Renormalization group, Kondo effect and hierarchical models G.Benfatto, I.Jauslin \& GG

1-d lattice, fermions+impurity, "Kondo problem"

$$
\begin{aligned}
H_{h} & =\sum_{x=-L / 2}^{L / 2-1} \psi^{+}(x)\left(-\frac{1}{2} \Delta-1\right) \psi^{-}(x)+h \tau^{z} \\
H_{K} & =H_{h}+\lambda \psi^{+}(0) \sigma^{j} \psi^{-}(0) \tau^{j}=H_{h}+V
\end{aligned}
$$

(1) $\psi_{\alpha}^{ \pm}(x)$ C\&A operators, $\sigma^{j}, \tau^{j}, j=1,2,3$, Pauli matrices
(2) $x \in$ unit lattice, $-L / 2, L / 2$ identified (periodic b.c.)
(3) $\Delta f(x)=f(x+1)-2 f(x)+f(x-1)$ discrete Laplacian.

No interaction $(\lambda=0): 1$ impurity and $\beta h<1($ e.g. $h=0)$

$$
\chi(\beta, h) \propto \beta \underset{\beta \rightarrow \infty}{ } \infty, \quad \forall L \geq 1, \beta h<1
$$

Interaction (classical) 1 elec.\&1 impurity:

1) field on impurity or on imp. site $\& \lambda \neq 0$

$$
\chi(\beta, 0)=0,+\infty \quad \text { repulsive/attr., or }+\infty \text { both cases }
$$

2) Still true if $L<\infty$ classic\&quantum or $L=\infty$ classic BUT

If $L=\infty$ quantum chain: new phenomena

1) no impurity: \Rightarrow Pauli paramagnetism (1926)
local (or specific) magnetic suscept. $<\infty$ at $T \geq 0$:

$$
\chi(\infty, 0)=\rho \frac{1}{k_{B} T_{F}} \frac{d}{2}, \quad(\text { Pauli })
$$

2) at fixed $\lambda<0 \Rightarrow$ Kondo effect:
susceptibility $\chi(\beta, h)$
smooth and >0 at $T=0$ and $h \geq 0$
Kondo realized the problem (3^{d}-order P.T.) and gave arguments (1964) for $\chi<\infty$ (actually $0<$ resistivity $<\infty$)

Anderson-Yuval-Hamann $(1969,70) \Rightarrow$ multiscale nature, relation with 1D Coulomb gas \& (no Kondo eff. $\lambda>0$), \&
$\&$ stress lack of asymptotic freedom $=$ obstacle for $\lambda<0$.
Wilson (1974-1975) had overcome lack of asympt. freedom: simplified model and a recursion scheme, $\frac{1}{2}$-numerically.

Andrei (1980): exact solution of closely related model.
Method builds sequence of approximate Hamiltonians more and more accurately representing the system on larger and larger scales, with Kondo effect via a nontrivial fixed point.

Evaluate $Z=\operatorname{Tr} e^{-\beta H_{K}}$ via Wick's rule.

$$
\begin{aligned}
& Z=\operatorname{Tr}\left\langle\sum_{n=0}^{\infty}(-1)^{n} \int_{0<t_{1}<\cdots<t_{n}<\beta} d t_{1} \cdots d t_{n} V\left(t_{1}\right) \cdots V\left(t_{n}\right)\right\rangle \\
& V(t) \stackrel{\text { def }}{=}-\lambda_{0} \psi^{+}(t) \sigma^{j} \psi_{\alpha_{2}}^{-}(t) \tau^{j}-h \boldsymbol{\omega}_{j} \tau^{j}
\end{aligned}
$$

Averages of observables depending only on the site 0 (e.g. impurity susceptibility) require by Wick \Rightarrow only Feynman graphs with propagators at $x=0: g\left(t-t^{\prime}\right)$:

$$
g\left(t-t^{\prime}\right)=\sum_{\omega= \pm} \int \frac{d k_{0} d k}{(2 \pi)^{2}} \frac{e^{i k_{0}\left(t-t^{\prime}\right)}}{-i k_{0}+\omega k} \chi\left(k_{0}^{2}+k^{2}\right)
$$

here a first simplification: cut-off of the large k, k_{0} and linear dispersion relation $\pm k$ at the Fermi level $k=0$).
The multiscale decomposition of g

$$
g\left(t-t^{\prime}\right)=\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right)
$$

exhibits the scaling properties of g : namely the long range $\sim \frac{1}{t-t^{\prime}}$ decomposed as a sum of short range propagators identical up to scaling.

