Bose Particles in a Box:

Convergent Expansion of the Ground State in the Mean Field Limiting Regime

Alessandro Pizzo

Dipartimento di Matematica, Università di Roma "Tor Vergata"
Frascati - INFN / 06-09-2016

References

A. P. http://arxiv.org/abs/1511.07022
A. P. http://arxiv.org/abs/1511.07025
A. P. http://arxiv.org/abs/1511.07026

Motivations and Background

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=L^{d}$

Motivations and Background

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=L^{d}$
- Hamiltonian

$$
H=-\sum_{i} \Delta_{i}+\frac{1}{\rho} \sum_{i<j} \phi\left(x_{i}-x_{j}\right)
$$

where i, j run from 1 to $N=\rho|\Lambda|$

Motivations and Background

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=L^{d}$
- Hamiltonian

$$
H=-\sum_{i} \Delta_{i}+\frac{1}{\rho} \sum_{i<j} \phi\left(x_{i}-x_{j}\right)
$$

where i, j run from 1 to $N=\rho|\Lambda|$

- Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$

Motivations and Background

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=L^{d}$
- Hamiltonian

$$
H=-\sum_{i} \Delta_{i}+\frac{1}{\rho} \sum_{i<j} \phi\left(x_{i}-x_{j}\right)
$$

where i, j run from 1 to $N=\rho|\Lambda|$

- Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$
- Thermodynamic limit: ρ fixed and $|\Lambda| \rightarrow \infty$

Motivations and Background

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=L^{d}$
- Hamiltonian

$$
H=-\sum_{i} \Delta_{i}+\frac{1}{\rho} \sum_{i<j} \phi\left(x_{i}-x_{j}\right)
$$

where i, j run from 1 to $N=\rho|\Lambda|$

- Mean field limiting regime: $|\Lambda|$ fixed and N sufficiently large independently of $|\Lambda|$
- Thermodynamic limit: ρ fixed and $|\Lambda| \rightarrow \infty$
- Other regimes: Gross-Pitaveskii, Thomas-Fermi

Motivations and Background

Motivations and Background

- Results on the ground state energy (L-S, E-Y-S, G-S)

Motivations and Background

- Results on the ground state energy (L-S, E-Y-S, G-S)
- Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)

Motivations and Background

- Results on the ground state energy (L-S, E-Y-S, G-S)
- Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)
- Proof of Bose-Einstein condensation (L-S-Y, L-N-R)
- Renormalization group approach: (B) in space dimension $d=3$, order by order control of the Schwinger functions in the limit $|\Lambda| \rightarrow \infty$ and with ultraviolet cut-off Recent progress for $d=2$ using Ward identities (C-D-P-S., C-G)

Motivations and Background

- Results on the ground state energy (L-S, E-Y-S, G-S)
- Proof of Bogoliubov conjecture: mean field limit (S, L-N-S-S), diagonal limit (D-N)
- Proof of Bose-Einstein condensation (L-S-Y, L-N-R)
- Renormalization group approach: (B) in space dimension $d=3$, order by order control of the Schwinger functions in the limit $|\Lambda| \rightarrow \infty$ and with ultraviolet cut-off Recent progress for $d=2$ using Ward identities (C-D-P-S., C-G)
- Results towards rigorous functional integral: (B-F-K-T)

Outline

1. Definition of the model: Hamiltonian in second quantization

Outline

1. Definition of the model: Hamiltonian in second quantization
2. Particle preserving Bogoliubov Hamiltonian and three-modes systems

Outline

1. Definition of the model: Hamiltonian in second quantization
2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
3. A novel application of Feshbach map:

Multi-scale analysis in the occupation numbers of particle states

Outline

1. Definition of the model: Hamiltonian in second quantization
2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
3. A novel application of Feshbach map:

Multi-scale analysis in the occupation numbers of particle states
4. Convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian

Outline

1. Definition of the model: Hamiltonian in second quantization
2. Particle preserving Bogoliubov Hamiltonian and three-modes systems
3. A novel application of Feshbach map:

Multi-scale analysis in the occupation numbers of particle states
4. Convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian
5. Outlook

Model

- (Δ with periodic boundary conditions)

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

Model

- (Δ with periodic boundary conditions)

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

- $a^{*}(x), a(x)$ operator-valued distributions on

$$
\begin{gathered}
\mathcal{F}:=\Gamma\left(L^{2}(\Lambda, \mathbb{C} ; d x)\right) \quad|\Lambda|=L^{d} \\
\text { CCR: } \quad\left[a^{\#}(x), a^{\#}(y)\right]=0, \quad\left[a(x), a^{*}(y)\right]=\delta(x-y) 1_{\mathcal{F}}
\end{gathered}
$$

Model

- (Δ with periodic boundary conditions)

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

- $a^{*}(x), a(x)$ operator-valued distributions on

$$
\mathcal{F}:=\Gamma\left(L^{2}(\Lambda, \mathbb{C} ; d x)\right) \quad|\Lambda|=L^{d}
$$

CCR: $\quad\left[a^{\#}(x), a^{\#}(y)\right]=0, \quad\left[a(x), a^{*}(y)\right]=\delta(x-y) 1_{\mathcal{F}}$,

$$
\begin{array}{r}
a(x)=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \frac{a_{\mathbf{j}} e^{i k_{\mathbf{j}} \cdot x}}{|\Lambda|^{\frac{1}{2}}}, \quad a^{*}(x)=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \frac{a_{\mathbf{j}}^{*} e^{-i k_{\mathbf{j}} \cdot x}}{|\Lambda|^{\frac{1}{2}}} \\
\text { where } k_{\mathbf{j}}:=\frac{2 \pi}{L} \mathbf{j}, \mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{d}\right), j_{1}, j_{2}, \ldots, j_{d} \in \mathbb{Z} \\
\text { CCR: } \quad\left[a_{\mathbf{j}}^{\#}, a_{\mathbf{j}^{\prime}}^{\#}\right]=0, \quad\left[a_{\mathbf{j}}, a_{\mathbf{j}^{\prime}}^{*}\right]=\delta_{\mathbf{j}, \mathbf{j}^{\prime}} .
\end{array}
$$

