Response theory for $2 d$ periodically driven crystals

Krzysztof Gawȩdzki

Rome, Cond.-Mat. \& Crit. Phenom. Conf., September 2016

If you're not failing every now and again, it's a sign you're not doing anything very innovative

Woody Allen

General theme:
Non-trivial topological properties of certain materials may be induced by periodic driving

Our aim:
Understanding such topological properties of periodically driven crystals

- The simplest theoretical setup: tight-binding models in fermionic Fock space with the $2^{\text {nd }}$-quantized time-dependent Hamiltonian

$$
H(t)=\sum_{m, n \in \mathbb{Z}^{d}} \sum_{a, b=1}^{N}\left(c_{m}^{a}\right)^{\dagger} h_{m n}^{a b}(t) c_{n}^{b}
$$

on the infinite crystalline lattice \mathbb{Z}^{d}, where $a=1, \ldots, N$ enumerates the internal degrees of freedom (like spin), $\left(c_{n}^{b}\right)^{\dagger}$ and c_{m}^{a} create and annihilate electronic states localized at lattice sites,

$$
\begin{gathered}
{\left[c_{m}^{a},\left(c_{n}^{b}\right)^{\dagger}\right]_{+}=\delta_{m n} \delta^{a b}} \\
{\left[c_{m}^{a}, c_{n}^{b}\right]_{+}=0=\left[\left(c_{m}^{a}\right)^{\dagger},\left(c_{n}^{b}\right)^{\dagger}\right]_{+}}
\end{gathered}
$$

and $h_{m n}^{a b}(t)=\overline{h_{n m}^{b a}(t)}$ defines the $1^{\text {st }}$-quantized Hamiltonian $h(t)$ acting in $L^{2}\left(\mathbb{Z}^{d}, \mathbb{C}^{N}\right)$

- Many physical properties of the model may be tested coupling the system to an external electromagnetic field $A=A_{\mu} d x^{\mu}$
- The coupling is realized by the Peierls substitution in the $1^{\text {st }}$-quantized Hamiltonian

$$
h(t) \quad \longrightarrow \quad h_{A}(t)
$$

where

$$
h_{A, m n}^{a b}(t)=-A_{0}(t, m) \delta^{a b} \delta_{m n}+h_{m n}^{a b} \mathrm{e}^{-\mathrm{i} \int_{m}^{n} A_{i}(t, x) \mathrm{d} x^{i}}
$$

with the corresponding $2^{\text {nd }}$-quantized Hamiltonian

$$
H_{A}(t)=\sum_{m, n \in \mathbb{Z}^{d}} \sum_{a, b=1}^{N}\left(c_{m}^{a}\right)^{\dagger} h_{A, m n}^{a b}(t) c_{n}^{b}
$$

- The time evolution between times t_{1} and t_{2} are defined by the Schrödinder equation

$$
\mathrm{i} \partial_{t_{2}} U\left(t_{2}, t_{1}\right)=H\left(t_{2}\right) U\left(t_{2}, t_{1}\right), \quad U\left(t_{1}, t_{1}\right)=I
$$

and similarly in the external field

$$
\mathrm{i} \partial_{t_{2}} U_{A}\left(t_{2}, t_{1}\right)=H_{A}\left(t_{2}\right) U_{A}\left(t_{2}, t_{1}\right), \quad U_{A}\left(t_{1}, t_{1}\right)=I
$$

with the scattering matrix

$$
S_{A}\left(t_{2}, t_{1}\right)=U\left(t_{2}, t_{1}\right)^{-1} U_{A}\left(t_{2}, t_{1}\right)
$$

- If the support of A is in the interval $\left[t_{1}, t_{2}\right]$ and $t_{1}^{\prime}<t_{1}<t_{2}<t_{2}^{\prime}$ then

$$
S_{A}\left(t_{2}^{\prime}, t_{1}^{\prime}\right)=U\left(t_{1}, t_{1}^{\prime}\right)^{-1} S_{A}\left(t_{2}, t_{1}\right) U\left(t_{1}, t_{1}^{\prime}\right)
$$

- Stationary case
- If $h(t)=h$ is time-independent then

$$
U\left(t_{2}, t_{1}\right)=\mathrm{e}^{-\mathrm{i}\left(t_{2}-t_{1}\right) H}
$$

