

A radiobiological experiment on breast cancer cell line using laser driven electron accelerators

Minafra L¹, Cammarata FP¹, Bravatà V¹, Forte GI¹, Lamia D¹, Gizzi L², Labate L², Baffigi F², Fulgentini L², Koester P², Gilardi MC¹ and Russo G¹

1.Institute of Bioimaging and Molecular Physiology (IBFM) – CNR, SS Cefalù (PA) 2. National Optic Institute (INO) – CNR, Pisa

Luigi Minafra (PhD) IBFM-CNR Iuigi.minafra@ibfm.cnr.it

Catania, 8 September 2016

THE IBFM TRANSLATIONAL RESEARCH MODEL

BREAST CANCER

Breast cancer (BC) is a very complex, multifactorial disease, highly heterogeneous at a molecular and clinical level and presents distinct subtypes (>30) associated with different clinical outcomes.

 BC affects 1 out of 8 women during their lifetime and represents 29 % of all cancers affecting women.

 To treat BC radiation therapy (RT) plays an important role, often used in combination with surgery and chemotherapy.

ARTICLE

A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes

Richard M. Neve,^{1,2,9,*} Koei Chin,^{2,9} Jane Fridlyand,^{2,6} Jennifer Yeh,² Frederick L. Baehner,² Tea Fevr,² Laura Clark,¹ Nora Bayani,¹ Jean-Philippe Coppe,¹ Frances Tong,³ Terry Speed,³ Paul T. Spellman,¹ Sandy DeVries,² Anna Lapuk,¹ Nick J. Wang,¹ Wen-Lin Kuo,¹ Jackie L. Stilwell,¹ Daniel Pinkel,² Donna G. Albertson,² Frederic M. Waldman,² Frank McCormick,² Robert B. Dickson,⁷ Michael D. Johnson,⁷ Marc Lippman,⁸ Stephen Ethier,⁴ Adi Gazdar,⁵ and Joe W. Gray^{1,2}

There are a large number of immortalized cell-lines available as study models for BC. *Neve RM et al. Cancer Cell*, 2006

