High Intensity Laser Interaction Studies at BELLA

*ssteinke@lbl.gov

BELLA Center, LBNL

Work supported by Office of Science, Office of FES, US DOE Contract DE-AC-0205CH11231

Fusion Energy Science

Multi-Petawatt laser as an engine for breakthrough discovery science

Fundamental Physics of Relativistic Plasmas

Jong Kim et al. Nat. Comm. (2012)

- Laser Ion Acceleration
- High Harmonics from relativistic oscillating mirrors
- Flying mirror experiments

Relativistic Laboratory Astrophysics

Remington et al. Science (1999)

- Plasma instabilities (Rayleigh-Taylor, Weibel)
- Bow waves
- Magnetized jets
- Anti-matter plasma
- Collisionless shocks

High Intensity Particle Physics

LBNL workshop "Nonlinear QED with ultra-intense PW-class laser pulses" (2012)

- Nonlinear Quantum Electrodymanic nQED: Multiphoton Compton and Breit-Wheeler processes
- EM cascades/ electronpositron pair production

Petawatt lasers as an engine for breakthrough discovery science

Fundamental Physics of Relativistic Plasmas

Jong Kim et al. Nat. Comm. (2012)

- Radiation-Pressure-Acceleration (RPA)
- High Harmonics from relativistic oscillating mirrors
- Flying mirror experiments

Relativistic Laboratory Astrophysics

Remington et al. Science (1999)

- Plasma instabilities (Rayleigh-Taylor, Weibel)
- Bow waves
- Magnetized jets
- Anti-matter plasma
- Collisionless shocks

High Intensity Particle Physics

LBNL workshop "Nonlinear QED with ultra-intense PW-class laser pulses" (2012)

- Nonlinear Quantum Electrodymanic s(QED): Multiphoton Compton and Breit-Wheeler processes
- EM cascades/ electronpositron pair production

Ion acceleration using sheath fields limited energies and beam quality

R. Snavely et al. Phys Rev. Lett. 2000

VOLUME 85, NUMBER 14

PHYSICAL REVIEW LETTERS

2 October 2000

< 1 shot per hour

ш

Above

ntegral Joules

Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids

R. A. Snavely,^{1,2} M. H. Key,¹ S. P. Hatchett,¹ T. E. Cowan,¹ M. Roth,^{3,*} T. W. Phillips,¹ M. A. Stoyer,¹ E. A. Henry,¹ T. C. Sangster,¹ M. S. Singh,¹ S. C. Wilks,¹ A. MacKinnon,¹ A. Offenberger,^{4,*} D. M. Pennington,¹ K. Yasuike,^{5,*} A. B. Langdon,¹ B. F. Lasinski,¹ J. Johnson,⁶ M. D. Perry,¹ and E. M. Campbell¹ ¹Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94550

\sim 60 MeV proton generation

$T_{e,h} = m_e c^2$ **Fast** ions Proton Spectra Laser 10000 N* 10⁹ Protons per MeV (a) 1000 100 100 10 10 (b) Electron cloud **Blow-off** 0.1 0.1 plasma 20 30 40 50 60 10 Proton Energy (MeV) Target ACCELERATOR TECHNOLOGY & ATA Office of

Science

Multi-PW laser allow exploration of new, efficient regimes of ion acceleration

Optimizing Ion acceleration requires sophisticated laser and target parameters

New acceleration regimes

Opaque targets:

- Plasma expansion (TNSA)
- Radiation Pressure Acceleration (RPA)
- Coulomb explosion (CE)

Transparent targets:

- Magnetic Vortex
- Collision less shocks

Drive laser needs

- Multi-PW power
- ultra-high intensity contrast
- pulse length <100fs
- excellent focusability
- repetition rate / stability

What laser is needed to get to 250 MeV/u (fs vs. ps) and when will we be able to reach it?

Transformative opportunity

Esirkepov et al. PRL 92, 175003 (2012)

Unique parameter of PW lasers

- More favorable scaling prop to laser intensity
- High efficiency (~10%)
- Ion energies of >200 MeV/u suitable for bio/ medical applications

Determine future path of laser driven ion acc.