The hierarchical model introduces a further simplification

$$
\begin{aligned}
& g\left(t-t^{\prime}\right)=\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right) \\
& g_{0}\left(t, t^{\prime}\right)=0 \text { unless } t, t^{\prime} \in\left[n 2^{-m},(n+1) 2^{-m}\right] \\
& g_{0}\left(t, t^{\prime}\right)= \begin{cases}1 & \text { if } t \in\left[n 2^{-m},\left(n+\frac{1}{2}\right) 2^{-m}\right] \text { and } t^{\prime}>\left(n+\frac{1}{2}\right) 2^{-m} \\
-1 & \text { if } t^{\prime} \in\left[n 2^{-m},\left(n+\frac{1}{2}\right) 2^{-m}\right] \text { and } t>\left(n+\frac{1}{2}\right) 2^{-m} \\
g_{0}\left(t, t^{\prime}\right) & =0 \quad \text { otherwise }\end{cases}
\end{aligned}
$$

g_{0} loses translation invariance but the propagator g keeps the multiscale and long range properties of the initial model, at least hierarchically

But since the impurity is localized observ. localized at 0 depend on fields at $0, \psi^{ \pm}(0), \varphi^{ \pm} \Rightarrow 1 D$ problem (AYH).

Illustration of (AYH970) remark: 1D problem, (long range) Main operators in the Lagrangian:

$$
O_{0}(t) \stackrel{\text { def }}{=} \psi^{+}(t) \boldsymbol{\sigma} \psi^{-}(t) \cdot \boldsymbol{\tau}=\vec{A}(t) \cdot \boldsymbol{\tau}, \quad O_{5}(t) \stackrel{\text { def }}{=} \boldsymbol{\tau} \cdot \boldsymbol{\omega}
$$

(in Grassmannian form) and
\mathcal{L}_{K} on scale m is (with $\alpha_{0}<0, \alpha_{5}=h \geq 0$ else 0).
$\int e^{\mathcal{L}_{K}^{[<=m]}\left(\psi^{[\leq m]}\right.} d \psi=\int e^{-\int_{0}^{\beta} \sum_{i} \alpha_{i}^{[m]} O_{i}(t) d t} d \psi^{[0]} d \psi^{[-1]} \ldots d \psi^{[m+1]}$
Set RG analysis via (Grassmannian) for $\operatorname{Tr} e^{-\beta H_{K}}$
Key: IF $h=0$ then $\mathcal{L}_{K}^{[m]}(t)$ is $\forall m$:

$$
\alpha_{0}^{[m]} O_{0}(t) \cdot \boldsymbol{\tau}+\alpha_{1}^{[m]} O_{1}(t)
$$

i.e. no new operators needed at any scale (exact recursion)

Scaling $O_{0}=$ marginal, O_{1} irrrelevant, $O_{5}=$ relevant
The RG consists in

1) Expand perturbatively $Z^{[>m]}=e^{V^{[m]}}$ via Feynman gr. heavily using the hierarchical structure
2) Decompose propagators as $\sum_{m=0}^{-\infty} 2^{m} g_{0}\left(2^{m}\left(t-t^{\prime}\right)\right.$

3) Recognize: at $h \geq 0$ no new operators can arise besides

$$
O_{4}=\vec{A} \cdot \vec{h}, O_{5}=\boldsymbol{\sigma} \cdot \vec{h}, O_{6}=(\vec{A} \cdot \vec{h})(\boldsymbol{\tau} \cdot \vec{h}), O_{7}=\vec{A}^{2} \boldsymbol{\tau} \cdot \vec{h},
$$