- Let ω be a state invariant under the stationary evolution

$$
\omega(O)=\omega\left(\mathrm{e}^{\mathrm{i} t H} O \mathrm{e}^{-\mathrm{i} t H}\right)
$$

Then the limit

$$
\lim _{\substack{t_{1} \rightarrow-\infty \\ t_{2} \rightarrow+\infty}} \omega\left(S_{A}\left(t_{2}, t_{1}\right)\right) \equiv \mathrm{e}^{\mathrm{i} S_{\omega}^{\mathrm{eff}}(A)}
$$

(that exists trivially if the temporal support of A is compact) defines the effective action $S_{\omega}^{e f f}(A)$ of the electromagnetic field

- We shall consider states ω obtained in the thermodynamic limit from the periodic-boundary-conditions density matrices

$$
\rho=\frac{\mathrm{e}^{-\sum_{m, n} \sum_{a, b}\left(c_{m}^{a}\right)^{\dagger} r_{m n}^{a b} c_{n}^{b}}}{\operatorname{Tr} \mathrm{e}^{-\sum_{m, n} \sum_{a, b}\left(c_{m}^{a}\right)^{\dagger} r_{m n}^{a b} c_{n}^{b}}}
$$

where $[r, h]=0$, e.g. in the Gibbs state with $r=\beta(h-\mu I)$ where β is the inverse temperature and μ the chemical potential

- Such states are characterized by the Green function

$$
G_{\omega, m n}^{a b}\left(t, t^{\prime}\right)=\lim _{t_{1} \rightarrow-\infty}\left\{\begin{array}{lll}
\omega\left(c_{m}^{a}\left(t, t_{1}\right) c_{n}^{b}\left(t^{\prime}, t_{1}\right)^{\dagger}\right) & \text { if } \quad t<t^{\prime} \\
-\omega\left(c_{n}^{b}\left(t^{\prime}, t_{1}\right)^{\dagger} c_{m}^{a}\left(t, t_{1}\right)\right) & \text { if } \quad t \geq t^{\prime}
\end{array}\right.
$$

where

$$
c_{m}^{a}\left(t_{2}, t_{1}\right)=U\left(t_{2}, t_{1}\right)^{-1} c_{m}^{a} U\left(t_{2}, t_{1}\right)
$$

as the higher order expectations of the time-ordered products of creators and annihilators are given by the fermionic Wick rule

- The Green function satisfies the differential equation

$$
\left(\partial_{t}+\mathrm{i} h\right) G_{\omega}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)
$$

with many different solutions

- The effective action defined above is given by the formula

$$
\begin{aligned}
S_{\omega}^{\mathrm{eff}}(A) & =\frac{1}{\mathrm{i}} \ln \operatorname{det}\left(I+\mathrm{i} G_{\omega}\left(h_{A}-h\right)\right) \\
& =\sum_{p=1}^{\infty} \frac{\mathrm{i}^{3} 3 p+1}{p} \operatorname{Tr}\left(G_{\omega}\left(h_{A}-h\right)\right)^{p}
\end{aligned}
$$

that lends itself to a perturbative calculation in A

- If $h_{m n}^{a b}$ is translationally invariant and of finite range then it may be block-diagonalized by the discrete Fourier-Bloch transform

$$
h_{m n}^{a b}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} \mathrm{e}^{\mathrm{i} k \cdot(m-n)} \widehat{h}^{a b}(k) \mathrm{d}^{d} k
$$

where $\mathbb{T}^{d}=\mathbb{R}^{d} /\left(2 \pi \mathbb{Z}^{d}\right)$ is the Brillouin torus with $\widehat{h}^{a b}(k)$ smoothly dependent on the quasimomenta k, and similarly for $r_{m n}^{a b}$

- Locally on \mathbb{T}^{d} one may choose a common eigenbasis $\left(\phi_{a}(k)\right)_{a=1}^{N}$ for the commuting $N \times N$ hermitian matrices $\widehat{h}(k)$ and $\widehat{r}(k)$
- To the $2^{\text {nd }}$ order

$$
\begin{aligned}
S_{\omega}^{\text {eff }}(A) & =\int \mathrm{d}^{D} q Q_{1}^{\mu}(q) \widehat{A}_{\mu}(q) \\
& +\frac{1}{2} \int \mathrm{~d}^{D} q \int \mathrm{~d}^{D} q^{\prime} Q_{2}^{\mu \nu}\left(q, q^{\prime}\right) \widehat{A}_{\mu}(q) \widehat{A}_{\nu}\left(-q^{\prime}\right) \\
& +o\left(A^{2}\right)
\end{aligned}
$$