First time measurement of scaling laws with statistical significance

- Will ~*I*λ² hold for short laser pulses? (200 vs 80 MeV)
- Clean laser pulse interaction reduces computation time

Potential societal benefit

Advanced understanding of different states of matter- ion heating of matter (WDM)

Bio/Medical applicationcancer treatment

Radiation damage studies; radiography and fast ignition studies; future accelerators; neutron beams

Advanced targetry is crucial for tuning of laser-matter interactions – access to cutting edge nano-fabrication is required

Nano-scale reduced mass targets **DLC** nanofoils Nano-sphe Masslimited DL 2 um sphere in Paul-trap -traps Carbon disc with 1um diameter, 5nm thickness $(mc^2=1J)$ LMU Munich, MBI Berlin

Solid hydrogen extruder, 10-50 micron thick, 10 mm wide solid hydrogen tape (CEA, France)

Univ. of Pennsylvania

High precision tape drive (BELLA Center)

Office of Science

50 nm

500

600

8

Reflectance

Liquid Xtals(Ohio state Univ.)

ACCELERATOR TECHNOLOGY & ATA

BELLA laser: (still) highest rep rate PW-laser for high intensity LPA experiments towards 10 GeV

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

- Laser (E=15 J):
 - Measured) longitudinal profile (T₀ = 40 fs)
 - Measured far field mode ($w_0 = 53 \mu m$)
- Plasma: parabolic plasma channel (length 9 cm, n₀~6-7x10¹⁷ cm⁻³)

	Exp.	Sim.
Energy	4.25 GeV	4.5 GeV
$\Delta E/E$	5%	3.2%
Charge	~20 pC	23 pC
Divergence	0.3 mrad	0.6 mrad

W.P. Leemans et al., PRL 2014

BELLA-PW Laser facility

3 Phases of BELLA-i for ultra-high intensity HED "science with error bars"

Phase I: Long focal length (FY 17)

Current beamline

- Electron acceleration towards 10 GeV
- Long focal length ion acceleration:
 - Large focal spot leads to narrow divergence and enables efficient transport
 - Isochoric heating
 - TNSA scaling from 30-600fs at 1 Hz

Phase II: new short focal length beamline (FY 18)

Phase III: We are proposing to expand the facility by adding short focal length capability – ultra-high intensity

BELLA-i - a facility for high energy density physics and discovery plasma science at Berkeley Lab

BELLA-i	phase 1	phase 2	phase 3
peak intensity (W/cm ²)	2 x 10 ¹⁹	10 ²²	10 ²²
pulse length	30 fs	30 fs	30 fs
peak pulse energy	40 J	40 J	40 J
laser spot size	55 µm	5 µm	5 µm
peak repetition rate	1 Hz*	1 Hz*	1 Hz
contrast (ns)	10 ⁻¹⁰	10 ⁻¹²	10-14
diagnostics (details to be determined)	 optical spectrometers ion and electron spectrometers 	 optical pump- probe betatron x-rays MeV protons 	 same as 2 beamline for experiments with laser accelerated ions
1 st access (estimates)	2016 -2018	2018-2019	2019-2020

- 1. experiments with the existing, long focal length BELLA beamline in the existing cave
- 2. experiments in the existing BELLA cave with a new dual-beam line
 - * shielding in the BELLA cave limits the repetition rate for experiments with generation of intense pulses of >20 MeV protons
- 3. experiments in a new cave with improved shielding and with a beam line for laser accelerated ions
 - \star improved shielding in a three-times larger experimental area for continuous operation at 1 Hz

Outline

ACCELERATOR TECHNOLOGY & ATA

Large Laser Spot leads to collimated beam and increased number of ions

Transport of 10¹² ions at 5-10 MeV to EMP-free environment possible with plasma lens

Active plasma lens to focus an ion beam to a 500µm spot 1m downstream of plasma

Developed Active Plasma Lens for efficient e-beam coupling to the 2nd stage and emittance measurement

Millimeter-scale focusing for staging experiment

Transport of 10¹² ions at 5-10 MeV to EMP-free environment possible with plasma lens

Active plasma lens to focus an ion beam to a 500µm spot 1m downstream of plasma

HYDRA results suggest: WDM possible

7.5 MeV H on 50.µ Gold

Office of Science

HYDRA results suggest: WDM possible

7.5 MeV C on 1.5µ Gold

Office of Science

ACCELERATOR TECHNOLOGY & ATA

BELLA-I as an engine for breakthrough discovery "science with error bars"

Phase I-III:

Phase I: TNSA& WDM

Determine future path of laser driven ion acc.

First time measurement of scaling laws with statistical significance

- Will ~Iλ² hold for short laser pulses? (200 vs 80 MeV)
- Clean laser pulse interaction reduces computation time

High Intensity Particle Physics & Rel. Lab Astrophysics

Nonlinear Quantum Electrodymanic nQED. Multiphoton Compton and Breit-Wheeler processes EM cascades/ electronpositron pair production

- Plasma instabilities
- Bow waves
- Magnetized jets
- Anti-matter plasma