3) Recognize that the result contains a few series that can collected to form a sequence of running couplings

$$
\boldsymbol{\alpha}^{[m]}=\left(\alpha_{0}^{[m]}, \alpha_{1}^{[m]}, \alpha_{4}^{[m]}, \alpha_{5}^{[m]}, \alpha_{6}^{[m]}, \alpha_{7}^{[m]}\right)
$$

with only $\alpha_{0}^{[m]}, \alpha_{1}^{[m]} \neq 0$ if $h=0$
4) Each is a convergent series in the initial couplings α_{0}, h, if small enough (BUT converg. radius m dependent)
5) Recognize that the $\boldsymbol{\alpha}^{[m]}$ satisfy a formal recursion

$$
\boldsymbol{\alpha}^{[m]}=\Lambda \boldsymbol{\alpha}^{[m+1]}+\mathcal{B}\left(\boldsymbol{\alpha}^{[m+1]}\right)
$$

and \mathcal{B} can be expressed as a "polynomial" with coefficients which are geometric series in $\boldsymbol{\alpha}^{[m+1]} ; \Lambda=\left(1, \frac{1}{2}, 1,2,1, \frac{1}{2}\right)$.

Even forgetting convergence, PT of no use: marginal term grows (if $\lambda_{0}<0$) and generates growing ("relevant" terms)!
6) Sum the geometric series to obtain a closed from of \mathcal{B}. After a natural change of variables $\boldsymbol{\alpha} \longleftrightarrow \boldsymbol{\lambda}$ at $h=0$

$$
\begin{aligned}
\lambda_{0}^{\prime} & =\frac{1}{C}\left(\lambda_{0}+3 \lambda_{0} \lambda_{1}-\lambda_{0}^{2}\right) \\
\lambda_{1}^{\prime} & =\frac{1}{C}\left(\frac{1}{2} \lambda_{1}+\frac{1}{8} \lambda_{0}^{2}\right), \\
C & =1+\frac{3}{2} \lambda_{0}^{2}+9 \lambda_{1}^{2}
\end{aligned}
$$

Non perturbative: for $m \rightarrow-\infty$ (IR limit, $\beta=+\infty, T=0)$

$$
\boldsymbol{\lambda}^{[m]}, \boldsymbol{\alpha}^{[m]} \text { converge to non trivial fixed point }
$$

if $h=0, \alpha_{0}<0$, exactly computable, $\lambda_{0}^{*}=-7.807257 \ldots 10^{-1}, \lambda_{1}^{*}=5.292875 \ldots 10^{-2}$

$$
\lambda_{0}^{*}=-x \frac{1+5 x}{1-4 x}, \lambda_{1}^{*}=\frac{x}{3}, x=7.807257 \ldots 10^{-1}
$$

with $4-19 x-22 x^{2}-107 x^{3}=0$, real root.

Susceptibility: new operators needed to close beta

$$
O_{4}=\vec{A} \cdot \vec{h}, O_{5}=\boldsymbol{\sigma} \cdot \vec{h}, O_{6}=\vec{A} \cdot \vec{h} \boldsymbol{\sigma} \cdot \vec{h}, O_{7}=\vec{A}^{2} \boldsymbol{\sigma} \cdot \vec{h},
$$

O_{0}, O_{4}, O_{6} marginal, O_{5} relevant, O_{1}, O_{7} irrelevant
Calculating beta function: via Feynman graphs, after simplifications, a beta function with 36 coeff is found

From the flow of the $\boldsymbol{\alpha}$ the partition function $Z(\beta, h)$ is computed and susceptibility

$$
\chi(\beta, h)=\partial_{h}^{2} \log Z(\beta, h)
$$

follows as a function of h.
The beta function is a rational function defined by the ratio of two polynomials of degree 2 .