Assumptions on the two-body potential

- The pair potential $\phi(x-y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w)=\phi(w+\mathbf{j} L)$ for $\mathbf{j} \in \mathbb{Z}^{d}$

Assumptions on the two-body potential

- The pair potential $\phi(x-y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w)=\phi(w+\mathbf{j} L)$ for $\mathbf{j} \in \mathbb{Z}^{d}$
- $\phi(w)$ is an even function, in consequence $\phi_{\mathbf{j}}=\phi_{-\mathbf{j}}$

Assumptions on the two-body potential

- The pair potential $\phi(x-y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w)=\phi(w+\mathbf{j} L)$ for $\mathbf{j} \in \mathbb{Z}^{d}$
- $\phi(w)$ is an even function, in consequence $\phi_{\mathbf{j}}=\phi_{-\mathbf{j}}$
- $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$

Assumptions on the two-body potential

- The pair potential $\phi(x-y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w)=\phi(w+\mathbf{j} L)$ for $\mathbf{j} \in \mathbb{Z}^{d}$
- $\phi(w)$ is an even function, in consequence $\phi_{\mathbf{j}}=\phi_{-\mathbf{j}}$
- $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$
- UV cut-off

Assumptions on the two-body potential

- The pair potential $\phi(x-y)$ is a bounded, real-valued function that is periodic, i.e., $\phi(w)=\phi(w+\mathbf{j} L)$ for $\mathbf{j} \in \mathbb{Z}^{d}$
- $\phi(w)$ is an even function, in consequence $\phi_{\mathbf{j}}=\phi_{-\mathbf{j}}$
- $\phi(w)$ is of positive type, i.e., $\phi_{\mathbf{j}} \geq 0$
- UV cut-off
- Strong interaction potential regime: The ratio $\epsilon_{\mathbf{j}}:=\frac{k_{\mathbf{j}}^{2}}{\phi_{\mathbf{j}}}$ is sufficiently small

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

- $H=H^{B}+V+C_{N}$
- $V \equiv$ cubic and quartic terms in the nonzero modes

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

- $H=H^{B}+V+C_{N}$
- $V \equiv$ cubic and quartic terms in the nonzero modes
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{0\}} H_{\mathbf{j}}^{B}$

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

- $H=H^{B}+V+C_{N}$
- $V \equiv$ cubic and quartic terms in the nonzero modes
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{0\}} H_{\mathbf{j}}^{B}$

$$
\begin{aligned}
H_{\mathbf{j}}^{B}:=\left(k_{\mathbf{j}}^{2}\right. & \left.+\frac{\phi_{\mathbf{j}}}{\rho|\Lambda|} a_{0}^{*} a_{\mathbf{0}}\right)\left(a_{\mathbf{j}}^{*} a_{\mathbf{j}}+a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right) \\
& +\frac{\phi_{\mathbf{j}}}{\rho|\Lambda|}\left\{a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}+a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{\mathbf{0}} a_{0}\right\}
\end{aligned}
$$

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

- $H=H^{B}+V+C_{N}$
- $V \equiv$ cubic and quartic terms in the nonzero modes
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d}} \backslash\{0\} H_{\mathbf{j}}^{B}$

$$
\begin{aligned}
H_{\mathbf{j}}^{B}:=\left(k_{\mathbf{j}}^{2}\right. & \left.+\frac{\phi_{\mathbf{j}}}{N} a_{0}^{*} a_{0}\right)\left(a_{\mathbf{j}}^{*} a_{\mathbf{j}}+a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right) \\
& +\frac{\phi_{\mathbf{j}}}{N}\left\{a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}+a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{0} a_{0}\right\}
\end{aligned}
$$

Model: Particle Preserving Bogoliubov Hamiltonian

$$
\begin{aligned}
H:= & \int\left(\nabla a^{*}\right)(\nabla a)(x) d x+ \\
& +\frac{1}{2 \rho} \iint a^{*}(x) a^{*}(y) \phi(x-y) a(y) a(x) d x d y
\end{aligned}
$$

is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with N particles (N even)

- $H=H^{B}+V+C_{N}$
- $V \equiv$ cubic and quartic terms in the nonzero modes
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d}} \backslash\{0\} H_{\mathbf{j}}^{B}$
- Three-modes Bogoliubov Hamiltonian

$$
\begin{aligned}
H_{\mathbf{j}}^{B}:=\left(k_{\mathbf{j}}^{2}\right. & \left.+\frac{\phi_{\mathbf{j}}}{N} a_{0}^{*} a_{0}\right)\left(a_{\mathbf{j}}^{*} a_{\mathbf{j}}+a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right) \\
& +\frac{\phi_{\mathbf{j}}}{N}\left\{a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}+a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{0} a_{0}\right\}
\end{aligned}
$$

Model: Particle Preserving Bogoliubov Hamiltonian

- H is restricted to $\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with exactly N particles (N even)
- $H=H^{B}+V$
- $V \equiv$ cubic and quartic terms in the nonzero modes
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{0\}} H_{\mathbf{j}}^{B}$
- Three-modes Bogoliubov Hamiltonian

$$
\begin{aligned}
H_{\mathbf{j}}^{B}:= & \overbrace{\left(k_{\mathbf{j}}^{2}+\frac{\phi_{\mathbf{j}}}{N} a_{0}^{*} a_{0}\right)\left(a_{\mathbf{j}}^{*} a_{\mathbf{j}}+a_{-\mathbf{j}}^{*} a_{-\mathbf{j}}\right)}^{H_{\mathbf{j}}^{(0)}} \\
& +\underbrace{\left\{\frac{\phi_{\mathbf{j}}}{N} a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}\right\}}_{W_{\mathbf{j}}}+\underbrace{\left\{\frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{j}}^{*} a_{-\mathbf{j}}^{*} a_{0} a_{0}\right\}}_{W_{\mathbf{j}}^{*}}
\end{aligned}
$$

