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If you’re not failing every now and again, 1it’s
a sign you’'re not doing anything very innovative
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General theme:

Non-trivial topological properties of certain
materials may be induced by periodic driving

Our aim:

Understanding such topological
properties of periodically driven crystals




e The simplest theoretical setup: tight-binding models in fermionic

2I1d

Fock space with the -quantized time-dependent Hamiltonian

N
Hit) = > > (c)he (e

m’nezd Cl,,bzl

on the infinite crystalline lattice Zd, where a = 1,..., N enumerates
the internal degrees of freedom (like spin), (c?)" and ¢” create and

annihilate electronic states localized at lattice sites,

s (@)L = Gepnd™

e ol =0 = [(eo)T, (D)1,

and h%" (t) = hbe (t) defines the 15*-quantized Hamiltonian h(t)
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acting in L?(z%,C)




e Many physical properties of the model may be tested coupling
the system to an external electromagnetic field A = A, dz"

e The coupling is realized by the Peierls substitution in the

15*-quantized Hamiltonian

h(t) — hA(t)

where

hzb,?%n(t) — _AO(tam) 5ab5mn + hqcflri)n e_if#b A (For ks

with the corresponding 2nd—quantized Hamiltonian

Ha(t) = o )ThS 1 (B) €




e The time evolution between times t; and ty are defined by

the Schrodinder equation

10, U(ta, t1) = H(ta) Ul(ta,t1), U(ti,t1) =1
and similarly in the external field

10, Ua(t2,t1) = Ha(t2) Ua(ta,t1), Ua(t1,t1) =1
with the scattering matrix

Sa(ta,t1) = U(ta,t1)” " Ua(ta, t1)

e If the support of A is in the interval [t;,t2] and t/1 <t <t < t’2
then

SA(t/27t/1) — U(tlvt/l)_lsA(t27tl) U(tlat/l)




e Stationary case

e If h(t) = h is time-independent then

Uta, t1) = e (f27f)H

e LLet w be a state invariant under the stationary evolution

w(O) _ w(eitHOe_itH)

Then the limit
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(that exists trivially if the temporal support of A is compact)
defines the effective action S¢"(A) of the electromagnetic field




e We shall consider states w obtained in the thermodynamic

limit from the periodic-boundary-conditions density matrices
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where [r,h] =0, e.g. in the Gibbs state with r = g(h — ul)

where [ is the inverse temperature and p the chemical potential

e Such states are characterized by the Green function

w(e® (t,t1) e (¢, t1)T) if t<t
—w(cl (', t1)T e (¢, t1)) if t>t

G?ul?mn(t7 t/) — lim {

t1{——o0

where

Czl(tg,tl) = U(tg,tl)_lc% U(tg,tl)

as the higher order expectations of the time-ordered products of

creators and annihilators are given by the fermionic Wick rule




e The Green function satisfies the differential equation
(8¢ +ih)Gu(t, t') = §(t —1t)

with many different solutions

e The effective action defined above is given by the formula

S(A) = = In det (I+ iGy(ha — h))

> igppﬂ Tr (Gu(ha — h))” hA_-h\GU“ |
p=1
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h—lt
that lends itself to a perturbative calculation in A '

o If h%’n is translationally invariant and of finite range then it may
be block-diagonalized by the discrete Fourier-Bloch transform
pab 1 / ik-(m—n) Pab 1y 4d1
(QW)d Td © ( )
where T¢ = R?/(27Z%) is the Brillouin torus with h%®(k)

smoothly dependent on the quasimomenta k, and similarly for r%°

mmn




e Locally on T? one may choose a common eigenbasis (qﬁa(k))i\;l
for the commuting N X N hermitian matrices h(k) and 7(k)

e To the 2™9 order

s'(4) = [ dPq @4 (@) Au(a)
+ %/dDQ/dDQ’ QLY (9,4") Aula) Au(—q)
+ o(A%)

