

Radiation protection of a proton beamline at ELI

S. Bechet, A. Fajstavr, S. Rollet, R. Versaci, M. Zakova

project supported by:

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

- ELI-beamlines and ELIMAIA
- Radiation protection objectives
- Source terms
- Fluka simulations
- Prompt ambient dose equivalent in the experimental hall
- Induced activity
- Conclusions

EUROPEAN UNION EUROPEAN REGIONAL DEVELOPMENT FUND INVESTING IN YOUR FUTURE

ELI- beamlines : User facility for short-pulse high power laser ELIMAIA : Multidisciplinary Application for ion acceleration

Radiation protection objectives

#PTIIIIdi y/SIIOt	7 IU protons	2 10 protons
Maximum energy	30 MeV	70 MeV
Divergence	25°	~10°
# shot/day	300	2000

- Monte Carlo Simulation with FLUKA
- Source term :
 - Beam parameter (experimental data)
 - Input file from PIC simulation
- Geometry :
 - Complete description of the **experimental chamber (EC)**
 - Simple model for the **target holder**
 - Material used
 - AL6082 for aluminum
 - EN1.4306 for stainless steel

Prompt H^{*}(10) in the experimental hall

Horizontal view at beam height

peamlines

i H*(10) in the experimental hall – PIC simulation [mSv/year]

H*(10) in the experimental hall – PIC simulation

H^{*}(10) in [mSv/year] - Horizontal view at beam height - statistical uncertainties

H^{*}(10) due to induced radioactivity - PIC

Dose rate due to induced radioactivity on the EC peamlines

- **Observations** •
 - One order of magnitude difference between Korean and PIC due to energy differences
 - Dose 1 year > dose 1 month > dose 1 day due to the nuclides build-up
 - At the EoI, low dose $\rightarrow 100 1000$ hours/year for one man •

- Observations
 - Error of the order few %
 - Nothing above the most restrictive class

name	class	Lifetime
Cr51	3	27.7 days
Mn56	1	2.58 h
Fe55	4	2.73 year
Co58	1	70.8 days

- Observations
 - Error of the order few %
 - Preliminary result : need a better normalization
 - High specific activity for F18, Mg23 and Si27 but they are short-lived nuclides

name	class	Lifetime
F18	2	109.8 min
Na24	1	14.9 h
Mg23	unclassified	11.3 s
Al26m-1	1	6.3 s
Si27	unclassified	4.2 s

- Beam and geometry implemented in FLUKA
 - \rightarrow useful for next simulations with new configurations
- Prompt dose
 - > 1 mSv/year close to EC
 - \rightarrow no one allowed during the run in the experimental hall
- Induced activity
 - $\simeq 1 \ \mu Sv/h \rightarrow \sim 1000 \ hours/man/year \rightarrow "safe"$
 - Some radionuclides have high specific activities but also short life-time → after one day no need for radioactive waste procedure
- **Preliminary** results **not worrying** for the radiation protection