Convergence of correlations in the N.N. 2D ISING MODEL: PRIMARY FIELDS [AND THE STRESS-ENERGY TENSOR]

Dmitry Chelkak [ÉNS, Paris

\& Steklov Institute, St. Petersburg]

[Sample of a critical 2D Ising configuration (with two disorders), © Clément Hongler (EPFL)]
"Condensed Matter and Critical Phenomena"
Laboratori Nazionali di Frascati, September 5, 2016

2D Ising model:
CONVERGENCE
OF CORRELATIONS
AT CRITICALITY
[see also
arXiv:1605.09035]

(C) Clément Hongler (EPFL)

- N.n. 2D Ising model: combinatorics
- dimers and fermionic observables
- discrete holomorphicity at criticality
- spinor observables and spin correlations
- spin-disorder formalism
- Spin correlations at criticality
- Riemann boundary value problems for holomorphic spinors in continuum
- Convergence [Ch.-Hongler-Izyurov]
- Other primary fields: $\sigma, \mu, \varepsilon, \psi, \bar{\psi}$
- Convergence and fusion rules
- Construction of mixed correlations via Riemann boundary value problems
- [Stress-energy tensor]
- (Some) discrete version of T and \bar{T}
- Convergence [Ch.-Glazman-Smirnov]

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G^{*} (dual to G) is a random assignment of $+/$ - spins to vertices of G^{*} (faces of G)

Q: I heard this is called a (site) percolation?
A: .. according to the following probabilities:

$$
\begin{aligned}
\mathbb{P}\left[\operatorname{conf} . \sigma \in\{ \pm 1\}^{V\left(G^{*}\right)}\right] & \propto \exp \left[\beta \sum_{e=\langle u v\rangle} J_{u v} \sigma_{u} \sigma_{v}\right] \\
& \propto \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}
\end{aligned}
$$

where $J_{u v}>0$ are interaction constants assigned to edges $\langle u v\rangle$, $\beta=1 / k T$ is the inverse temperature, and $x_{u v}=\exp \left[-2 \beta J_{u v}\right]$.

Nearest-neighbor Ising (or Lenz-Ising) model in 2D

Definition: Lenz-Ising model on a planar graph G^{*} (dual to G) is a random assignment of $+/$ - spins to vertices of G^{*} (faces of G)

Disclaimer: 2D, nearest-neighbor, no external magnetic field.

$$
\begin{aligned}
\mathbb{P}\left[\operatorname{conf} . \sigma \in\{ \pm 1\}^{V\left(G^{*}\right)}\right] & \propto \exp \left[\beta \sum_{e=\langle u v\rangle} J_{u v} \sigma_{u} \sigma_{v}\right] \\
& \propto \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}
\end{aligned}
$$

where $J_{u v}>0$ are interaction constants assigned to edges $\langle u v\rangle$, $\beta=1 / k T$ is the inverse temperature, and $x_{u v}=\exp \left[-2 \beta J_{u v}\right]$.

- It is also convenient to use the parametrization $x_{u v}=\tan \left(\frac{1}{2} \theta_{u v}\right)$.
- Working with subgraphs of regular lattices, one can consider the homogeneous model in which all $x_{u v}$ are equal to each other.

Phase transition (e.g., on \mathbb{Z}^{2})
E.g., Dobrushin boundary conditions: +1 on ($a b$) and -1 on (ba):

$$
x<x_{\text {crit }} \quad x=x_{\text {crit }} \quad x>x_{\text {crit }}
$$

- Ising (1925): no phase transition in 1D \rightsquigarrow doubts about 2+D;
- Peierls (1936): existence of the phase transition in 2D;
- Kramers-Wannier (1941): $x_{\text {self-dual }}=\sqrt{2}-1=\tan \left(\frac{1}{2} \cdot \frac{\pi}{4}\right)$;
- Onsager (1944): sharp phase transition at $x_{\text {crit }}=\sqrt{2}-1$.

At criticality (e.g., on \mathbb{Z}^{2}):

- Kaufman-Onsager(1948-49), Yang(1952): scaling exponent $\frac{1}{8}$ for the magnetization. [via spin-spin correlations in \mathbb{Z}^{2} at $x \uparrow x_{\text {crit }}$]
- At criticality, for $\Omega_{\delta} \rightarrow \Omega$ and $u_{\delta} \rightarrow u \in \Omega$, it should be $\mathbb{E}_{\Omega_{\delta}}\left[\sigma_{u_{\delta}}\right] \asymp \delta^{\frac{1}{8}}$ as $\delta \rightarrow 0$.
- Question: Convergence of (rescaled) spin correlations and conformal covariance of their scaling limits in arbitrary planar domains:

$$
x=x_{\text {crit }}
$$

$$
\begin{aligned}
\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}\left[\sigma_{u_{1, \delta}} \ldots \sigma_{u_{n, \delta}}\right] & \rightarrow\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega} \\
& =\left\langle\sigma_{\varphi\left(u_{1}\right)} \cdots \sigma_{\varphi\left(u_{n}\right)}\right\rangle_{\varphi(\Omega)} \cdot \prod_{s=1}^{n}\left|\varphi^{\prime}\left(u_{s}\right)\right|^{\frac{1}{8}}
\end{aligned}
$$

- In the infinite-volume setup other techniques are available, notably "exact bosonization" approach due to J. Dubédat.