Ideas

- If $\psi_{g s}$ ground state of $H,\left\langle\sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}\right\rangle_{\psi_{g s}}$ stays bounded as $N \rightarrow \infty$
\Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of $E_{g s}$ is a multiple of the projection

$$
|\eta\rangle\langle\eta| \quad, \quad \eta:=\frac{1}{\sqrt{N!}} a_{0}^{*} \ldots a_{0}^{*} \Omega
$$

Ideas

- If $\psi_{g s}$ ground state of $H,\left\langle\sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}\right\rangle_{\psi_{g s}}$ stays bounded as $N \rightarrow \infty$
\Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of $E_{g s}$ is a multiple of the projection

$$
|\eta\rangle\langle\eta| \quad, \quad \eta:=\frac{1}{\sqrt{N!}} a_{0}^{*} \ldots a_{0}^{*} \Omega
$$

- Feshbach map $\left(\mathscr{P}=\mathscr{P}^{2}, \overline{\mathscr{P}}=\overline{\mathscr{P}}^{2}, \mathscr{P}+\overline{\mathscr{P}}=1_{\mathcal{H}}\right)$

$$
\mathscr{F}(K-z):=\mathscr{P}(K-z) \mathscr{P}-\mathscr{P} K \overline{\mathscr{P}} \frac{1}{\overline{\mathscr{P}}(K-z) \overline{\mathscr{P}}} \overline{\mathscr{P}} K \mathscr{P}
$$

Ideas

- If $\psi_{g s}$ ground state of $H,\left\langle\sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}\right\rangle_{\psi_{g s}}$ stays bounded as $N \rightarrow \infty$
\Rightarrow Conjecture: An effective Hamiltonian in a neighborhood of $E_{g s}$ is a multiple of the projection

$$
|\eta\rangle\langle\eta| \quad, \quad \eta:=\frac{1}{\sqrt{N!}} a_{0}^{*} \ldots a_{0}^{*} \Omega
$$

- Feshbach map $\left(\mathscr{P}=\mathscr{P}^{2}, \overline{\mathscr{P}}=\overline{\mathscr{P}}^{2}, \mathscr{P}+\overline{\mathscr{P}}=1_{\mathcal{H}}\right)$

$$
\mathscr{F}(K-z):=\mathscr{P}(K-z) \mathscr{P}-\mathscr{P} K \overline{\mathscr{P}} \frac{1}{\overline{\bar{P}}(K-z) \overline{\mathscr{P}}} \overline{\mathscr{P}} K \mathscr{P}
$$

- Isospectrality: 1) $\mathscr{F}(K-z)$ is bounded invertible on $\mathscr{P H}$ if and only if z is in the resolvent set of $K($ on $\mathcal{H}) ; 2) z$ is an eigenvalue of K if and only if 0 is an eigenvalue of $\mathscr{F}(K-z)$

Ideas

- Selection rules of H w.r.t. $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
\Rightarrow choose $\mathscr{P}, \overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$

Ideas

- Selection rules of H w.r.t. $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
\Rightarrow choose $\mathscr{P}, \overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$

Ideas

- Selection rules of H w.r.t. $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
\Rightarrow choose $\mathscr{P}, \overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
- The Rayleigh-Schrödinger expansion of $\psi_{g s}$ is not under control for strong interaction potentials (thermodynamic limit)

Ideas

- Selection rules of H w.r.t. $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
\Rightarrow choose $\mathscr{P}, \overline{\mathscr{P}}$ associated with eigenspaces of $\sum_{\mathbf{j}= \pm \mathbf{j}_{*}} a_{\mathbf{j}}^{*} a_{\mathbf{j}}$
- The Rayleigh-Schrödinger expansion of $\psi_{g s}$ is not under control for strong interaction potentials (thermodynamic limit)
- Can $\overline{\mathscr{P}}$ help to avoiding small denominator problems?

Three-modes system

- Pick a couple of interacting modes $\left(-\mathbf{j}_{*} ; \mathbf{j}_{*}\right)$

Three-modes system

- Pick a couple of interacting modes $\left(-\mathbf{j}_{*} ; \mathbf{j}_{*}\right)$
- Study the Hamiltonian $\hat{H}^{B} \equiv H_{\mathbf{j}_{*}}^{B}$

Three-modes system

- Pick a couple of interacting modes $\left(-\mathbf{j}_{*} ; \mathbf{j}_{*}\right)$
- Study the Hamiltonian $\hat{H}^{B} \equiv H_{\mathbf{j}_{*}}^{B}$
- For the purpose of this talk the Hilbert space \mathcal{F}^{N} contains only the degrees of freedom ($\mathbf{0} ;-\mathbf{j}_{*} ; \mathbf{j}_{*}$)

Feshbach Projections for \hat{H}^{B}

- $Q^{(i, i+1)}:=$ the projection (in \mathcal{F}^{N}) onto the subspace spanned by the vectors with $N-i$ or $N-i-1$ particles in the modes \mathbf{j}_{*} and $-\mathbf{j}_{*} \rightarrow$ the operator $a_{\mathbf{j}_{*}}^{*} a_{\mathbf{j}_{*}}+a_{-\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}$ has eigenvalues $N-i$ and $N-i-1$ when restricted to $Q^{(i, i+1)} \mathcal{F}^{N}$

Feshbach Projections for \hat{H}^{B}

- $Q^{(i, i+1)}:=$ the projection (in \mathcal{F}^{N}) onto the subspace spanned by the vectors with $N-i$ or $N-i-1$ particles in the modes \mathbf{j}_{*} and $-\mathbf{j}_{*} \rightarrow$ the operator $a_{\mathbf{j}_{*}}^{*} a_{\mathbf{j}_{*}}+a_{-\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}$ has eigenvalues $N-i$ and $N-i-1$ when restricted to $Q^{(i, i+1)} \mathcal{F}^{N}$

$$
\mathcal{F}^{N}=Q^{(0,1)} \mathcal{F}^{N} \oplus Q^{(2,3)} \mathcal{F}^{N} \oplus \cdots \oplus Q^{(N-2, N-1)} \mathcal{F}^{N} \oplus\{\mathbb{C} \eta\}
$$