for $D=d+1$, where

$$
\widehat{A}_{\mu}(q)=\int \mathrm{d}^{D} x \mathrm{e}^{-\mathrm{i} q_{\nu} x^{\nu}} A_{\mu}(x)
$$

is the continuum Fourier transform of $A_{\mu}(x)$

- One has

$$
\begin{aligned}
& Q_{1}^{\mu}(q)=\delta\left(q_{0}\right)\left(\prod_{i} \sum_{n_{i} \in \mathbb{Z}} \delta\left(q_{i}+2 \pi n_{i}\right)\right) \Pi_{1}^{\mu}(q, n) \\
& Q_{2}^{\mu \nu}\left(q, q^{\prime}\right)=\delta\left(q_{0}-q_{0}^{\prime}\right)\left(\prod_{i} \sum_{n_{i} \in \mathbb{Z}} \delta\left(q_{i}-q_{i}^{\prime}+2 \pi n_{i}\right)\right) \Pi_{2}^{\mu \nu}(q, n)
\end{aligned}
$$

- The terms with $n_{i} \neq 0$ remembering the lattice structure give rise to oscillatory contributions to the effective action that average out on long distances and we shall drop them
- $\Pi_{1}^{\mu}(q, 0)$ does not depend on q and discribes the average charge and current density in state ω (the latter vanishes)
- We shall concentrate on the quadratic contribution to $S_{\omega}^{\text {eff }}$ in $d=2$ space dimensions describing the linear response to external electromagnetic field
- In the translation-invariant case

$$
\begin{aligned}
& G_{\omega}\left(t, t^{\prime}\right)_{m n}=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}} d \omega \int_{\mathbb{T}^{d}} \mathrm{e}^{\mathrm{i}\left(\omega\left(t-t^{\prime}\right)+k \cdot(m-n)\right)} \widehat{G}_{\omega}(\omega, k) \\
& \widehat{G}_{\omega}(\omega, k)=\sum_{a=1}^{N}\left(\frac{n_{a}(k)}{\mathrm{i}\left(\omega+e_{a}(k)+\mathrm{i} 0\right)}+\frac{1-n_{a}}{\mathrm{i}\left(\omega+e_{a}(k)-\mathrm{i} 0\right)}\right)\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|
\end{aligned}
$$

where $e_{a}(k)$ is the eigenvalue of the eigenvector $\phi_{a}(k)$ of $\widehat{h}(k)$ and $n_{a}(k)$ is its occupation number in the state ω :

$$
\omega\left(c_{\phi_{a}}(k)^{\dagger} c_{\phi_{a}}\left(k^{\prime}\right)\right)=(2 \pi)^{d} \delta\left(k-k^{\prime}\right) n_{a}(k)
$$

for

$$
c_{\phi_{a}}(k)=\sum_{n} \sum_{b} \overline{\phi_{a}^{b}(k)} \mathrm{e}^{-\mathrm{i} k \cdot n} c_{n}^{b}
$$

- A straightforward calculation shows that in $d=2$

$$
\Pi_{2}^{\mu \nu}(q, 0)=\frac{1}{(2 \pi)^{5}} q_{\lambda} \epsilon^{\lambda \mu \nu} \int_{\mathbb{T}^{d}} \sum_{a=1}^{N} n_{a}(k)\left\langle\mathrm{d} \phi_{a}(k) \mid \mathrm{d} \phi_{a}(k)\right\rangle+o(q)
$$

where the $o(q)$ terms are subdominant on long distances

- The singled out dominant quadratic term gives rise to the ChernSimons contribution to the effective action

$$
S_{\omega}^{\mathrm{eff}}(A)=-\frac{1}{2} \sigma^{\perp} \int_{\mathbb{R}^{3}} A \mathrm{~d} A+\ldots
$$

where (for $e=1=\hbar$)

$$
\sigma^{\perp}=\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}^{d}} \sum_{a=1}^{M} n_{a}(k)\left\langle\mathrm{d} \phi_{a}(k) \mid \mathrm{d} \phi_{a}(k)\right\rangle
$$

is the transverse conductance (Xiao et al. Rev. Mod. Phys. 82) Indeed, the current expectation

$$
\left\langle j^{\mu}(x)\right\rangle_{A}=\frac{\delta S_{\omega}^{\text {eff }}(A)}{\delta A_{\mu}(x)}=-\sigma^{\perp} \epsilon^{\mu \nu \lambda} \partial_{\nu} A_{\lambda}(x)+\ldots
$$

and, in particular,

$$
\left\langle j^{i}(x)\right\rangle_{A}=\sigma^{\perp} \epsilon^{j i} E_{j}(x)+\ldots
$$

