Proton Acceleration with a Table-Top TW Laser

M. Seimetz¹, P. Bellido^{1,2,3}, R. Lera², A. Ruiz-de la Cruz², P. Mur¹, I. Sánchez², M. Galán², F. Sánchez¹, L. Roso³, and J.M. Benlloch¹

Instituto de Instrumentación para Imagen Molecular (I3M), Valencia
 2 - Proton Laser Applications S.L. (PLA), Olèrdola (Barcelona)
 3 - Centro de Láseres Pulsados (CLPU), Villamayor (Salamanca)

3rd ELIMED Workshop Catania

September 7-9, 2016

Collaborators (since 2012):

- Proton Laser Applications S.L. (PLA, private company located close to Barcelona): Development of high-power laser systems.
- Institute for Instrumentation in Molecular Imaging (I3M, Valencia): Targets, particle detectors.
- Spanish Pulsed Laser Centre (CLPU, Salamanca).

Entire system built from scratch:

- Table-top laser developed by PLA. Strong private contribution.
- Detectors built and calibrated by I3M.
- Experiments performed at PLA installations.

PLA laser system

Table-top Ti:Sapphire laser:

- Diode pumping (Nd:YAG) for high rate (10-100 Hz)
- Multi-pass amp. stages $(1.5 \rightarrow 30 \rightarrow 265 \text{ mJ})$
- 2 saturable absorbers for enhanced contrast.

_

	Series 1	
	Nov 2015	
Pulse energy before comp.	150 mJ	
Pulse energy on target	93 mJ	
Pulse duration (FWHM)	43 fs	
Peak power	2 TW	
Focal spot (FWHM, µm ²)	5.0 imes9.0	
Peak intensity (10^{18} W/cm^2)	3.7	
Contrast over ASE	10 ⁵	
Pump rate	100 Hz	

	Series 1	Series 2
	Nov 2015	Jul 2016
Pulse energy before comp.	150 mJ	265 mJ
Pulse energy on target	93 mJ	165 mJ
Pulse duration (FWHM)	43 fs	55 fs
Peak power	2 TW	3 TW
Focal spot (FWHM, μm²)	5.0 imes9.0	5.0 imes11.5
Peak intensity (10^{18} W/cm^2)	3.7	4.2
Contrast over ASE	10 ⁵	10 ⁸
Pump rate	100 Hz	10 Hz

Experimental setup downstream to PLA laser:

• Support for 24 foil targets

- Support for 24 foil targets
- Al target foils (0.65-25 µm)
- Mylar foils (2-13 µm)
- Au foils (0.1-2 µm)

- Support for 24 foil targets
- Al target foils (0.65-25 µm)
- Mylar foils (2-13 µm)
- Au foils (0.1-2 µm)
- FWHM of focal spot: $5\times9~\mu\text{m}^2$

- Support for 24 foil targets
- Al target foils (0.65-25 µm)
- Mylar foils (2-13 µm)
- Au foils (0.1-2 µm)
- FWHM of focal spot: $5\times9\;\mu\text{m}^2$
- Position control with He:Ne laser

Particle detectors

CR-39 plates, 1 cm² (Radosys, Budapest):

- Relation *E_p* track diameter calibrated on 3 MV tandem accelerator (Centro Nacional de Aceleradores, CNA, Seville)
- Up to 1 MeV, unique relation
- For higher energies, thin Al absorbers
- Etching in 6.25N NaOH, 90°C, 4 hours
- Automatic readout (Radosys PT10 microscope)
- Self-developed track recognition software for image analysis
- Placed 100 cm behind the target.

M. Seimetz

Protons at PLA

Time-of-flight detector:

- Based on fast plastic scintillator
- Dynamic range adjustable with optical filters
- Calibrated with pulsed proton beam as function of beam current (CNA)
- 227 cm behind target.