Feshbach Projections for \hat{H}^{B}

- $Q^{(i, i+1)}:=$ the projection (in \mathcal{F}^{N}) onto the subspace spanned by the vectors with $N-i$ or $N-i-1$ particles in the modes \mathbf{j}_{*} and $-\mathbf{j}_{*} \rightarrow$ the operator $a_{\mathbf{j}_{*}}^{*} a_{\mathbf{j}_{*}}+a_{-\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}$ has eigenvalues $N-i$ and $N-i-1$ when restricted to $Q^{(i, i+1)} \mathcal{F}^{N}$

$$
\mathcal{F}^{N}=Q^{(0,1)} \mathcal{F}^{N} \oplus Q^{(2,3)} \mathcal{F}^{N} \oplus \cdots \oplus Q^{(N-2, N-1)} \mathcal{F}^{N} \oplus\{\mathbb{C} \eta\}
$$

- $Q^{(>1)}:=$ the projection onto the orthogonal complement of $Q^{(0,1)} \mathcal{F}^{N}$ in $\mathcal{F}^{N} \quad \rightarrow \quad Q^{(>1)}+Q^{(0,1)}=\mathbf{1}_{\mathcal{F}^{N}}$
- Iteratively, for i even, $2 \leq i \leq N-2$, define
$Q^{(>i+1)}$ the projection such that $Q^{(>i+1)}+Q^{(i, i+1)}=Q^{(>i-1)}$

$$
Q^{(>N-1)} \equiv|\eta\rangle\langle\eta|
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- Starting from $K_{-2}^{B}(z):=\hat{H}^{B}-z$

$$
\begin{aligned}
& K_{i}^{B}(z) \\
:= & \mathscr{P}^{(i)} K_{i-2}^{B}(z) \mathscr{P}^{(i)} \\
& -\mathscr{P}^{(i)} K_{i-2}^{B}(z) \overline{\mathscr{P}}^{(i)} \frac{1}{\overline{\mathscr{P}}^{(i)} K_{i-2}^{B}(z) \overline{\mathscr{P}}^{(i)}} \overline{\mathscr{P}}^{(i)} K_{i-2}^{B}(z) \mathscr{P}^{(i)}
\end{aligned}
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- For $i=0$

$$
\begin{aligned}
& K_{0}^{B}(z) \\
:= & Q^{(>1)}\left(\hat{H}^{B}-z\right) Q^{(>1)} \\
& -Q^{(>1)} \hat{H}^{B} Q^{(0,1)} \frac{1}{Q^{(0,1)}\left(\hat{H}^{B}-z\right) Q^{(0,1)}} Q^{(0,1)} \hat{H}^{B} Q^{(>1)}
\end{aligned}
$$

Model: Particle Preserving Bogoliubov Hamiltonian

- H is restricted to
$\mathcal{F}^{N} \equiv$ subspace of \mathcal{F} with exactly N particles
- $H=H^{B}+V$
- $H^{B}:=\frac{1}{2} \sum_{\mathbf{j} \in \mathbb{Z}^{d} \backslash\{0\}} H_{\mathbf{j}}^{B}$
- Three-modes Bogoliubov Hamiltonian

$$
\begin{aligned}
\hat{H}^{B}:= & \overbrace{\left(k_{\mathbf{j}_{*}}^{2}+\frac{\phi_{\mathbf{j}_{*}}}{N} a_{0}^{*} a_{\mathbf{0}}\right)\left(a_{\mathbf{j}_{*}}^{*} a_{\mathbf{j}_{*}}+a_{-\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}\right)}^{H^{(0)}} \\
& +\underbrace{\left\{\frac{\phi_{\mathbf{j}_{*}}}{N} a_{0}^{*} a_{0}^{*} a_{\mathbf{j}_{*}} a_{\left.-\mathbf{j}_{*}\right\}}\right\}}_{W}+\underbrace{\left\{\frac{\phi_{\mathbf{j}}}{N} a_{\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}^{*} a_{0} a_{0}\right\}}_{W^{*}}
\end{aligned}
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- For $i=0$

$$
\begin{aligned}
& K_{0}^{B}(z) \\
:= & Q^{(>1)}\left(\hat{H}^{B}-z\right) Q^{(>1)} \\
& -Q^{(>1)} W Q^{(0,1)} \frac{1}{Q^{(0,1)}\left(\hat{H}^{B}-z\right) Q^{(0,1)}} Q^{(0,1)} W^{*} Q^{(>1)}
\end{aligned}
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- For $i=2$

$$
\begin{aligned}
& K_{2}^{B}(z):= \\
&= Q^{(>3)}\left(\hat{H}^{B}-z\right) Q^{(>3)} \\
&- Q^{(>3)} W Q^{(2,3)} \times \\
& \times \frac{1}{Q^{(2,3)}\left(\hat{H}^{B}-W Q^{(0,1)} \frac{1}{Q^{(0,1)}\left(\hat{H}^{B}-z\right) Q^{(0,1)}} Q^{(0,1)} W^{*}-z\right) Q^{(2,3)}} \\
& \times Q^{(2,3)} W^{*} Q^{(>3)}
\end{aligned}
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- For $i=2$

$$
\begin{aligned}
& Q^{(>3)}\left(\hat{H}^{B}-z\right) Q^{(>3)} \\
& -Q^{(>3)} W Q^{(2,3)} \times \\
& \times \frac{1}{Q^{(2,3)}(\hat{H}^{B}-W \underbrace{Q^{(0,1)} \frac{1}{Q^{(0,1)}\left(\hat{H}^{B}-z\right) Q^{(0,1)}} Q^{(0,1)}}_{R_{0,0}^{B}(z)} W^{*}-z) Q^{(2,3)}} \\
& \times Q^{(2,3)} W^{*} Q^{(>3)}
\end{aligned}
$$

