detector

- Full in-beam (full-beam) PET system ~20 MHz single event rate beam-on
- Two planar panels 10 x 25 cm wide. 2 x 5 detection modules.
- 5120 read-out channels
- Pixelated LFS array (16 x 16 pixels, 3 x 3 mm crystals, pitch 3.1 mm), sensitive area of 5 x 5 cm.
- SiPMs (16x16 pixels) coupled one-to-one to LFS crystals
PET Detector

- Full in-beam (full-beam) PET system ~20 MHz single event rate beam-on
- Two planar panels 10 x 25 cm wide. 2 x 5 detection modules.
- 5120 read-out channels
- Pixelated LFS array (16 x 16 pixels, 3 x 3 mm crystals, pitch 3.1 mm), sensitive area of 5 x 5 cm.
- SiPMs (16x16 pixels) coupled one-to-one to LFS crystals
PET system at CNAO

- Proton energy 124 MeV (111 mm in H$_2$O)
- 2×10^{10} particles
- 50 x 50 x 140 mm3 homogeneous PMMA phantom
- 17 spills
PET system at CNAO

antropomorphic phantom

Treatment plan information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation type</td>
<td>Proton</td>
</tr>
<tr>
<td>Target prescription dose</td>
<td>55.8 Gy</td>
</tr>
<tr>
<td>Number of fraction planned</td>
<td>31</td>
</tr>
<tr>
<td>Fraction dose</td>
<td>1.8 Gy</td>
</tr>
<tr>
<td>Number of beam</td>
<td>2 (B1 and B2)</td>
</tr>
</tbody>
</table>

Measurements information

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam</td>
<td>B1</td>
</tr>
<tr>
<td>Dose delivered</td>
<td>0.9 GyRBE</td>
</tr>
<tr>
<td>Nominal beam energy range</td>
<td>73.93 ÷ 134.12 MeV</td>
</tr>
</tbody>
</table>

Image fusion
INSIDE CHARGE PROFILER SPECIFICATIONS
Profiler: charged tracker

- 6 XY planes with 2 cm spacing. Each plane made of 2 stereo layers of 192 0.5x0.5 mm² square scintillating fibers
- 2x0.5 mm squared fibers read out by Hamamatsu 1mm² SiPM : S12571-050P
- 32 SiPM feed a 32 ch ASIC BASIC32

- 4x4 LYSO pixellated crystals tracking planes: 50 x 50 x 16 mm³
- Plastic absorber 1.5 cm thick in front of LYSO to screen electrons
- Crystals read out by 64 ch Hamamatsu MultiAnode
Profiler: Fragmentation & dose monitoring

The method relies on the experimental knowledge of the abundance and on the energy spectrum of produced protons after the irradiation with heavy particle beams (4-He, 12-C or 16-O).

Measured emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90° wrt the direction of 220 AMeV 12C beam

Simulated emission distribution shape of protons as detected outside different PMMA thickness at 30° wrt the direction of 95 AMeV 12C beam

Create a parameter map:
• Simulate with FLUKA MC a parametric proton generator
• Cylindrical PMMA target with different thicknesses
• Fit the proton emission curve with an appropriate function
 → Parameter VS thickness relation
Simulated emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90\(^{0}\) wrt the direction of 220 AMeV \(^{12}\)C beam

Measured emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90\(^{0}\) wrt the direction of 220 AMeV \(^{12}\)C beam

Simulated emission distribution shape of protons as detected outside different PMMA thickness at 30\(^{0}\) wrt the direction of 95 AMeV \(^{12}\)C beam

The method relies on the exp. knowledge of the abundance and on the energy spectrum of produced protons after the irradiation with heavy particle beams (4-He, 12-C or 16-O)

Create a parameter map:
•Simulate with FLUKA MC a parametric proton generator
•Cylindrical PMMA target with different thicknesses
•Fit the proton emission curve with an appropriate function
→ Parameter VS thickness relation

Profiler:
Fragmentation & dose monitoring

The method relies on the experimental knowledge of the abundance and on the energy spectrum of produced protons after the irradiation with heavy particle beams (4-He, 12-C or 16-O). Measured emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90\(^{0}\) wrt the direction of 220 AMeV \(^{12}\)C beam (L. Piersanti et al Phys. Med. Biol 59 1857). Simulated emission distribution shape of protons as detected outside different PMMA thickness at 30\(^{0}\) wrt the direction of 95 AMeV \(^{12}\)C beam (E. Testa et al Phys. Med. Biol. 57 4655).