- In the Gibbs state with $r=\beta(h-\mu n)$ the occupation numbers are given by the Fermi function:

$$
n_{a}(k)=\frac{1}{\mathrm{e}^{\beta\left(e_{a}(k)-\mu\right)}+1}
$$

- In particular, in the insulating ground state obtained for $\beta \rightarrow \infty$ with the chemical potential μ placed in the spectral gap of all $\widehat{h}(k)$

$$
n_{a}(k)=\left\{\begin{array}{lll}
0 & \text { if } & e_{a}(k)>\mu \\
1 & \text { if } & e_{a}(k)<\mu
\end{array}\right.
$$

so that

$$
\sigma^{\perp}=\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}^{d} d} \overbrace{\sum_{e_{a}^{a}(k)<\mu}\left\langle\mathrm{d} \phi_{a}(k) \mid \mathrm{d} \phi_{a}(k)\right\rangle}^{\text {Berry curvature of } \mathcal{E}}=\frac{c_{1}(\mathcal{E})}{2 \pi}
$$

where $c_{1}(\mathcal{E}) \in \mathbb{Z}$ is the $1^{\text {st }}$ Chern number of the vector bundle \mathcal{E} over \mathbb{T}^{2} spanned by the valence states $\phi_{a}(k)$ with $e_{a}(k)<\mu$

- Such a topological quantization of σ^{\perp} was first obtained by Thouless-Kohmoto-Nightingale-den Nijs in 1982 (via the Green-Kubo formula) providing a (partial) explanation of the integer quantum Hall effect

- $c_{1}(\mathcal{E})$ counts with chirality the massless modes localized near each edge of a finite sample of the $2 d$ insulator having their energies in the bulk gap (the bulk-edge correspondence)
- Periodically-driven (Floquet) case
- If $h(t+T)=h(t)$ is periodic in time then $U(t) \equiv U(t, 0)$ satisfies

$$
U(t+T)=U(t) U(T)
$$

For integers $p_{1}^{\prime}<p_{1}<p_{2}<p_{2}^{\prime}$ sufficiently large in absolute value the scattering matrix satisfies now the relation

$$
S_{A}\left(p_{2}^{\prime} T, p_{1}^{\prime} T\right)=U(T)^{p_{1}^{\prime}-p_{1}} S_{A}\left(p_{2} T, p_{1} T\right) U(T)^{p_{1}-p_{1}^{\prime}}
$$

- If the state ω is invariant under the evolution over one period of time

$$
\omega(O)=\omega\left(U(T)^{-1} O U(T)\right)
$$

then the limit

$$
\lim _{\substack{t_{1}=p_{1} T \rightarrow-\infty \\ t_{2}=p_{2} T \rightarrow+\infty}} \omega\left(S_{A}\left(t_{1}, t_{2}\right)\right) \equiv \mathrm{e}^{\mathrm{i} S_{\omega}{ }_{\omega}^{\text {eff }}(A)}
$$

defines the effective action $S_{\omega}^{\text {eff }}(A)$ as in the stationary case

- We shall again consider states ω obtained from the periodic boundary conditions density matrices

$$
\rho=\frac{\mathrm{e}^{-\sum_{m, n} \sum_{a, b}\left(c_{m}^{a}\right)^{\dagger} r_{m n}^{a b} c_{n}^{b}}}{\operatorname{Tr} \mathrm{e}^{-\sum_{m, n} \sum_{a, b}\left(c_{m}^{a}\right)^{\dagger} r_{m n}^{a b} c_{n}^{b}}}
$$

demanding now that $[r, u(T)]=0$ where $u(t)$ is the $1^{\text {st }}$-quantized version of the evolution $U(t)$:

$$
\mathrm{i} \partial_{t} u(t)=h(t) u(t), \quad u(0)=I
$$

- Again such states are characterized by the Green function

$$
G_{\omega, m n}^{a b}\left(t, t^{\prime}\right)=\lim _{t_{1}=p_{1} T \rightarrow-\infty}\left\{\begin{array}{lll}
\omega\left(c_{m}^{a}\left(t, t_{1}\right) c_{n}^{b}\left(t^{\prime}, t_{1}\right)^{\dagger}\right) & \text { if } \quad t<t^{\prime} \\
-\omega\left(c_{n}^{b}\left(t^{\prime}, t_{1}\right)^{\dagger} c_{m}^{a}\left(t, t_{1}\right)\right) & \text { if } \quad t \geq t^{\prime}
\end{array}\right.
$$

satisfying the equation $\left(\partial_{t}+\mathrm{i} h(t)\right) G_{\omega}\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right)$ and again

$$
S_{\omega}^{\mathrm{eff}}(A)=\frac{1}{\mathrm{i}} \ln \operatorname{det}\left(I+\mathrm{i} G_{\omega}\left(h_{A}-h\right)\right)
$$

- The diagonalization of the evolution operator $u(T)$ is the essence of the Floquet theory of periodically driven systems
- In the translation-invariant case we may choose locally on \mathbb{T}^{d} a common eigenbasis $\left(\phi_{a}(k)\right)_{a=1}^{N}$ for the commuting $N \times N$ matrices $\widehat{u}(T, k)$ and $\widehat{r}(k)$
- Let $\mathrm{e}^{-\mathrm{i} T e_{a}(k)}$ be the eigenvalues of $\widehat{u}(T, k)$ corresponding to $\phi_{a}(k)$. The reals $e_{a}(k)$ defined modulo $\frac{2 \pi}{T} \equiv \Omega$ are called quasienergies
- The Green function takes in the Fourier representation the form

$$
G_{\omega}\left(t, t^{\prime}\right)_{m n}=\frac{1}{(2 \pi)^{2} \Omega} \int_{0}^{\Omega} d \omega \int_{\mathbb{T} d} \mathrm{e}^{\mathrm{i} k \cdot(m-n)} \widehat{G}_{\omega}\left(t, t^{\prime} ; \omega, k\right)
$$

where

$$
\begin{aligned}
& \widehat{G}_{\omega}\left(t, t^{\prime} ; \omega, k\right)=\mathrm{e}^{-\mathrm{i} \omega T} \widehat{G}_{\omega}\left(t+T, t^{\prime} ; \omega, k\right) \\
= & \mathrm{e}^{\mathrm{i} \omega T} \widehat{G}_{\omega}\left(t, t^{\prime}+T ; \omega, k\right)=\widehat{G}_{\omega}\left(t, t^{\prime} ; \omega+\Omega, k\right)
\end{aligned}
$$

$$
\widehat{G}_{\omega}\left(t, t^{\prime} ; \omega, k\right)=\left\{\begin{array}{l}
\sum_{a}\left(\frac{n_{a}(k)}{1-\mathrm{e}^{-\mathrm{i}\left(\omega+e_{a}(k)+\mathrm{i} 0\right) T}}+\frac{1-n_{a}(k)}{1-\mathrm{e}^{-\mathrm{i}\left(\omega+e_{a}(k)-\mathrm{i} 0\right) T}}\right) \\
\times \widehat{u}(t, k)\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right| \widehat{u}\left(t^{\prime}, k\right)^{-1} \quad \text { for } 0 \leq t^{\prime}<t \leq T \\
-\sum_{a}\left(\frac{n_{a}(k)}{1-\mathrm{e}^{\mathrm{i}\left(\omega+e_{a}(k)+\mathrm{i} 0\right) T}}+\frac{1-n_{a}(k)}{1-\mathrm{e}^{\mathrm{i}\left(\omega+e_{a}(k)-\mathrm{i} 0\right) T}}\right) \\
\times \widehat{u}(t, k)\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right| \widehat{u}\left(t^{\prime}, k\right)^{-1} \quad \text { for } 0 \leq t \leq t^{\prime} \leq T
\end{array}\right.
$$

$\left(n_{a}(k)\right.$ are still the occupation numbers of $\phi_{a}(k)$ in the state $\left.\omega\right)$

