ITk Simulation: Digitization

Federica Fabbri, Matteo Negrini, Carla Sbarra, <u>Antonio Sidoti</u> Universita` di Bologna and INFN – Sezione di Bologna

Outline

- What is FastSiDigitization?
- Status:
 - Sanity checks
 - Preliminary results
- Next steps

What is FastSiDigitization?

- 50x50µm²x150µm, Planar
- 50x25µm²x150µm, Planar
- 50x25µm²x150µm, 3D
- 50x25μm²x30μm, HV-CMOS
-

- 50x50μm²x150μm, Planar
- 50x25µm²x150µm, Planar
- 50x25µm²x150µm, 3D
- 50x25μm²x30μm, HV-CMOS

Different layouts

Different pixel sizes, thickness An and technologies

FastSiDigitization

Main ideas of the algorithm:

- Read from the HIT the coordinate of entry and exit of each hit
- Ignore the simulated energy deposits
- evolving drift charge using Lorentz angle.
 Only geometrical charge deposition at the moment → planar
- Convert the path length in time over threshold.
- Create cluster with all pixel on a hit.
 Note: output is already a cluster!

Status

FastSiDigitization works since 20.3.3-X (Fall 2015) (FastSiDigitization + Reconstruction)

Using more recent release works out of the box (e.g. 20.20.2.1) What you can do (NOW):

- Change pixel dimensions
- Change detector thickness
- → Unfortunately individually per layer is not always possibile. It depends how the geometry is made.

What it could be possible to do (FUTURE):

Change detector technology (planar implemented up to now: in the future 3D,HVCMOS,...) (using different charge deposition models)

What can't be performed:

- Change layout (but switching off layers should be possible)
- Impact of reduced material on tracking (less dE/dX, X0,)
- Study of different clusterization algorithms (output of FastSiDigitization are already clusters)

Sanity Checks

Reconstructed track residuals wrt Full Reco Digitization and Fast Digitization are equivalent (100 GeV single muons)

Nightly tests in RTT

Preliminary Results: modifying Pixel Pitch

Reducing x2 size of layer2 (phi direction)

15/03/2016

Changing thickness

Preliminary application to HV-CMOS

Thickness of sentitive layer in PixelModule table

p1

p2

+ newThickness/2

p3

- newThickness/2

Modify Start/End coordinates according to the new (smaller) thickness. Local coordinates of sensitive layer between +/-NewThickness/2. NEW CODE: p1 deleted, p2 untouched, p3 change local entry only, p4 change both local entry local exit. Path within sensor assumed to be LINEAR

Modifying detector thickness

Residual: Pixel Barrel Y

We know also how to switch off B field for Lorentz angle

Cluster width

Cluster width in ϕ for pixels

Cluster width in η for pixels

Further developments

- Some code rewriting with new classes will make the code more modular (development in release 20.20)
- → Factorization of geometrical part from the cluster creation
- → Improve flexibility and speed of the algorithm
 It will make possible to study clusterization algorithms

Possibility to use FastSiDigitization in FastSimulation chain

Next Steps

- FastSiDigitization is Yet Another Tool for Itk simulation and performance. Two main steps ahead of us:
- Study Physics performance
 - Different realistic layouts with different pixels sizes
 - Evaluate tracking performance with realistic physics samples (with and without pileup)
- → Fruitfful to increase collaboration with other italian groups (PI, GE, CS and LE)
- Further developments:
 - Implement additional detector technologies: 3D, HVCMOS, monolithic, ...
 (is there something different except detector thickness?)
 - Use FastSiDigitization in Fast Simulation chain
- In parallele with FastSiDigitization Signals and thresholds modifying thickness (also in collaboration with Marseille group)