$$
\begin{aligned}
& C=1+\lambda_{0}^{2}+\frac{1}{2}\left(\lambda_{0}+\lambda_{6}\right)^{2}+9 \lambda_{1}^{2}+\frac{1}{2} \lambda_{4}^{2}+\frac{1}{4} \lambda_{5}^{2}+9 \lambda_{7}^{2} \\
& \lambda_{0}^{\prime}=\frac{1}{C}\left(\lambda_{0}-\lambda_{0}^{2}+3 \lambda_{0} \lambda_{1}-\lambda_{0} \lambda_{6}\right) \\
& \lambda_{1}^{\prime}=\frac{1}{C}\left(\frac{1}{2} \lambda_{1}+\frac{1}{8} \lambda_{0}^{2}+\frac{1}{12} \lambda_{0} \lambda_{6}+\frac{1}{24} \lambda_{4}^{2}+\frac{1}{4} \lambda_{5} \lambda_{7}+\frac{1}{24} \lambda_{6}^{2}\right) \\
& \lambda_{4}^{\prime}=\frac{1}{C}\left(\lambda_{4}+\frac{1}{2} \lambda_{0} \lambda_{5}+3 \lambda_{0} \lambda_{7}+3 \lambda_{1} \lambda_{4}+\frac{1}{2} \lambda_{5} \lambda_{6}+3 \lambda_{6} \lambda_{7}\right) \\
& \lambda_{5}^{\prime}=\frac{1}{C}\left(2 \lambda_{5}+2 \lambda_{0} \lambda_{4}+36 \lambda_{1} \lambda_{7}+2 \lambda_{4} \lambda_{6}\right) \\
& \lambda_{6}^{\prime}=\frac{1}{C}\left(\lambda_{6}+\lambda_{0} \lambda_{6}+3 \lambda_{1} \lambda_{6}+\frac{1}{2} \lambda_{4} \lambda_{5}+3 \lambda_{4} \lambda_{7}\right) \\
& \lambda_{7}^{\prime}=\frac{1}{C}\left(\frac{1}{2} \lambda_{7}+\frac{1}{12} \lambda_{0} \lambda_{4}+\frac{1}{4} \lambda_{1} \lambda_{5}+\frac{1}{12} \lambda_{4} \lambda_{6}\right)
\end{aligned}
$$

Fig.2: plot of $\frac{\lambda_{i}}{\lambda_{i}^{*}}, i=0,1$, as a function of $N_{\beta}=\log _{2} \beta$, $\lambda_{0} \equiv \alpha_{0}=-0.1,-0.01$ respectively the left and the right pairs.

Fig．3：inflection point $n_{0}\left(\lambda_{0}\right): n_{0}\left(\lambda_{0}\right) \cdot\left|\lambda_{0}\right|$ vs．$\left|\log _{2}\right| \lambda_{0}| |$ ：only data with 10% error（upper and lower curves）visual lines interpolate data

$$
T_{K}=\text { const } e^{-c_{0} \lambda_{0}^{-1}}
$$

For $h \neq 0$ the flow leads to＂high T fixed pt．＂at scale $\propto 1 /|\log h|$

The equation of state

Fig.4: plot of $\chi(\beta, h)$ for $h \in\left[0,10^{-6}\right]$ at $\lambda_{0}=-0.3$ and $\beta=2^{20}$ (so that the largest value for βh is ~ 1)
$[2,3,5,4,6]$

It is interesting to compare the above results with the ones that would be given by 2^{d} or 3^{d} perturbation theory, in $h=0$ field (for simplicity).

Just expand the exact beta function in powers
(1) to order 2 the flow diverges (strong coupling)
(2) to order 3 (and very likely to all orders) the flow converges to a non trivial fixed point
(3) the magnetic susceptibility diverges: i.e. a nontrivial fixed point does not necessarily imply a Kondo effect

This exhibits the key difficulty that is met in treating the $s-d$-model (non hierarchical) via the RG.
On the one hand it should be possible to apply the local (i.e. "Roman") methods to prove that the beta function is well defined and convergent for small running couplings.

On the other hand the radius of convergence would be necessarily small (as it depends on the bounds of [7, 8]): and to third order is likely to yield the hierarchical result with the fixed point existing but located out of the convergence radius.