Flow of Feshbach Hamiltonians for \hat{H}^{B}

- Define $\mathscr{P}^{(i)}:=Q^{(>i+1)}, \overline{\mathscr{P}^{(i)}}:=Q^{(i, i+1)}$
- For $i=2$

$$
\begin{aligned}
& K_{2}^{B}(z):= \\
& =Q^{(>3)}\left(\hat{H}^{B}-z\right) Q^{(>3)} \\
& -Q^{(>3)} W Q^{(2,3)} \sum_{l_{2}=0}^{\infty} R_{2,2}^{B}(z)\left[W R_{0,0}^{B}(z) W^{*} R_{2,2}^{B}(z)\right]^{\prime} \\
& \quad \times Q^{(2,3)} W^{*} Q^{(>3)}
\end{aligned}
$$

General Term

- For i (even)

$$
\begin{aligned}
K_{i}^{B}:= & Q^{(>i+1)}\left(\hat{H}^{B}-z\right) Q^{(>i+1)} \\
& -Q^{(>i+1)} W R_{i, i}^{B}(z) \sum_{l_{i}=0}^{\infty}\left[\Gamma_{i, i}^{B}(z) R_{i, i}^{B}(z)\right]^{l_{i}} W^{*} Q^{(>i+1)}
\end{aligned}
$$

$$
\Gamma_{i+2, i+2}^{B}(z):=
$$

$$
=Q^{(i+2, i+3)} W R_{i, i}^{B}(z) \sum_{l_{i}=0}^{\infty}\left[\Gamma_{i, i}^{B}(z) R_{i, i}^{B}(z)\right]^{l_{i}} W^{*} Q^{(i+2, i+3)}
$$

$$
\Gamma_{2,2}^{B}(z):=Q^{(2,3)} W R_{0,0}^{B}(z) W^{*} Q^{(2,3)}
$$

Range of the spectral parameter z

- Spectrum of $H_{\mathbf{j}_{*}}^{B}$ as $N \rightarrow \infty$ (Seiringer):
- the ground state energy tends to

$$
\begin{gathered}
E_{\mathbf{j}_{*}}^{B}:=-\left[k_{\mathbf{j}_{*}}^{2}+\phi_{\mathbf{j}_{*}}-\sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}_{*}} k_{\mathbf{j}_{*}}^{2}}\right] \\
E_{\mathbf{j}_{*}}^{B} \rightarrow-\phi_{\mathbf{j}_{*}} \text { as } \epsilon_{\mathbf{j}_{*}} \rightarrow 0
\end{gathered}
$$

- the first excited eigenvalue tends to

$$
E_{\mathbf{j}_{*}}^{B}+\sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}^{*}} k_{\mathbf{j}_{*}}^{2}}
$$

Range of the spectral parameter z

- Spectrum of $H_{\mathbf{j}_{*}}^{B}$ as $N \rightarrow \infty$ (Seiringer):
- the ground state energy tends to

$$
\begin{gathered}
E_{\mathbf{j}_{*}}^{B}:=-\left[k_{\mathbf{j}_{*}}^{2}+\phi_{\mathbf{j}_{*}}-\sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}_{*}} k_{\mathbf{j}_{*}}^{2}}\right] \\
E_{\mathbf{j}_{*}}^{B} \rightarrow-\phi_{\mathbf{j}_{*}} \quad \text { as } \quad \epsilon_{\mathbf{j}_{*}} \rightarrow 0
\end{gathered}
$$

- the first excited eigenvalue tends to

$$
E_{\mathbf{j}_{*}}^{B}+\sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}^{*}} k_{\mathbf{j}_{*}}^{2}}
$$

- Question:

Can we control the flow for $z<E_{\mathbf{j}_{*}}^{B}+\sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}^{*}} k_{\mathbf{j}_{*}}^{2}}$?

General Term

- Recursive relation

$$
\begin{aligned}
& \Gamma_{i+2, i+2}^{B}(z):= \\
& =Q^{(i+2, i+3)} W\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}} \sum_{l_{i}=0}^{\infty}\left[\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}} \Gamma_{i, i}^{B}(z)\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}}\right]^{l_{i}} \times \\
& \times\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}} W^{*} Q^{(i+2, i+3)}
\end{aligned}
$$

- Initial term

$$
\Gamma_{2,2}^{B}(z):=Q^{(2,3)} W R_{0,0}^{B}(z) W^{*} Q^{(2,3)}
$$

Key estimates to control the Feshbach flow

- The flow is well defined if for each $i \leq N-2$ and even

$$
\sum_{I=0}^{\infty}\left[\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}} \Gamma_{i, i}^{B}(z)\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}}\right]^{I}
$$

is well defined

- Main Theorem:

$$
\left\|\sum_{l=0}^{\infty}\left[\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}} \Gamma_{i, i}^{B}(z)\left(R_{i, i}^{B}(z)\right)^{\frac{1}{2}}\right]^{l}\right\| \leq \frac{1}{X_{i}}
$$

where $X_{0} \equiv 1$ and

$$
X_{i+2}:=1-\frac{1}{4\left(1+a_{\epsilon_{\mathrm{j}_{*}}}-\frac{b_{\mathrm{f}_{*}}}{N-i+1}-\frac{1-c_{\mathrm{f}_{*}}}{(N-i+1)^{2}}\right)} \frac{1}{X_{i}}
$$

Key estimates to control the Feshbach flow

- $z \leq E_{\mathbf{j}_{*}}^{B}+(\delta-1) \phi_{\mathbf{j}^{*}} \sqrt{\epsilon_{\mathbf{j}_{*}}^{2}+2 \epsilon_{\mathbf{j}_{*}}}, \delta<2$

Key estimates to control the Feshbach flow

- $z \leq E_{\mathbf{j}_{*}}^{B}+(\delta-1) \phi_{\mathbf{j}^{*}} \sqrt{\epsilon_{\mathbf{j}_{*}}^{2}+2 \epsilon_{\mathbf{j}_{*}}}, \delta<2$
- $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j}}^{2}}{\phi_{\mathbf{j}_{*}}^{2}}$ small but $\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N}$ for some $\nu>\frac{11}{8}$