Results from Series 1 (93 mJ, LC)

Al target foils, 2-25 $\mu m;$ CR-39 at 100 cm target distance:

12.5 µm

18 µm

25 µm

Results from Series 1 (93 mJ, LC)

- $\bullet\,$ Max. proton energy at 2 TW: $\sim 650~\text{keV}$
- Max. proton number: $\sim 10^6/{
 m msr}$
- No eff. acceleration with 2-4 µm Al
- Much lower energies and particle numbers with Mylar foils

Spectra approximated by $N_{
ho}=rac{N_0}{E_{
ho}}\cdot e^{-E_{
ho}/E_0}/(1+e^{(E_{
ho}-E_{
m max})/\Delta E})+N_{bg}$.

Results from Series 2 (165 mJ, HC)

- Proton energies calculated from TOF
- Spectral distributions approximated by same analytic function as CR-39
- Similar results from CR-39 covered with Al absorbers $(\Delta E_{\rm max} = 100 \text{ keV}).$

Results from Series 2 (165 mJ, HC)

As compared to Series 1:

- Best results from thin Al/Au foils (< 2 µm)
- Protons from Mylar foils
- Effect of increased contrast seems more important than beam energy.

Ion energy from time-of-flight

First experimental steps accomplished:

- Stable operation of PLA laser at 10-100 Hz
- Focussing and target diagnostics
- Clear proton signals demonstrated
- Proton spectra measured from several foil targets.

Results consistent with other experiments at low pulse energies.

Next steps:

- Modified target design based on Si wafers for
 - Mass production
 - High rate capability
 - Limited target area
 - Controlled CH layer
 - (R. Zaffino, Centro Nacional de Microelectrónica, Barcelona).
- Laser upgrade for increased pulse energy:
 - 500 mJ before comp., 10 Hz with larger crystals
 - 100 Hz require additional cooling
 - 1 J with 3rd multi-pass amp.?
- Detector upgrade: TPS with fast readout.
- Accelerate C ions.

Possible applications: Versatile tools for research

- Radioisotope production (esp. ¹¹C): requires 10-16 MeV *p* at 100 Hz for preclinical studies (small animal models):
 - Use ¹¹C to label any organic molecule without structural change.
 - Labels at different sites to study details of metabolization.
 - Mol. biology, pharmaceutical research, models of pathologies, etc.

MS et al., IEEE NSS-MIC Conf. Record (2015)

G. Antoni, B. Långström (2005)

Possible applications: Versatile tools for research

- Radioisotope production (esp. ¹¹C): requires 10-16 MeV *p* at 100 Hz for preclinical studies (small animal models):
 - Use ¹¹C to label *any* organic molecule without structural change.
 - Labels at different sites to study details of metabolization.
 - Mol. biology, pharmaceutical research, models of pathologies, etc.
- Biol. effects of high-LET radiation: C ions, < 40 MeV/u, 1-10 Hz

MS et al., IEEE NSS-MIC Conf. Record (2015)

G. Antoni, B. Långström (2005)

Possible applications: Versatile tools for research

- Radioisotope production (esp. ¹¹C): requires 10-16 MeV p at 100 Hz for preclinical studies (small animal models):
 - Use ¹¹C to label any organic molecule without structural change.
 - Labels at different sites to study details of metabolization.
 - Mol. biology, pharmaceutical research, models of pathologies, etc.
- Biol. effects of high-LET radiation: C ions, < 40 MeV/u, 1-10 Hz
- Ion therapy of superficial lesions (\Rightarrow Poster by P. Mur).

MS et al., IEEE NSS-MIC Conf. Record (2015)

G. Antoni, B. Långström (2005)

Project funded by:

- Centro para el Desarrollo Tecnológico Industrial (CDTI), grant no. IPT-20111027
- EUROSTARS project E9113
- Spanish Ministry for Economy and Competitiveness, ref. RTC-2015-3278-1
- CSIC, Garantía Juvenil en I+D+i (P. Mur).

Very special thanks to Radosys (Budapest) for CR-39 detector material, etching bath, and readout equipment.

