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If you’re not failing every now and again, it’s

a sign you’re not doing anything very innovative

Woody Allen



General theme:

Non-trivial topological properties of certain
materials may be induced by periodic driving

Our aim:

Understanding such topological
properties of periodically driven crystals



• The simplest theoretical setup: tight-binding models in fermionic

Fock space with the 2nd-quantized time-dependent Hamiltonian

H(t) =
∑

m,n∈Zd

N∑

a,b=1

(c
a
m)

†
h
ab
mn(t) c

b
n

on the infinite crystalline lattice Z
d, where a = 1, . . . , N enumerates

the internal degrees of freedom (like spin), (cbn)
† and cam create and

annihilate electronic states localized at lattice sites,

[c
a
m, (c

b
n)

†
]
+

= δmnδ
ab

[cam, cbn]+ = 0 = [(cam)†, (cbn)
†]

+

and hab
mn(t) = hba

nm(t) defines the 1st-quantized Hamiltonian h(t)

acting in L2(Zd,CN )



• Many physical properties of the model may be tested coupling

the system to an external electromagnetic field A = Aµdx
µ

• The coupling is realized by the Peierls substitution in the

1st-quantized Hamiltonian

h(t) −→ hA(t)

where

hab
A,mn(t) = −A0(t,m) δabδmn + hab

mn e−i
∫n
m Ai(t,x)dxi

with the corresponding 2nd-quantized Hamiltonian

HA(t) =
∑

m,n∈Zd

N∑

a,b=1

(c
a
m)

†
h
ab
A,mn(t) c

b
n



• The time evolution between times t1 and t2 are defined by

the Schrödinder equation

i∂t2U(t2, t1) = H(t2)U(t2, t1), U(t1, t1) = I

and similarly in the external field

i∂t2UA(t2, t1) = HA(t2)UA(t2, t1), UA(t1, t1) = I

with the scattering matrix

SA(t2, t1) = U(t2, t1)
−1 UA(t2, t1)

• If the support of A is in the interval [t1, t2] and t′1 < t1 < t2 < t′2
then

SA(t′2, t
′
1) = U(t1, t

′
1)

−1SA(t2, t1)U(t1, t
′
1)



• Stationary case

• If h(t) = h is time-independent then

U(t2, t1) = e
−i(t2−t1)H

• Let ω be a state invariant under the stationary evolution

ω
(
O
)

= ω
(
e
itH

O e
−itH)

Then the limit

lim
t1→−∞
t2→+∞

ω
(
SA(t2, t1)

)
≡ e

iSeff
ω (A)

(that exists trivially if the temporal support of A is compact)

defines the effective action Seff
ω (A) of the electromagnetic field



• We shall consider states ω obtained in the thermodynamic

limit from the periodic-boundary-conditions density matrices

ρ =
e
−

∑
m,n

∑

a,b
(cam)†rab

mncbn

Tr e
−

∑
m,n

∑

a,b
(cam)†rab

mncbn

where [r, h] = 0, e.g. in the Gibbs state with r = β(h − µI)

where β is the inverse temperature and µ the chemical potential

• Such states are characterized by the Green function

Gab
ω,mn(t, t

′) = lim
t1→−∞

{
ω
(
cam(t, t1) cbn(t

′, t1)
†
)

if t < t′

−ω
(
cbn(t

′, t1)
† cam(t, t1)

)
if t ≥ t′

where

c
a
m(t2, t1) = U(t2, t1)

−1
c
a
m U(t2, t1)

as the higher order expectations of the time-ordered products of

creators and annihilators are given by the fermionic Wick rule



• The Green function satisfies the differential equation

(
∂t + ih

)
Gω(t, t′) = δ(t − t′)

with many different solutions

• The effective action defined above is given by the formula

Seff
ω (A) =

1

i
ln det

(
I + iGω(hA − h)

)

=

∞∑

p=1

i3p+1

p
Tr

(
Gω(hA − h)

)p
G

−hh
A

G

Gω Gω

Gω

ω

ω

hA−h

hA−hhA−h

that lends itself to a perturbative calculation in A

• If hab
mn is translationally invariant and of finite range then it may

be block-diagonalized by the discrete Fourier-Bloch transform

h
ab
mn =

1

(2π)d

∫

Td
e
ik·(m−n)

ĥ
ab

(k) d
d
k

where T
d = R

d/(2πZd) is the Brillouin torus with ĥab(k)

smoothly dependent on the quasimomenta k, and similarly for rab
mn



• Locally on T
d one may choose a common eigenbasis

(
φa(k)

)N
a=1

for the commuting N × N hermitian matrices ĥ(k) and r̂(k)

• To the 2nd order

Seff
ω (A) =

∫
dDq Qµ

1 (q) Âµ(q)

+
1

2

∫
dDq

∫
dDq′ Qµν

2 (q, q′) Âµ(q) Âν(−q′)

+ o(A2)

for D = d + 1, where

Âµ(q) =

∫
d
D
x e

−i qνxν
Aµ(x)

is the continuum Fourier transform of Aµ(x)



• One has

Q
µ
1 (q) = δ(q0)