Key estimates to control the Feshbach flow

- $z \leq E_{\mathbf{j}_{*}}^{B}+(\delta-1) \phi_{\mathbf{j}^{*}} \sqrt{\epsilon_{\mathbf{j}_{*}}^{2}+2 \epsilon_{\mathbf{j}_{*}}}, \delta<2$
- $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j}^{2}}^{2}}{\phi_{\mathbf{j}_{*}}}$ small but $\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N}$ for some $\nu>\frac{11}{8}$
- key estimate

$$
\begin{aligned}
& \left\|\left[R_{i, i}^{B}(z)\right]^{\frac{1}{2}} W\left[R_{i-2, i-2}^{B}(z)\right]^{\frac{1}{2}}\right\|\left\|\left[R_{i-2, i-2}^{B}(z)\right]^{\frac{1}{2}} W^{*}\left[R_{i, i}^{B}(z)\right]^{\frac{1}{2}}\right\| \\
& \leq \frac{1}{4\left(1+a_{\epsilon_{\mathrm{j}_{*}}}-\frac{2 b_{\mathrm{f}_{*}}}{N-i+1}-\frac{1-c_{\mathrm{f}_{\mathrm{j}_{*}}}}{(N-i+1)^{2}}\right)}
\end{aligned} \text { where } a_{\epsilon_{\mathrm{j}_{*}}}:=\mathcal{O}\left(\epsilon_{\mathrm{j}_{*}}\right), b_{\epsilon_{\mathrm{j}_{*}}}:=\mathcal{O}\left(\sqrt{\epsilon_{\mathrm{j}_{*}}}\right), c_{\epsilon_{\mathrm{j}_{*}}}:=\mathcal{O}\left(\epsilon_{\mathrm{j}_{*}}\right) .
$$

Key estimates to control the Feshbach flow

- Artificial $\phi_{\mathbf{j}_{*}}$-dependent Gap

$$
\begin{aligned}
& R_{i, i}^{B}(z) \\
= & Q^{(i, i+1)} \frac{1}{Q^{(i, i+1)}\left(\hat{H}^{B}-z\right) Q^{(i, i+1)}} Q^{(i, i+1)}
\end{aligned}
$$

Key estimates to control the Feshbach flow

- Artificial $\phi_{\mathbf{j}_{*}}$-dependent Gap

$$
\begin{aligned}
& R_{i, i}^{B}(z) \\
= & Q^{(i, i+1)} \frac{1}{Q^{(i, i+1)}\left(H^{(0)}+W+W^{*}-z\right) Q^{(i, i+1)}} Q^{(i, i+1)}
\end{aligned}
$$

Key estimates to control the Feshbach flow

- Artificial $\phi_{\mathbf{j}_{*}}$-dependent Gap

$$
\begin{aligned}
& R_{i, i}^{B}(z) \\
= & Q^{(i, i+1)} \frac{1}{Q^{(i, i+1)}\left(H^{(0)}-z\right) Q^{(i, i+1)}} Q^{(i, i+1)} \\
& H^{(0)} \geq 0 \quad \text { and } \quad z \simeq-\phi_{\mathbf{j}_{*}}
\end{aligned}
$$

Key estimates to control the Feshbach flow

- Control of the sequence

$$
X_{i+2}:=1-\frac{1}{4\left(1+a_{\epsilon_{\mathrm{j}_{*}}}-\frac{\left.b_{\epsilon_{\mathrm{j}_{*}}}-\frac{1-c_{\mathrm{f}_{*}}}{N-i+1}\right)}{} \frac{1}{(N-i+1)^{2}}\right)}
$$

$X_{0} \equiv 1$ and, $0 \leq i \leq N-2$ and even

Key estimates to control the Feshbach flow

- For $\epsilon_{\mathbf{j}_{*}}=0$

$$
X_{i+2}:=1-\frac{1}{4\left(1-\frac{1}{(N-i+1)^{2}}\right) X_{i}}
$$

from $X_{0} \equiv 1$ up to X_{N-2}

Key estimates to control the Feshbach flow

- For $\epsilon_{\mathbf{j}_{*}}=0$

$$
X_{i+2}:=1-\frac{1}{4\left(1-\frac{1}{(N-i+1)^{2}}\right) X_{i}}
$$

from $X_{0} \equiv 1$ up to X_{N-2}

- Exact Solution

$$
X_{i}=\frac{1}{2}\left(1-\frac{1}{N-i}\right)
$$

but for $X_{0}=\frac{1}{2}\left(1-\frac{1}{N}\right)$

Key estimates to control the Feshbach flow

- For $\epsilon_{\mathbf{j}_{*}}=0$

$$
X_{i+2}:=1-\frac{1}{4\left(1-\frac{1}{(N-i+1)^{2}}\right) X_{i}}
$$

from $X_{0} \equiv 1$ up to X_{N-2}

- Exact Solution

$$
X_{i}=\frac{1}{2}\left(1-\frac{1}{N-i}\right)
$$

but for $X_{0}=\frac{1}{2}\left(1-\frac{1}{N}\right)$

- By induction (for $\epsilon_{\mathbf{j}_{*}}>0$)

$$
X_{i} \geq \frac{1}{2}\left(1-\frac{1}{N-i}\right)+o(1)
$$

for $\delta<1+\sqrt{\epsilon_{\mathbf{j}_{*}}} \quad \Longleftrightarrow \Rightarrow \quad z<E_{\mathbf{j}_{*}}^{B}+\sqrt{\epsilon_{\mathbf{j}_{*}}} \sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}_{*}} k_{\mathbf{j}_{*}}^{2}}$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

$$
\begin{aligned}
& \quad K_{N-2}^{B}(z)= \\
& =Q^{(>N-1)}\left(\hat{H}^{B}-z\right) Q^{(>N-1)} \\
& -Q^{(>N-1)} W \times \\
& \quad \times R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{l} \\
& \quad \times W^{*} Q^{(>N-1)}
\end{aligned}
$$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

- $Q^{(>N-1)}=P_{\eta}=|\eta\rangle\langle\eta|$, hence

$$
K_{N-2}^{B}(z)=
$$

$$
=P_{\eta}\left(\hat{H}^{B}-z\right) P_{\eta}
$$

$$
-P_{\eta} W R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{\prime} W^{*} P_{\eta}
$$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