	Cell line	Gene cluster	ER	PR	HER2	TP53	Source	Tumor type	Age (years)	Ethnicity	Culture media	Culture condition
	600MPE	Lu	+	[-]		-		IDC			DMEM, 10% FBS	37° C, 5% CO₂
	AU565°	Lu	-	[-]	+	+ ^{WT}	PE	AC	43	w	RPMI, 10% FBS	37°C, 5% CO2
	BT20	BaA	-	[-]		++ ^{WT}	P.Br	IDC	74	w	DMEM, 10% FBS	37°C, 5% CO2
	BT474	Lu	+	[+]	+	+	P.Br	IDC	60	w	RPMI, 10% FBS	37°C, 5% CO2
	BT483	Lu	+	[+]		-	P.Br	IDC, pap	23	w	RPMI, 10% FBS	37°C, 5% CO2
	BT549	BaB	-	[-]		++ ^M	P.Br	IDC, pap	72	W	RPMI, 10% FBS	37° C, 5% CO2
	CAMA1	Lu	+	[-]		+	PE	AC	51	w	DMEM, 10% FBS	37°C, 5% CO2
	HBL100	BaB	-	[-]		++	P.Br	N	27		DMEM, 10% FBS	37°C, 5% CO2
	HCC1007 ^d	Lu	+	[-]		[+/-]	P.Br	Duc.Ca	67	В	RPMI, 10% FBS	37° C, 5% CO2
0	HCC1143 ^d	BaA	-	[-]		++ ^M	P.Br	Duc.Ca	52	w	RPMI, 10% FBS	37° C, 5% CO2
1	HCC1187 ^d	BaA	-	[-]		++ ^M	P.Br	Duc.Ca	41	w	RPMI, 10% FBS	37° C, 5% CO2
2	HCC1428 ^d	Lu	+	[+]		[+]	PE	AC	49	w	RPMI, 10% FBS	37° C, 5% CO2
3	HCC1500 ^d	BaB	-	[-]		-	P.Br	Duc.Ca	32	в	RPMI, 10% FBS	37°C, 5% CO2
4	HCC1569 ^d	BaA	-	[-]	+	_M	P.Br	MC	70	В	RPMI, 10% FBS	37° C, 5% CO2
5	HCC1937 ^d	BaA	-	[-]		[-]	P.Br	Duc.Ca	24	W	RPMI, 10% FBS	37° C, 5% CO ₂
6	HCC1954 ^d	BaA	-	[-]	+	[+/-]	P.Br	Duc.Ca	61	EI	RPMI, 10% FBS	37°C, 5% CO ₂
7	HCC202 ^d	Lu	-	[-]	+	[-]	P.Br	Duc.Ca	82	w	RPMI, 10% FBS	37° C, 5% CO2
8	HCC2157 ^d	BaA	-	[-]		[+]	P.Br	Duc.Ca	48	В	RPMI, 10% FBS	37° C, 5% CO2
9	HCC2185 ^d	Lu	-	[-]		[+]	PE	MLCa	49	WH	RPMI, 10% FBS	37° C, 5% CO2
0	HCC3153 ^d	BaA	-	[-]		[-]					RPMI, 10% FBS	37°C, 5% CO2
1	HCC38 ^d	BaB	-	[-]		++ ^M	P.Br	Duc.Ca	50	w	RPMI, 10% FBS	37° C, 5% CO2
2	HCC70 ^d	BaA	-	[-]		++ ^M	P.Br	Duc.Ca	49	В	RPMI, 10% FBS	37° C, 5% CO2
3	HS578T	BaB	-	[-]		+ ^M	P.Br	IDC	74	w	DMEM, 10% FBS	37° C, 5% CO2
4	LY2	Lu	+	[-]		+/-	PE	IDC	69	w	DMEM, 10% FBS	37°C, 5% CO2
5	MCF10A ^b	BaB	-	[-]		+/-WT	P.Br	F	36	w	DMEM/F12*	37°C, 5% CO2
6	MCF12A ^b	BaB	-	[-]		+	P.Br	F	60	w	DMEM/F12*	37° C, 5% CO2
7	MCF7	Lu	+	[+]		+/- ^{wī}	PE	IDC	69	w	DMEM, 10% FBS	37° C, 5% CO2
8	MDAMB134VI	Lu	+	[-]		+/-WT	PE	IDC	47	w	DMEM, 10% FBS	37°C, 5% CO2
9	MDAMB157	BaB	-	i-i		_	PE	MC	44	В	DMEM, 10% FBS	37° C, 5% CO2
0	MDAMB175VII	Lu	+	[-]		+/- ^{WT}	PE	IDC	56	В	DMEM, 10% FBS	37° C, 5% CO2
1	MDAMB231	BaB	-	i-i		++M	PE	AC	51	w	DMEM, 10% FBS	37°C, 5% CO2
2	MDAMB361	Lu	+	i-i	+	_wr	P.Br	AC	40	w	DMEM, 10% FBS	37° C. 5% CO2
3	MDAMB415	Lu	+	i-i		+	PE	AC	38	w	DMEM, 10% FBS	37° C. 5% CO2
4	MDAMB435	BaB	_	i-i		+ ^M	PE	IDC	31	w	DMEM, 10% FBS	37° C. 5% CO2
5	MDAMB436	BaB	[-]	i-i		[-]	PE	IDC	43	w	L15, 10% FBS	37°C, no CO ₂
6	MDAMB453	Lu	- 1	i-i		_wr	PF	AC	48	w	DMEM, 10% FBS	37° C, 5% CO-
7	MDAMB468	BaA	[-]	i-i		[+]	PE	AC	51	В	L15, 10% FBS	37°C, no CO ₂
8	SKBR 3 ^a	Lu	- 1	i-i	+	÷	PE	AC	43	w	McCovs 5A, 10% FBS	37°C, 5% CO2
9	SUM1315MO2°	BaB	_	i-1		[+]	Sk	IDC			Ham's F12, 5%-IF	37°C, 5% CO
D	SUM149PT ^C	BaB	[-]	[_]		[+]	P.Br	Inf Duc.Co			Ham's F12, 5%-IH	37°C. 5% CO-
ĩ	SUM159PT ^C	BaB	i-i	i-i		[-]	P.Br	AnCar			Ham's F12, 5%-IH	37° C. 5% CO-
2	SUM185PE ^c	Lu	i-i	[_1		i-i	PE	Duc.Ca			Ham's F12, 5%-IH	37°C, 5% CO-
3	SUM 190PTC	BaA	- '	i_1	+	i+/-1	P.Br	Inf			Ham's F12, SF-IH**	37°C, 5% CO.
4	SUM225CWN ^G	BaA	_	[_]	+	++	CWN	IDC			Ham's F12, 5%-IH	37°C. 5% CO2
5	SUM44PE ^c	lu	[+]	[_1		[-]	PF	Ca			Ham's E12, SE-IH**	37° C. 5% CO2
ś	SUM52PE ^c	lu lu	[+]	[_]		[_]	PE	Ca			Ham's F12, 5%-IH***	37°C 5% CO-
7	1470	Lu lu	- 1-1	[+1		1. M	PE	IDC	54		DDAAL 10% EBS	37°C 5% CO-
2 Q	14/0	Lu lu	1	["]	+	_wr	PBr	IDC	43		DAAEAA 10% EBS	37°C 5% CO2
5	79751	Lu lu	÷.	1-1	Ŧ	-	Δ.E	IDC	43	w	PPAU 10% FBS	37°C 5% CO2
7	2R/31 7D7520	1	Ţ	[-]		wr		IDC	47	P	DDAAL 10% EDS	37°C, 5% CO2
2	207.50	1	Ţ	[-]	Ŧ		Ar		4/	D	NEWI, 10% FD3	37°C, 5% CO2
			-									