(∏

i

∑

ni∈Z

δ(qi + 2πni)
)
Π

µ
1 (q, n)

Qµν
2 (q, q′) = δ(q0 − q′0)

(∏

i

∑

ni∈Z

δ(qi − q′i + 2πni)
)
Πµν

2 (q, n)

• The terms with ni 6= 0 remembering the lattice structure give rise

to oscillatory contributions to the effective action that average out

on long distances and we shall drop them

• Πµ
1 (q, 0) does not depend on q and discribes the average charge

and current density in state ω (the latter vanishes)

• We shall concentrate on the quadratic contribution to Seff
ω in d = 2

space dimensions describing the linear response to external

electromagnetic field



• In the translation-invariant case

Gω(t, t
′
)mn =

1

(2π)3

∫

R

dω

∫

Td
e
i(ω(t−t′)+k·(m−n))

Ĝω(ω, k)

Ĝω(ω, k) =

N∑

a=1

(
na(k)

i(ω+ea(k)+i0)
+

1−na

i(ω+ea(k)−i0)

)
|φa(k)〉〈φa(k)|

where ea(k) is the eigenvalue of the eigenvector φa(k) of ĥ(k)

and na(k) is its occupation number in the state ω :

ω
(
cφa (k)

†
cφa (k

′
)
)

= (2π)
d
δ(k − k

′
)na(k)

for

cφa (k) =
∑

n

∑

b

φb
a(k) e−ik·ncbn

• A straightforward calculation shows that in d = 2

Π
µν
2 (q, 0) =

1

(2π)5
qλ ǫ

λµν
∫

Td

N∑

a=1

na(k)
〈
dφa(k)

∣∣dφa(k)
〉

+ o(q)

where the o(q) terms are subdominant on long distances



• The singled out dominant quadratic term gives rise to the Chern-

Simons contribution to the effective action

Seff
ω (A) = −

1

2
σ⊥

∫

R3
A dA + . . .

where (for e = 1 = ~)

σ⊥ =
i

(2π)2

∫

Td

M∑

a=1

na(k)
〈
dφa(k)|dφa(k)

〉

is the transverse conductance (Xiao et al. Rev. Mod. Phys. 82)

Indeed, the current expectation

〈
jµ(x)

〉
A

=
δSeff

ω (A)

δAµ(x)
= − σ⊥ ǫµνλ∂νAλ(x) + . . .

and, in particular,

〈
j
i
(x)

〉
A

= σ
⊥

ǫ
ji

Ej(x) + . . .

j=σ E

E



• In the Gibbs state with r = β(h − µn) the occupation numbers

are given by the Fermi function:

na(k) =
1

eβ(ea(k)−µ) + 1

• In particular, in the insulating ground state obtained for β → ∞

with the chemical potential µ placed in the spectral gap of all ĥ(k)

na(k) =

{
0 if ea(k) > µ

1 if ea(k) < µ

so that

Berry curvature of E

σ
⊥

=
i

(2π)2

∫

Td

︷ ︸︸ ︷∑

a
ea(k)<µ

〈
dφa(k)

∣∣dφa(k)
〉

=
c1(E)

2π

where c1(E) ∈ Z is the 1st Chern number of the vector bundle E

over T
2 spanned by the valence states φa(k) with ea(k) < µ



• Such a topological quantization of σ⊥ was first obtained by

Thouless-Kohmoto-Nightingale-den Nijs in 1982 (via

the Green-Kubo formula) providing a (partial) explanation

of the integer quantum Hall effect

= 1
2πσ⊥

• c1(E) counts with chirality the massless modes localized near each

edge of a finite sample of the 2d insulator having their energies in

the bulk gap (the bulk-edge correspondence)



• Periodically-driven (Floquet) case

• If h(t + T ) = h(t) is periodic in time then U(t) ≡ U(t, 0) satisfies

U(t+ T ) = U(t)U(T )

For integers p′
1 < p1 < p2 < p′

2 sufficiently large in absolute value

the scattering matrix satisfies now the relation

SA(p′
2T, p′

1T ) = U(T )p
′
1−p1SA(p2T, p1T )U(T )p1−p′1

• If the state ω is invariant under the evolution over one period of time

ω
(
O
)

= ω
(
U(T )

−1
OU(T )

)

then the limit

lim
t1=p1T→−∞
t2=p2T→+∞

ω
(
SA(t1, t2)

)
≡ e

iSeff
ω (A)

defines the effective action Seff
ω (A) as in the stationary case



• We shall again consider states ω obtained from the periodic boundary

conditions density matrices

ρ =
e
−

∑
m,n

∑

a,b
(cam)†rab

mncbn

Tr e
−

∑
m,n

∑

a,b
(cam)†rab

mncbn

demanding now that [r, u(T )] = 0 where u(t) is the 1st-quantized

version of the evolution U(t) :

i∂tu(t) = h(t)u(t), u(0) = I

• Again such states are characterized by the Green function

G
ab
ω,mn(t, t

′
) = lim

t1=p1T→−∞

{
ω
(
cam(t, t1) cbn(t

′, t1)
†
)

if t < t′

−ω
(
cbn(t

′, t1)
† cam(t, t1)

)
if t ≥ t′

satisfying the equation
(
∂t + ih(t)

)
Gω(t, t′) = δ(t − t′) and again

Seff
ω (A) =

1

i
ln det

(
I + iGω(hA − h)

)



• The diagonalization of the evolution operator u(T ) is the essence

of the Floquet theory of periodically driven systems

• In the translation-invariant case we may choose locally on T
d

a common eigenbasis
(
φa(k)

)N
a=1

for the commuting N × N

matrices û(T, k) and r̂(k)

• Let e−iTea(k) be the eigenvalues of û(T, k) corresponding to φa(k).