for D =d + 1, where

Au@) = [ aPs 7 A, ()

is the continuum Fourier transform of A, (x)




e One has

Qte) = 8ao) ([T D= 8(as +2mm:)) W (q,m)
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5 (a0,q') = (a0 —ap) ([T D 8(ai — df + 2mni) ) M5 (g, m)
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e The terms with n; # 0 remembering the lattice structure give rise
to oscillatory contributions to the effective action that average out
on long distances and we shall drop them

e 117 (q,0) does not depend on ¢ and discribes the average charge
and current density in state w (the latter vanishes)

e We shall concentrate on the quadratic contribution to Ssz in d=2

space dimensions describing the linear response to external
electromagnetic field




e In the translation-invariant case
1 i(w(t—t/ k-(m—n =~
Goo(t:t )mn = 53 /Rdw/w& E=t)Fkm=m) G, (w, k)
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where e, (k) is the eigenvalue of the eigenvector ¢, (k) of h(k)
and n, (k) is its occupation number in the state w:

w(ce, (B)Tep, (K)) = @2n)*8(k — k') na(k)

Coq (k) = D> gb(k) e F el
n b

e A straightforward calculation shows that in d = 2

1

Y (0,0) = Ghr e [ 3T na(k) (d6a(®)]dduk) + ola)

where the o(g) terms are subdominant on long distances




e The singled out dominant quadratic term gives rise to the Chern-
Simons contribution to the effective action

sefa) = — 2ot AdA +
2 R3

where (for e =1 = h)

7 = (2;)2 /Td > na(k) (dea(k)|dga(k))

is the transverse conductance (Xiao et al. Rev. Mod. Phys. 82)
Indeed, the current expectation
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and, in particular,

(7' (2)), = o= €' Ej(z) +




e In the Gibbs state with r = S(h — un) the occupation numbers
are given by the Fermi function:

1

na(k) = eBlea(F)—p) 4 1

e In particular, in the insulating ground state obtained for [ — oo

with the chemical potential 1 placed in the spectral gap of all /fz(/{)

ng (k) = {O o calk) >

1 if eq(k) < u
so that

Berry curvature of &

= e Z<d¢a<k>\d¢a<k>> S

ea(k><l~b

where ¢, (&) € Z is the 1°®* Chern number of the vector bundle &
over T? spanned by the valence states ¢, (k) with e, (k) <




e Such a topological quantization of o was first obtained by
Thouless-Kohmoto-Nightingale-den Nijs in 1982 (via

the Green-Kubo formula) providing a (partial) explanation
of the integer quantum Hall effect
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e ¢ (&) counts with chirality the massless modes localized near each
edge of a finite sample of the 2d insulator having their energies in
the bulk gap (the bulk-edge correspondence)




Periodically-driven (Floquet) case
o If h(t+T)= h(t) is periodic in time then U(t) = U(t,0) satisfies

U+ T) = U@)U(T)

For integers p} < p1 < p2 < p5 sufficiently large in absolute value
the scattering matrix satisfies now the relation

S L N o) B S oS N (B

e If the state w is invariant under the evolution over one period of time

w(0) = w(U(T)"'oU(T))
then the limit

. qeff
lim w(SA(tl,tg)) = elsw (A)
t1=p1 T ——o0
t2:p2T—>—|—OO

defines the effective action S¢(A) as in the stationary case




e We shall again consider states w obtained from the periodic boundary
conditions density matrices

a \T,ab

demanding now that [r,u(7)] =0 where wu(t) is the 1°*-quantized

version of the evolution U(t):

i0su(t) = h(t)u(t), w(0) = I

e Again such states are characterized by the Green function

{w(cg,b(t,tl) @, t)t) it ot <t

G (t,t)) = lim
o —w(c (', t1)T e (¢, t1)) if t>¢

t1=p1 1T ——o0

satisfying the equation (8; + ih(t))G. (¢t,t') = §(t —t') and again

Se(A) = = In det (I+ iGo(ha — h))




The diagonalization of the evolution operator w(7') is the essence
of the Floquet theory of periodically driven systems

In the translation-invariant case we may choose locally on T¢

a common eigenbasis (qﬁa(k))i\le for the commuting N X N
matrices w(7T,k) and 7(k)

Let e 7¢a(k) be the eigenvalues of uw(T, k) corresponding to ¢, (k).