- A (rather tedious) perturbative calculation obscured by the appearance of further non-relativistic terms gives in the $2^{\text {nd }}$ order in $2 d$ the Chern-Simons contribution:

$$
S_{\omega}^{\mathrm{eff}}(A)=-\frac{1}{2} \sigma^{\perp} \int_{\mathbb{R}^{3}} A \mathrm{~d} A+\ldots
$$

where now

$$
\begin{aligned}
\sigma^{\perp}=\frac{\mathrm{i}}{(2 \pi)^{2}} \int_{\mathbb{T}^{d}} \sum_{a=1}^{M} n_{a}(k) & \left(\left\langle\mathrm{d} \phi_{a}(k) \mid \mathrm{d} \phi_{a}(k)\right\rangle\right. \\
& \left.+\mathrm{d} \int_{0}^{T} \frac{d t}{T}\left\langle\phi_{a}(k)\right|\left(\widehat{u}^{-1} \mathrm{~d} \widehat{u}\right)(t, k)\left|\phi_{a}(k)\right\rangle\right)
\end{aligned}
$$

- Suppose that the spectrum of the unitary $u(T)$ has two distinct gaps:

In the state ω with the bands between the gaps filled on one side (e.g. the deep-red ones) and empty on the other side (the light-red ones)

$$
\sigma^{\perp}=\frac{c_{1}\left(\mathcal{E}_{\mathrm{dr}}\right)}{2 \pi}
$$

where $\mathcal{E}_{\mathrm{dr}}$ is the vector bundle over \mathbb{T}^{2} spanned by the eigenstates of $\widehat{u}(T, k)$ with eigenvalues in the deep-red part of the spectrum. The transverse conductance is quantized in such a state.

- In finite geometry, $c_{1}\left(\mathcal{E}_{d r}\right)$ counts with chirality the difference of the massless edge states with energies in the two bulk gaps surrounding the deep-red part of the spectrum
- Rudner-Lindner-Berg-Levin (2013) defined a dynamical topological invariant W counting with chirality the number of edge states with energies in a fixed bulk gap

b) $\frac{\pi}{T}$
- Suppose that $\mathrm{e}^{-\mathrm{i} T \mu}$ lies in the spectral gap of $u(T)$. We may then choose the quasienergies so that $\mu-\Omega<e_{a}(k)<\mu$ and set

$$
\widehat{v}(t, k)=\widehat{u}(t, k) \sum_{a=1}^{N} \mathrm{e}^{\mathrm{i} t e_{a}(k)}\left|\phi_{a}(k)\right\rangle\left\langle\phi_{a}(k)\right|=\widehat{v}(t+T, k)
$$

W is defined as the homotopy invariant of the periodized evolution \hat{v} :

$$
W=\frac{1}{24 \pi^{2}} \int_{\substack{\mathbb{R} /(T \mathbb{Z}) \times \mathbb{T}^{2}}} \operatorname{tr}\left(\widehat{v}^{-1} \mathrm{~d} \widehat{v}\right)^{3} \in \mathbb{Z}
$$

- For periodically driven crystals there is a special family of states ω (that deserve the name of Gibbs-Floquet states, unlike the so called Floquet-Gibbs states) corresponding to the occupation numbers

$$
n_{a}(k)=\sum_{p \in \mathbb{Z}} \frac{1}{\mathrm{e}^{\beta\left(e_{a}(k)+p \Omega-\mu\right)}+1}\left|\phi_{a p}(k)\right|^{2}
$$

where

$$
\phi_{a p}(k)=\int_{0}^{T} \frac{d t}{T} \mathrm{e}^{\mathrm{i} t\left(e_{a}(k)+p \Omega\right)} \widehat{u}(t, k) \phi_{a}(k)
$$

- Such Gibbs-Floquet states are obtained by weakly coupling the periodically driven system to the environment kept at inverse temperature β and chemical potential μ (Alicki et al. 2006)
- It would be interesting to obtain more explicit formulae for σ^{\perp} in those states, in particular in the "ground state" obtained in the limit $\beta \rightarrow \infty$ with $\mathrm{e}^{-\mathrm{i} T \mu}$ in a gap of $u(T)$ for which

$$
n_{a}(k)=\sum_{\substack{p \\ e_{a}(k)+p \Omega<\mu}}\left|\phi_{a p}(k)\right|^{2}
$$

- The original aim of this research was to find a response interpretation for the invariant W. Unfortunately preliminary results failed to relate W to σ^{\perp} in any of the states considered here
- This leaves the response interpretation of the Kane-Mele \mathbb{Z}_{2}-valued invariant for TRI 2d crystals and of its Floquet generalization (Carpentier-Delplace-Fruchart-G.-Tauber 2015) even more open