The reals ea(k) defined modulo 2π
T ≡ Ω are called quasienergies

• The Green function takes in the Fourier representation the form

Gω(t, t
′
)mn =

1

(2π)2Ω

∫ Ω

0

dω

∫

Td
e
ik·(m−n)

Ĝω(t, t
′
;ω, k)

where

Ĝω(t, t
′
;ω, k) = e

−iωT
Ĝω(t + T, t

′
;ω, k)

= eiωT Ĝω(t, t′ + T ;ω, k) = Ĝω(t, t′;ω + Ω, k)



Ĝω(t, t
′
;ω, k) =






∑
a

(
na(k)

1−e−i(ω+ea(k)+i0)T
+ 1−na(k)

1−e−i(ω+ea(k)−i0)T

)

× û(t, k)|φa(k)〉〈φa(k)|û(t
′, k)−1 for 0 ≤ t′ < t ≤ T

−
∑
a

(
na(k)

1−ei(ω+ea(k)+i0)T
+

1−na(k)

1−ei(ω+ea(k)−i0)T

)

× û(t, k)|φa(k)〉〈φa(k)|û(t
′, k)−1 for 0 ≤ t ≤ t′ ≤ T

(na(k) are still the occupation numbers of φa(k) in the state ω)

• A (rather tedious) perturbative calculation obscured by the

appearance of further non-relativistic terms gives in the 2nd

order in 2d the Chern-Simons contribution:

S
eff
ω (A) = −

1

2
σ
⊥

∫

R3
A dA + . . .

where now

σ⊥ =
i

(2π)2

∫

Td

M∑

a=1

na(k)

(〈
dφa(k)

∣∣dφa(k)
〉

+ d

∫ T

0

dt

T

〈
φa(k)

∣∣(û−1
dû)(t, k)

∣∣φa(k)
〉)



• Suppose that the spectrum of the unitary u(T ) has two distinct gaps:

1

In the state ω with the bands between the gaps filled on one side

(e.g. the deep-red ones) and empty on the other side (the light-red

ones)

σ
⊥

=
c1(Edr)

2π

where Edr is the vector bundle over T
2 spanned by the eigenstates

of û(T, k) with eigenvalues in the deep-red part of the spectrum.

The transverse conductance is quantized in such a state.



• In finite geometry, c1(Edr) counts with chirality the difference

of the massless edge states with energies in the two bulk gaps

surrounding the deep-red part of the spectrum

• Rudner-Lindner-Berg-Levin (2013) defined a dynamical

topological invariant W counting with chirality the number

of edge states with energies in a fixed bulk gap

a) b)
π

T

−

π

T

0

C = 0

C = 0

Crystal momentum

Q
u
a
si
e
n
e
rg
y

π

a

−

π

a

x

y
W0 = 1

W π

T
= 1



• Suppose that e−iTµ lies in the spectral gap of u(T ). We may then

choose the quasienergies so that µ − Ω < ea(k) < µ and set

v̂(t, k) = û(t, k)
N∑

a=1

eitea(k) |φa(k)〉〈φa(k)| = v̂(t + T, k)

W is defined as the homotopy invariant of the periodized evolution v̂ :

W =
1

24π2

∫

R/(TZ)×T2

tr (v̂
−1

dv̂)
3

∈ Z

• For periodically driven crystals there is a special family of states ω

(that deserve the name of Gibbs-Floquet states, unlike the so called

Floquet-Gibbs states) corresponding to the occupation numbers

na(k) =
∑

p∈Z

1

eβ(ea(k)+pΩ−µ) + 1

∣∣φap(k)
∣∣2

where

φap(k) =

∫ T

0

dt

T
eit(ea(k)+pΩ) û(t, k)φa(k)



• Such Gibbs-Floquet states are obtained by weakly coupling

the periodically driven system to the environment kept at inverse

temperature β and chemical potential µ (Alicki et al. 2006)

• It would be interesting to obtain more explicit formulae for σ⊥

in those states, in particular in the “ground state” obtained in

the limit β → ∞ with e−iTµ in a gap of u(T ) for which

na(k) =
∑

p
ea(k)+pΩ<µ

∣∣φap(k)
∣∣2

• The original aim of this research was to find a response interpretation

for the invariant W . Unfortunately preliminary results failed to

relate W to σ⊥ in any of the states considered here

• This leaves the response interpretation of the Kane-Mele Z2-valued

invariant for TRI 2d crystals and of its Floquet generalization

(Carpentier-Delplace-Fruchart-G.-Tauber 2015) even more open