- $Q^{(>N-1)}=P_{\eta}=|\eta\rangle\langle\eta|$, hence

$$
\begin{aligned}
& K_{N-2}^{B}(z)= \\
& =-z P_{\eta}
\end{aligned}
$$

$$
-P_{\eta} W R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{\prime} W^{*} P_{\eta}
$$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

- $Q^{(>N-1)}=P_{\eta}=|\eta\rangle\langle\eta|$, hence

$$
K_{N-2}^{B}(z)=f(z) P_{\eta}
$$

$$
f(z)=-z
$$

$$
-\left\langle\eta, W R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{\prime} W^{*} \eta\right\rangle
$$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

- $Q^{(>N-1)}=P_{\eta}=|\eta\rangle\langle\eta|$, hence

$$
K_{N-2}^{B}(z)=f(z) P_{\eta}
$$

$$
f(z)=-z
$$

$$
-\left\langle\eta, W R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{\prime} W^{*} \eta\right\rangle
$$

- $f(z)$ is decreasing and there is (only) one point z_{*} in the interval

$$
\left(-\infty, E_{\mathbf{j}_{*}}^{B}+\sqrt{\epsilon_{\mathbf{j}_{*}}} \sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}_{*}} k_{\mathbf{j}_{*}}^{2}}\right)
$$

such that $f\left(z_{*}\right)=0$

Final Feshbach Hamiltonian, Fixed Point, and GS Energy

- $Q^{(>N-1)}=P_{\eta}=|\eta\rangle\langle\eta|$, hence

$$
K_{N-2}^{B}(z)=f(z) P_{\eta}
$$

$$
f(z)=-z
$$

$$
-\left\langle\eta, W R_{N-2, N-2}^{B}(z) \sum_{l=0}^{\infty}\left[\Gamma_{N-2, N-2}^{B}(z) R_{N-2, N-2}^{B}(z)\right]^{\prime} W^{*} \eta\right\rangle
$$

- $f(z)$ is decreasing and there is (only) one point z_{*} in the interval

$$
\left(-\infty, E_{\mathbf{j}_{*}}^{B}+\sqrt{\epsilon_{\mathbf{j}_{*}}} \sqrt{\left(k_{\mathbf{j}_{*}}^{2}\right)^{2}+2 \phi_{\mathbf{j}_{*}} k_{\mathbf{j}_{*}}^{2}}\right)
$$

such that $f\left(z_{*}\right)=0$

- $f\left(z_{*}\right)=0 \Rightarrow z_{*}$ is the ground state energy of \hat{H}^{B}

GS vector

- Feshbach theory: If φ eigenvector of $\mathscr{F}\left(K-z_{*}\right)$ with eigenvalue 0

$$
\left[\mathscr{P}-\frac{1}{\overline{\mathscr{P}}\left(K-z_{*}\right) \overline{\mathscr{P}}} \overline{\mathscr{P}} K \mathscr{P}\right] \varphi
$$

is eigenvector of K with eigenvalue z_{*}

GS vector

- Convergent expansion (up to any desired precision)

$$
\begin{aligned}
& \psi^{B}= \\
& =\eta \\
& -\frac{1}{Q^{(N-2, N-1)} K_{N-4}^{B}\left(z_{*}\right) Q^{(N-2, N-1)} Q^{(N-2, N-1)} W^{*} \eta} \\
& -\sum_{j=2}^{N / 2} \prod_{r=2 j}^{4}\left[-\frac{1}{Q^{(N-r, N-r+1)} K_{N-r-2}^{B}\left(z_{*}\right) Q^{(N-r, N-r+1)}} W_{N-r, N-r+2}^{*}\right] \\
& \quad \times \frac{1}{Q^{(N-2, N-1)} K_{N-4}^{B}\left(z_{*}\right) Q^{(N-2, N-1)}} Q^{(N-2, N-1)} W^{*} \eta
\end{aligned}
$$

where $W_{N-r, N-r+2}^{*}:=Q^{(N-r, N-r+1)} W^{*} Q^{(N-r+2, N-r+3)}$

Regimes and dimensions

- The flow is well defined if $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j}}^{2}}{\phi_{\mathbf{j}_{*}}}$ is sufficiently small and for some $\nu>\frac{11}{8}$

$$
\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k_{\mathbf{j}_{*}}^{2}}{\phi_{\mathbf{j}_{*}}}>\left(\frac{1}{N}\right)^{\frac{8}{11}}
$$

Regimes and dimensions

- The flow is well defined if $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j}}^{2}}{\phi_{\mathbf{j}_{*}}}$ is sufficiently small and for some $\nu>\frac{11}{8}$

$$
\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k_{\mathbf{j}_{*}}^{2}}{\phi_{\mathbf{j}_{*}}}>\left(\frac{1}{N}\right)^{\frac{8}{11}}
$$

- When is this condition fulfilled?

Regimes and dimensions

- The flow is well defined if $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j} *}^{2}}{\phi_{\mathbf{j}_{*}}}$ is sufficiently small and for some $\nu>\frac{11}{8}$

$$
\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k_{\mathbf{j}_{*}}^{2}}{\phi_{\mathbf{j}_{*}}}>\left(\frac{1}{N}\right)^{\frac{8}{11}}
$$

- When is this condition fulfilled?
- mean field limiting regime

Regimes and dimensions

- The flow is well defined if $\epsilon_{\mathbf{j}_{*}}:=\frac{k_{\mathbf{j}}^{2}}{\phi_{\mathbf{j}_{*}}}$ is sufficiently small and for some $\nu>\frac{11}{8}$

$$
\epsilon_{\mathbf{j}_{*}}^{\nu} \geq \frac{1}{N} \quad \Longleftrightarrow \quad \frac{k_{\mathbf{j}_{*}}^{2}}{\phi_{\mathbf{j}_{*}}}>\left(\frac{1}{N}\right)^{\frac{8}{11}}
$$

- When is this condition fulfilled?
- mean field limiting regime
- at fixed ρ only if

$$
\begin{aligned}
& \qquad\left[\frac{\left(2 \pi \mathbf{j}_{*}\right)^{2}}{L^{2} \phi_{\mathbf{j}_{*}}}\right]^{\nu} \geq \frac{1}{\rho L^{d}} \\
& \Rightarrow \quad d \geq 3 \text { and } L \text { large enough }
\end{aligned}
$$