The method relies on the experimental knowledge of the abundance and on the energy spectrum of produced protons after the irradiation with heavy particle beams (4-He, 12-C or 16-O). Measured emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90\(^{0}\) wrt the direction of 220 AMeV \(^{12}\)C beam (L. Piersanti et al Phys. Med. Biol 59 1857). Simulated emission distribution shape of protons as detected outside different PMMA thickness at 30\(^{0}\) wrt the direction of 95 AMeV \(^{12}\)C beam (E. Testa et al Phys. Med. Biol. 57 4655).

Create a parameter map:
•Simulate with FLUKA MC a parametric proton generator
•Cylindrical PMMA target with different thicknesses
•Fit the proton emission curve with an appropriate function
→ Parameter VS thickness relation

Profiler:
Fragmentation & dose monitoring

The method relies on the experimental knowledge of the abundance and on the energy spectrum of produced protons after the irradiation with heavy particle beams (4-He, 12-C or 16-O). Measured emission distribution shape of protons as detected outside a 5 cm thick PMMA at 90\(^{0}\) wrt the direction of 220 AMeV \(^{12}\)C beam (L. Piersanti et al Phys. Med. Biol 59 1857). Simulated emission distribution shape of protons as detected outside different PMMA thickness at 30\(^{0}\) wrt the direction of 95 AMeV \(^{12}\)C beam (E. Testa et al Phys. Med. Biol. 57 4655).
DoPET is a compact stationary 2 heads tomograph - in-treatment acquisition

15x15 cm²
DoPET: 9 x 9 prototype

Detecting module 5cm x 5cm
- LYSO matrices, each 23 x 23 crystals, 2mm pitch)
- PS-PMT 8500 Hamamatsu
- Dedicated front-end electronics

- Modularized acquisition electronics
- FPGA based acquisition and coincidence processing
- Coincidence time window ~3 ns

- 3D-activity distribution is reconstructed with Maximum Likelihood Estimation Maximization (MLEM) Iterative algorithm
 The reconstruction is performed in less than 1 minute (8 core Intel Xeon e5620 @2.4 GHz)

N. Camarlinghi et al., JINST 9 (2014) C04005 1-12
DoPET: spatial response (CATANA)

- **∆W_{50}**

- **Beam Direction**

- **Table of Data**

<table>
<thead>
<tr>
<th>DOSE</th>
<th>treatment time [s]</th>
<th>Gy/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Gy</td>
<td>16.3</td>
<td>11.04</td>
</tr>
<tr>
<td>6 Gy</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>9 Gy</td>
<td>48</td>
<td>11.25</td>
</tr>
<tr>
<td>12 Gy</td>
<td>56.4</td>
<td>12.77</td>
</tr>
<tr>
<td>15 Gy</td>
<td>72.9</td>
<td>12.35</td>
</tr>
</tbody>
</table>
DoPET: time analysis for isotopic contribution (TRENTO)

Protons on PMMA: after-treatment (0-550 s) exp. data and MC simulations

<table>
<thead>
<tr>
<th>Isotope</th>
<th>MC-FLUKA (%)</th>
<th>Exp. data (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-C</td>
<td>44.81 ± 0.08</td>
<td>44.59 ± 0.56</td>
</tr>
<tr>
<td>15-O</td>
<td>48.01 ± 0.08</td>
<td>48.45 ± 0.74</td>
</tr>
<tr>
<td>10-C</td>
<td>4.06 ± 0.02</td>
<td>6.56 ± 0.32</td>
</tr>
<tr>
<td>8-B</td>
<td>0.40 ± 0.01</td>
<td>0.40 ± 0.05</td>
</tr>
<tr>
<td>Others</td>
<td>2.72 ± 0.02</td>
<td>0.770</td>
</tr>
</tbody>
</table>

The agreement is within 3%
DoPET: an example of an anthropomorphic phantom irradiation (CATANA)

SOBP, collimator: Ø 3 cm, D = 15Gy
\(\Delta t \) in-treatment = 70s

In-treatment
0-70 s

In + after treatment
0-190 s

after treatment
70-600 s

Eyelid is well visible

left SOBP irradiation
right the SOBP + 3mm
RS
Reconstructed data relative to acq. of 190 s
Conclusions

Different monitoring system were developed and are available:

- The systems are compact to be positioned close to the patient and to not interfere with the dose delivery
- In-treatment data taking
- Along the beam direction they have a millimetric capability to detect changes in BP position
- The measurements are in agreement with the Monte Carlo previsions (FLUKA)
- The response is linear with respect to the delivered dose
- Knowledge on the produced isotopes