The theory of a version of the Anderson model without approximations rests on the exact result of [1]; and a rigorous version of the RG analysis discovered by Wilson, [9] is certainly an interesting open problem.

An interesting graphical representation of the RG flow in the hierarchical model has been developed by J. Jauslin.

References
[1] N. Andrei.
Diagonalization of the Kondo Hamiltonian.
Physical Review Letters, 45:379-382, 1980.
[2] G. Benfatto and G. Gallavotti.
Perturbation theory of the Fermi surface in a quantum liquid. a general quasi particle formalism and one dimensional systems.
Journal of Statistical Physics, 59:541-664, 1990.
[3] G. Benfatto and G. Gallavotti.
Renormalization group approach to the theory of the fermi surface.
Physical Review B, 42:9967-9972, 1990.
[4] G. Benfatto, G. Gallavotti, and I. Jauslin.
Kondo effect in a fermionic hierarchical model.
Journal of Statistical Physics, 161:1203-1230, 2015.
[5] T.C. Dorlas.
Renormalization group analysis of a simple hierarchical fermion model.
Communications in Mathematical Physics, 136:169-194, 1991.
[6] G. Gallavotti and I. Jauslin.
Kondo effect in the hierarchical $s-d$ model.
Journal of Statistical Physics, 161:1231-1235, 2015.
[7] K. Gawedski and A. Kupiainen.
Triviality of φ^{4} and all that in a hierarchical model approximation. Journal of Statistical Physics, 29:683-698, 1982.
[8] A. Lesniewski.
Effective Action for the Yukawa_2 Quantum Field Theory.
Communications in Mathematical Physics, 108:437-467, 1987.
[9] K. Wilson.
The renormalization group.
Reviews of Modern Physics, 47:773-840, 1975.

The exactly soluble＂Andrei model＂which replaces $\boldsymbol{\tau}$ with $\varphi^{+}(0) \boldsymbol{\tau} \varphi^{-}(0)$ ：

$$
\begin{aligned}
& H_{0}=\sum_{\alpha \in\{\uparrow, \downarrow\}}\left(\sum_{x=-L / 2}^{L / 2-1} c_{\alpha}^{+}(x)\left(-\frac{\Delta}{2}-1\right) c_{\alpha}^{-}(x)\right) \\
& H_{K}=H_{0}+V_{0}+V_{h} \stackrel{d e f}{=} H_{0}+V \\
& V_{0}=-\lambda_{0} \sum_{j=1,2,3 ; \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} c_{\alpha_{1}}^{+}(0) \sigma_{\alpha_{1}, \alpha_{2}}^{j} c_{\alpha_{2}}^{-}(0) d_{\alpha_{3}}^{+} \sigma_{\alpha_{3}, \alpha_{4}}^{j} d_{\alpha_{4}}^{-} \\
& V_{h}=-h \sum_{j=1,2,3} \boldsymbol{\omega}_{j} \sum_{\alpha \in \uparrow, \downarrow} d_{\alpha}^{+} \sigma_{\alpha, \alpha}^{j} d_{\alpha}
\end{aligned}
$$

It can be（rigorously）shown to exhibit the Kondo effect with the same susceptibility at $h=0$ ．
This has larger algebra of operators and a correspondingly more elaborated beta function：