RADIOBIOLOGY KNOWHOW

Biological effects induced by IR have been studied by *in-vitro, ex-vivo* and *in-vivo* approaches and by the integration of **multidisciplinary skills** of biologists, physicists, engineers and physicians of our group.

The principal *in-vitro* activities have been carried out on **breast cancer cell lines**, immortalized and primary cells from patient tumour biopsies (*ex-vivo*) with different beams:

- electrons,
- protons and
- electrons produced by laser plasma interaction

IN VITRO/EX VIVO CELL-BASED MODELS

Main goal is to highlight molecular mechanisms, by OMIC approach, involved in the response to radiation treatment with different types of beam, in order to identify radiosensitivity/radioresistance biomarkers and personalize treatments

CELL RESPONSE TO IONIZING RADIATION

Di Maggio FM, Minafra L et al. Journal of Inflammation 2015; 12:14

Minafra L and Bravatà V. Transl Cancer Res 2014; 3 (1):32-47

Cell and molecular response to IR is highly complex, dependent on: LET, dose rate, dose fractionation, radiation dose and type of the irradiated cells or tissues (*Hellweg CE, Spitta LF et al. Front Oncol 2016 ;6:61*).

Molecular models of response to high dose electron RT

In the cellular response to radiation, the activation of several signal transduction pathways by IR, results in an altered expression of a series of target genes, defining in cell death or survival.

RADIOBIOLOGICAL LASER DRIVEN EXPERIMENT

RADIOBIOLOGICAL LASER DRIVEN EXPERIMENT

Electron beam	LDA (ILIL)
D/pulse	0.07 Gy/pulse
Dose rate	4 Gy/min
t _{pulse}	10 ⁻¹² s
Peak dose rate	7x10 ¹⁰ Gy/s
Energy	up to 20 MeV
Frequency	0.5 Hz

EBRT ON MCF7 BC CELL LINE

	$D(Gy)(\pm SD)$	EBRT SF $(\pm SD)$
	0.40 ± 0.01	0.85 ± 0.03
	2.0 ± 0.1	0.65 ± 0.02
	3.7 ± 0.1	0.24 ±0.03
Dose rate: 2 Gy/min	5.9 ± 0.2	0.15 ± 0.02
I _{pulse:} 10 ^{-o} s Energy: 6 MeV	8.4 ± 0.3	0.014 ± 0.001

LDA VS EBRT ON MCF7 BC CELLS

$D(Gy)(\pm SD)$	EBRT SF (± SD)	LDA SF $(\pm SD)$
1.8 ± 0.1	0.63 ± 0.02	0.19 ± 0.01
3.2 ± 0.2	0.38 ± 0.04	0.17 ± 0.02
4.4 ± 0.3	0.22 ± 0.03	0.07 ± 0.01
5.4 ± 0.3	0.14 ± 0.02	0.06 ± 0.01
6.9 ± 0.4	0.06 ± 0.01	0.04 ± 0.01
7.4 ± 0.5	0.05 ± 0.01	0.03 ± 0.01

CONCLUSION

> Our radiobiological experiment with laser electron beam represents the first one performed on MCF7 BC cell line.

 \succ Further studies and experiments are needed to improve laser technology and to better understand the biological effects regarding both ultra-short duration of particle bunches and the extremely high dose rate released.

ACKNOWLEDGEMENTS

IBFM-CNR - SS Cefalù (PA)

- Prof.ssa Maria Carla Gilardi
- Giusi I Forte
- Francesco P Cammarata
- Valentina Bravatà
- Debora Lamia
- Giorgio Russo

INO-CNR - Pisa

- Leonida Gizzi
- Luca Labate
- Federica Baffigi
- Lorenzo Fulgentini
- Petra Koester

