

"The two INFN Ring Lasers: GP2 and GINGERino"

Jacopo Belfi for the GINGER collaboration

GINGER meeting, Pisa 22 Febbbraio 2016

Outline

Intro

Sagnac interferometry Fundamental limits

Past activity at INFN: G-Pisa

Ground tilt measurements at Virgo Investigation of ring laser dynamics (S. Piero a Grado)

Today's prototypes

Advanced control of the cavity geometry: GP2

Deep underground prototype: GINGERino

Sagnac Interferometers

Sagnac effect

$$\Delta t_{Sagnac} = \frac{4 A}{c^2} \vec{\Omega} \cdot \vec{n}$$

Resonant cavity

$$\Delta f_{Sagnac} = \frac{4 A}{P \lambda} \vec{\Omega} \cdot \vec{n}$$
$$= K_s |\vec{\Omega}|$$

Advantages

- No moving masses
- No signal for a linearly accelerating reference-frame
- L > 1 m \rightarrow Earth rotation is the bias

Quantum resolution limit

$$\delta \Omega_{shot} = \frac{c P}{8 \pi \nu \tau} \left(\frac{h \nu}{2 P_{out} t} \right)^{1/2}$$

...an "extremely good" He-Ne ring laser:

$$v=474 \, THz$$
, $P=32 \, m$
 $P_{out}=100 \, nW$, $\tau=2 \, ms$
 $t=3 \, hours$

$$\delta \Omega_{shot} = 5 \cdot 10^{-15} \, rad/s$$

G-Pisa @ Virgo

Applied Physics B: Lasers And Optics, vol. 106, p. 271, 2012

G-Pisa @ S. Piero a Grado: Study of systematics

Observables

$$S(t) = |a_1 E_1(t) + a_2 E_2(t)^2|$$

$$V_1(t) = |b_1 E_1(t) + c_{21} E_2(t)^2|$$

$$V_2(t) = |b_2 E_2(t) + c_{12} E_1(t)^2|$$

Calibration parameters

 $\xi_{1,2}$: Optical detunings

p:Gas pressure

 T_{Ne} : Atomic temperature

 $k_{20,22}$: Isotopic ratio

 $\mu_{1,2}$: cavity total losses

G: single pass gain

Kalman filter on real data

Allan DEV of AR2 (upper curve) and EKF (lower curve) rotational frequency estimates. The straight line represents the shot noise level of G-PISA

Histograms of the estimates of AR2 (pale gray) and EKF (dark gray) during 2 days of G-PISA data.

Red line: is the expected Sagnac frequency due to Earth rotation,

<u>**Dotted lines**</u> represent its residual uncertainty bounds due to geometric and orientation tolerances.

Compensation of the laser parameters fluctuations in large ring laser gyros: Kalman filter approach, Applied Optics 51, 31 (2012),

Controlling the nonlinear intra-cavity dynamics of large He-Ne laser gyroscopes, Metrologia 51 97 (2014).

TODAY: 2 prototypes for 2 objectives

GP2 (side length 1.60 m)

What?: Test-prototype ring laser equipped with a number of interferometric diagnostics

Where?: INFN-Pisa

Why?: Implement a fully active stabilization of the ring cavity shape.

GINGERino (side length 3.60 m)

What?: High sensitivity ring laser for high resolution of earth rotation measurement;

Where?: INFN-LNGS

Why?: Evaluate **rotational noise** of a deep underground laboratory. Validate the site for GINGER (f<1 mHz)

INFN-Pisa

GP2: Geometry control via interferometry

Problem

The magnitude of the relativistic frame dragging term is of 1 part in 109 of the Earth rotation

scale factor $k_{\rm S}$ stabilization better than $10^{\text{-}10}$

accuracy on mirror position better than 1 nm

Approach used in the past

Observable: RL optical frequency (cavity perimeter control)

<u>Stabilization methods:</u> comparison with reference laser; by tuning the environmental pressure; by locking to a frequency comb

<u>Limitation</u>: variations of mirror inter-distances remain uncontrolled

Our original approach

Observables: distance between opposite mirrors (& perimeter)

Stabilization methods: lock of diagonal cavities respect to a frequency standard

Interferometric length metrology for the dimensional control of ultra-stable ring laser gyroscopes, Class. Quantum Grav. 31 (22), 225003, (2014)

GP2: scale factor stability

Diagonals lengths stabilization implications:

- the perturbations to the mirror positions affect only quadratically the scale factor
- the mirror fluctuations are reduced at a level of 1 part in 10¹⁰, even if the stabilized lengths differ at a micrometric scale

the regular square geometry corresponds to a saddle-point of the perimeter

GP2: Optical setup

External laser probe

He-Ne/I₂ laser primary frequency standard

probe laser

μ-lens coupled cw diode laser

 $E_{in}(t) = E_0 \exp\{i[\omega_0 t + \alpha \sin(\omega_A t) + \beta \sin[(\omega_B + \Delta \sin(\omega_C t))t]]\}$ Pound-Drever-Hall for dithering applied to $\omega_{\rm p}$ for dynamic resonance lock f_n to the carrier excitation at mFSR low-frequency conversion

α,β modulation indices

 ω_0

dithering amplitude

optical frequency

Mirrors position actuators

- #3 1-axial PZT; #1 3-axial PZT
- dynamic range (measured): 80 μm
- control bandwidth (measured): few tens of Hz

Carrier error signal on GP2

Digital lock-in amplifier

2 diagonals stabilization

Closed-loop correction to the opposite mirrors (digital PI controller)

GINGERino: deep underground ring laser

Internal temperature is controlled by IR-lamps T: 8°C--> 13°C, relative humidity--> 60%

GINGERino: performance, present limitations

March 2015 first laser ignition in LNGS!

..then problems with: Mirrors, DAQ system, Timing, Getter pumps, Discharge positioning

Gingerino Sagnac frequency since 01-01-2016

Large amount of Intracavity scattered light: RDT< 150 us (Expected> 1 ms)

"Quiet hour" (00:00 UTC 20th february)

Ground rotations from teleseismic waves

First deep underground observation of rotational signals from an earthquakeat teleseismic distance using a large ring laser gyroscope, submitted to Annals of Geophisics-fast track.

Backscattering analysis (preliminary)

Conclusion

GP2

- Laser source has been developed
- Diagonals stabilization has been demonstrated

Next

- -Improve **locking bandwidth** (use AOMs)
- -Simultaneous control of the **perimeter** (regular square)
- -Verify gyroscope's **enhanced stability**

GINGERino

- -Unattended run since about 20 days (and goes on...)
- -Several problems emerged (mainly: mirrors and pressure changes)
- -Fixed several problems DAQ, Timing, getters
- -Backscattering analysis is giving first results

Next

- -Improve mechanical stability and pressure regulation
- -Test **new mirros** from LMA (hopefully excellent)
- -Perimeter stabilization