The reals e,(k) defined modulo QT“ = () are called quasienergies

The Green function takes in the Fourier representation the form

/ 1 L ik-(m—n) A~ /
Gu(t,t )mn = dw C Go(t,t;w, k)
0 Td

(27)2Q

where
Go(t,t';w, k) = e TGt +T,t;w, k)

= TGt t + Tiw, k) = Go(t, t' ;0w + Q, k)




ng (k) 1—ng (k)
Za: ( c—(wteq(k)Fi0)T + _e—i(w+teq (k)—i0)T )
X U

Go(t, t';w, k) = ¢

ng (k) —ng (k)
(1—ei(w+ea(k)+iO)T T 1 _ei(wteq (k)—i0)T )
| X Ut k) |da (R)) (o (k)T k)~ for 0<t<t <T

(nq (k) are still the occupation numbers of ¢, (k) in the state w)

e A (rather tedious) perturbative calculation obscured by the
appearance of further non-relativistic terms gives in the 279

order in 2d the Chern-Simons contribution:

ot | AdA —+
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RS
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where now

L (%)2/ Zna(k) <<d¢a(k)\d¢a(k)>
Tdt —1 s~
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(t, k)| pa (k) (Pa(k)Uu(t’, 7{)_1 for 0<t' <t<T



e Suppose that the spectrum of the unitary w«(7') has two distinct gaps:

In the state w with the bands between the gaps filled on one side
(e.g. the deep-red ones) and empty on the other side (the light-red
ones)

c1 (gdr)
27T

where &4, is the vector bundle over T? spanned by the eigenstates

of w(T,k) with eigenvalues in the deep-red part of the spectrum.

The transverse conductance is quantized in such a state.




e In finite geometry, c1(£4,) counts with chirality the difference
of the massless edge states with energies in the two bulk gaps

surrounding the deep-red part of the spectrum

¢ Rudner-Lindner-Berg-Levin (2013) defined a dynamical
topological invariant W counting with chirality the number

of edge states with energies in a fixed bulk gap
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e Suppose that e '** lies in the spectral gap of (7). We may then
choose the quasienergies so that p — Q < e,(k) < ¢ and set

O(t, k) = At k) Yy e ™ o, (k) (¢pa (k)| = T(t+T,k)

a=1
W' is defined as the homotopy invariant of the periodized evolution o:

W = / tr (0 'do)® € Z
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e For periodically driven crystals there is a special family of states w
(that deserve the name of Gibbs-Floquet states, unlike the so called
Floquet-Gibbs states) corresponding to the occupation numbers

1 2
71a(k) - j{: eB(ea(k)+p§L—H>—F]_‘¢ap(k)|

pEZ

where

ar :
bap(k) = / % olt(ea (k)+pQ) U(t, k) pq (k)
0]




Such Gibbs-Floquet states are obtained by weakly coupling
the periodically driven system to the environment kept at inverse
temperature 3 and chemical potential p (Alicki et al. 2006)

It would be interesting to obtain more explicit formulae for ot
in those states, in particular in the “ground state” obtained in

the limit 8 — oo with e '** in a gap of w(7T) for which

na(k) = Y |bap(k)|’

P
eq(k)+pQ2<p

The original aim of this research was to find a response interpretation
for the invariant W . Unfortunately preliminary results failed to

relate W to o=@ in any of the states considered here

This leaves the response interpretation of the Kane-Mele Zs-valued
invariant for TRI 2d crystals and of its Floquet generalization
(Carpentier-Delplace-Fruchart-G.-Tauber 2015) even more open