$$
\begin{aligned}
\ell_{0}^{[m-1]} & =\frac{1}{C}\left(\ell_{0}-2 \ell_{0} \ell_{6}+18 \ell_{0} \ell_{3}+3 \ell_{0} \ell_{2}+3 \ell_{0} \ell_{1}-2 \ell_{0}^{2}\right) \\
\ell_{1}^{[m-1]} & =\frac{1}{C}\left(\frac{1}{2} \ell_{1}+9 \ell_{2} \ell_{3}+\frac{3}{2} \ell_{8}^{2}+\frac{1}{12} \ell_{6}^{2}+\frac{1}{2} \ell_{5} \ell_{7}+\frac{1}{24} \ell_{4}^{2}+\frac{1}{6} \ell_{0} \ell_{6}+\frac{1}{4} \ell_{0}^{2}\right) \\
\ell_{2}^{[m-1]} & =\frac{1}{C}\left(2 \ell_{2}+36 \ell_{1} \ell_{3}+\ell_{0}^{2}+6 \ell_{7}^{2}+\frac{1}{3} \ell_{6}^{2}+\frac{1}{6} \ell_{5}^{2}+2 \ell_{4} \ell_{8}+\frac{2}{3} \ell_{0} \ell_{6}\right) \\
\ell_{3}^{[m-1]} & =\frac{1}{C}\left(\frac{1}{2} \ell_{3}+\frac{1}{4} \ell_{1} \ell_{2}+\frac{1}{24} \ell_{0}^{2}+\frac{1}{36} \ell_{0} \ell_{6}+\frac{1}{72} \ell_{6}^{2}+\frac{1}{12} \ell_{5} \ell_{7}+\frac{1}{12} \ell_{4} \ell_{8}\right) \\
\ell_{4}^{[m-1]} & =\frac{1}{C}\left(\ell_{4}+6 \ell_{6} \ell_{7}+\ell_{5} \ell_{6}+108 \ell_{3} \ell_{8}+18 \ell_{2} \ell_{8}+3 \ell_{1} \ell_{4}+6 \ell_{0} \ell_{7}+\ell_{0} \ell_{5}\right) \\
\ell_{5}^{[m-1]} & =\frac{1}{C}\left(2 \ell_{5}+12 \ell_{6} \ell_{8}+2 \ell_{4} \ell_{6}+216 \ell_{3} \ell_{7}+6 \ell_{2} \ell_{5}+36 \ell_{1} \ell_{7}+12 \ell_{0} \ell_{8}+2 \ell_{0} \ell_{4}\right) \\
\ell_{6}^{[m-1]} & =\frac{1}{C}\left(\ell_{6}+18 \ell_{7} \ell_{8}+3 \ell_{5} \ell_{8}+3 \ell_{4} \ell_{7}+\frac{1}{2} \ell_{4} \ell_{5}+18 \ell_{3} \ell_{6}+3 \ell_{2} \ell_{6}+3 \ell_{1} \ell_{6}+2 \ell_{0} \ell_{6}\right) \\
\ell_{7}^{[m-1]} & =\frac{1}{C}\left(\frac{1}{2} \ell_{7}+\frac{1}{2} \ell_{6} \ell_{8}+\frac{1}{12} \ell_{4} \ell_{6}+\frac{3}{2} \ell_{3} \ell_{5}+\frac{3}{2} \ell_{2} \ell_{7}+\frac{1}{4} \ell_{1} \ell_{5}+\frac{1}{2} \ell_{0} \ell_{8}+\frac{1}{12} \ell_{0} \ell_{4}\right) \\
\ell_{8}^{[m-1]} & =\frac{1}{C}\left(\ell_{8}+\ell_{6} \ell_{7}+\frac{1}{6} \ell_{5} \ell_{6}+3 \ell_{3} \ell_{4}+\frac{1}{2} \ell_{2} \ell_{4}+3 \ell_{1} \ell_{8}+\ell_{0} \ell_{7}+\frac{1}{6} \ell_{0} \ell_{5}\right) \\
C & =1+2 \ell_{0}^{2}+\left(\ell_{0}+\ell_{6}\right)^{2}+9 \ell_{1}^{2}+9 \ell_{2}^{2}+324 \ell_{3}^{2}+\frac{1}{2} \ell_{4}^{2}+\frac{1}{2} \ell_{5}^{2}+18 \ell_{7}^{2}+18 \ell_{8}^{2}
\end{aligned}
$$

The flow equation for SD model can be seen as asymptotic (for the relevant initial data) to the flow on an invariant submanifold defined by

$$
\ell_{2}^{[m]}=\frac{1}{3}, \quad \ell_{3}^{[m]}=\frac{1}{6} \ell_{1}^{[m]}, \quad \ell_{8}^{[m]}=\frac{1}{6} \ell_{4}^{[m]}
$$

for the flow of the hierarchical Andrei model.