Regimes and dimensions

- Existence of the fixed point if

$$
\rho \geq \rho_{0}\left(\frac{L}{L_{0}}\right)^{3-d}
$$

with ρ_{0} sufficiently large $\left(L_{0} \equiv 1\right)$

Regimes and dimensions

- Existence of the fixed point if

$$
\rho \geq \rho_{0}\left(\frac{L}{L_{0}}\right)^{3-d}
$$

with ρ_{0} sufficiently large ($L_{0} \equiv 1$)

- If $d \geq 3, \rho$ sufficiently large but L-independent is enough
$\Rightarrow L<\infty$ can be taken arbitrarily large at fixed ρ

Regimes and dimensions

- Existence of the fixed point if

$$
\rho \geq \rho_{0}\left(\frac{L}{L_{0}}\right)^{3-d}
$$

with ρ_{0} sufficiently large ($L_{0} \equiv 1$)

- If $d \geq 3, \rho$ sufficiently large but L-independent is enough
$\Rightarrow L<\infty$ can be taken arbitrarily large at fixed ρ
- In the mean field limiting regime, $z_{*} \rightarrow E_{\mathbf{j}_{*}}^{B o g}$ as $N \rightarrow \infty$

Regimes and dimensions

- Existence of the fixed point if

$$
\rho \geq \rho_{0}\left(\frac{L}{L_{0}}\right)^{3-d}
$$

with ρ_{0} sufficiently large ($L_{0} \equiv 1$)

- If $d \geq 3, \rho$ sufficiently large but L-independent is enough
$\Rightarrow L<\infty$ can be taken arbitrarily large at fixed ρ
- In the mean field limiting regime, $z_{*} \rightarrow E_{\mathbf{j}_{*}}^{B o g}$ as $N \rightarrow \infty$
- For $d=3$ and $\rho \geq \rho_{0}\left(\frac{L}{L_{0}}\right)^{s}$ with $s>0, z_{*} \rightarrow E_{\mathbf{j}_{*}}^{B o g}$ as $L \rightarrow \infty$

Outlook / Thomas-Fermi + Gross Pitaveskii limit

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$
H=-\sum_{i} \Delta_{i}^{(x)}+g N^{2} \sum_{i<j} \phi\left(N\left(x_{i}-x_{j}\right)\right)
$$

with $N, g \rightarrow+\infty$

Outlook / Thomas-Fermi + Gross Pitaveskii limit

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$
H=-\sum_{i} \Delta_{i}^{(x)}+g N^{2} \sum_{i<j} \phi\left(N\left(x_{i}-x_{j}\right)\right)
$$

with $N, g \rightarrow+\infty$

- Rescaling: $y=N x \Rightarrow N$ particles in a box of volume $|\Lambda|=N^{3}$

$$
H=-N^{2} \sum_{i} \Delta_{i}^{(y)}+g N^{2} \sum_{i<j} \phi\left(y_{i}-y_{j}\right)
$$

Outlook / Thomas-Fermi + Gross Pitaveskii limit

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$
H=-\sum_{i} \Delta_{i}^{(x)}+g N^{2} \sum_{i<j} \phi\left(N\left(x_{i}-x_{j}\right)\right)
$$

with $N, g \rightarrow+\infty$

- Rescaling: $y=N x \Rightarrow N$ particles in a box of volume $|\Lambda|=N^{3}$

$$
H=-N^{2} \sum_{i} \Delta_{i}^{(y)}+g N^{2} \sum_{i<j} \phi\left(y_{i}-y_{j}\right)
$$

- Three-modes Hamiltonian

$$
H_{\mathbf{j}_{*}}^{B}=\sum_{ \pm \mathbf{j}_{*}}\left(N^{2} k_{\mathbf{j}}^{2}+g \frac{\phi_{\mathbf{j}_{*}}}{N} a_{0}^{*} a_{0}\right) a_{\mathbf{j}}^{*} a_{\mathbf{j}}+g \frac{\phi_{\mathbf{j}_{*}}}{N}\left\{a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}+a_{\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}^{*} a_{0} a_{0}\right\}
$$

where $k_{\mathrm{j}}^{2} \gtrsim N^{-2}$

Outlook / Thomas-Fermi + Gross Pitaveskii limit

- N Bose (nonrelat.) particles in a finite box of volume $|\Lambda|=1$

$$
H=-\sum_{i} \Delta_{i}^{(x)}+g N^{2} \sum_{i<j} \phi\left(N\left(x_{i}-x_{j}\right)\right)
$$

with $N, g \rightarrow+\infty$

- Rescaling: $y=N x \Rightarrow N$ particles in a box of volume $|\Lambda|=N^{3}$

$$
H=-N^{2} \sum_{i} \Delta_{i}^{(y)}+g N^{2} \sum_{i<j} \phi\left(y_{i}-y_{j}\right)
$$

- Three-modes Hamiltonian

$$
H_{\mathbf{j}_{*}}^{B}=g \phi_{\mathbf{j}_{*}}\left[\sum_{ \pm \mathbf{j}_{*}}\left(\frac{N^{2} k_{\mathbf{j}}^{2}}{g \phi_{\mathbf{j}_{*}}}+\frac{1}{N} a_{0}^{*} a_{0}\right) a_{\mathbf{j}}^{*} a_{\mathbf{j}}+\frac{1}{N}\left\{a_{0}^{*} a_{0}^{*} a_{\mathbf{j}} a_{-\mathbf{j}}+a_{\mathbf{j}_{*}}^{*} a_{-\mathbf{j}_{*}}^{*} a_{0} a_{0}\right\}\right]
$$

$$
\text { where } k_{\mathrm{j}}^{2} \gtrsim N^{-2} \quad \Rightarrow \quad \frac{N^{2}}{g} \frac{k_{\mathrm{j}}^{2}}{\phi_{\mathrm{j}_{*}}}>N^{-\frac{8}{11}} \quad \text { for } \quad g \lesssim N^{\frac{8}{11}}
$$

THANK YOU