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\} \vee\left(G^{*}\right)} \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\}} v\left(G^{*}\right) \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph G_{F}

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\}} v\left(G^{*}\right) \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to-2 ${ }^{|V(G)|}$ correspondence of $\{ \pm 1\}^{V\left(G^{*}\right)}$ with dimers on this G_{F}

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\} v\left(G^{*}\right)} \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to-2 ${ }^{|V(G)|}$ correspondence of $\{ \pm 1\}^{V\left(G^{*}\right)}$ with dimers on this G_{F}

- Kasteleyn's theory: $\mathcal{Z}=\operatorname{Pf}[\mathbf{K}]\left[K=-K^{\top}\right.$ is a weighted adjacency matrix of $\left.G_{F}\right]$

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\}} v\left(G^{*}\right) \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to-2 ${ }^{|V(G)|}$ correspondence of $\{ \pm 1\}^{V\left(G^{*}\right)}$ with dimers on this G_{F}

- Kasteleyn's theory: $\mathcal{Z}=\operatorname{Pf}[\mathbf{K}]\left[K=-K^{\top}\right.$ is a weighted adjacency matrix of $\left.G_{F}\right]$
- Kac-Ward formula (1952-..., 1999-...): $\mathcal{Z}^{2}=\operatorname{det}[\operatorname{Id}-T]$,

[is equivalent to the Kasteleyn theorem for dimers on G_{F}]

2D Ising model as a dimer model (on a non-bipartite graph) [Fisher, Kasteleyn ('60s+),..., Kenyon, Dubédat ('00s+),...]

- Partition function $\mathcal{Z}=\sum_{\sigma \in\{ \pm 1\}} v\left(G^{*}\right) \prod_{e=\langle u v\rangle: \sigma_{u} \neq \sigma_{v}} x_{u v}$
- There exist various representations of the 2D Ising model via dimers on an auxiliary graph: e.g. 1-to- $2^{|V(G)|}$ correspondence of $\{ \pm 1\}^{V\left(G^{*}\right)}$ with dimers on this G_{F}

- Kasteleyn's theory: $\mathcal{Z}=\operatorname{Pf}[K]\left[K=-K^{\top}\right.$ is a weighted adjacency matrix of $\left.G_{F}\right]$
- Note that $V\left(G_{F}\right) \cong$ \{oriented edges and corners of $\left.\boldsymbol{G}\right\}$
- Local relations for the entries $\mathbf{K}_{\mathbf{a}, \boldsymbol{e}}^{-1}$ and $\mathbf{K}_{\mathbf{a}, \boldsymbol{c}}^{-1}$ of the inverse Kasteleyn (or the inverse Kac-Ward) matrix:
(an equivalent form of) the identity $\mathbf{K} \cdot \mathbf{K}^{-1}=\mathbf{I d}$

Fermionic observables: combinatorial definition [Smirnov'00s]
For an oriented edge a and a midedge z_{e} (similarly, for a corner c),

$$
F_{G}\left(a, z_{e}\right):=\bar{\eta}_{a} \sum_{\omega \in \operatorname{Conf}_{G}\left(a, z_{e}\right)}\left[e^{-\frac{i}{2} \operatorname{wind}\left(a \rightsquigarrow z_{e}\right)} \prod_{\langle u v\rangle \in \omega} x_{u v}\right]
$$

where η_{a} denotes the (once and forever fixed) square root of the direction of a.

- The factor $e^{-\frac{i}{2} \operatorname{wind}\left(a \rightsquigarrow z_{e}\right)}$ does not depend on the way how ω is split into nonintersecting loops and a path $a \rightsquigarrow z_{e}$.
- Via dimers on $G_{F}: F_{G}(a, c)=\bar{\eta}_{c} K_{c, a}^{-1}$

$$
F_{G}\left(a, z_{e}\right)=\bar{\eta}_{e} \mathrm{~K}_{e, a}^{-1}+\bar{\eta}_{\bar{e}} \mathrm{~K}_{\bar{e}, a}^{-1}
$$

Fermionic observables: combinatorial definition [Smirnov'00s]
For an oriented edge a and a midedge z_{e} (similarly, for a corner c),

$$
F_{G}\left(a, z_{e}\right):=\bar{\eta}_{a} \sum_{\omega \in \operatorname{Conf}_{G}\left(a, z_{e}\right)}\left[e^{-\frac{i}{2} \operatorname{wind}\left(a \rightsquigarrow z_{e}\right)} \prod_{\langle u v\rangle \in \omega} x_{u v}\right]
$$

where η_{a} denotes the (once and forever fixed) square root of the direction of a.

- Local relations: at criticality, can be thought of as some (strong) form of discrete Cauchy-Riemann equations.
- Boundary conditions $F\left(a, z_{e}\right) \in \bar{\eta}_{\bar{e}} \mathbb{R}$ (\bar{e} is oriented outwards) uniquely determine F as a solution to an appropriate

discrete Riemann-type boundary value problem.

Fermionic observables: combinatorial definition [Smirnov'00s]
For an oriented edge a and a midedge z_{e} (similarly, for a corner c),

$$
F_{G}\left(a, z_{e}\right):=\bar{\eta}_{a} \sum_{\omega \in \operatorname{Conf}_{G}\left(a, z_{e}\right)}\left[e^{-\frac{i}{2} \operatorname{wind}\left(a \rightsquigarrow z_{e}\right)} \prod_{\langle u v\rangle \in \omega} x_{u v}\right]
$$

Fermionic observables per se can be used

- to construct (discrete) martingales for growing interfaces and then to study their convergence to SLE curves [Smirnov(2006), ..., Ch.-Duminil-Copin -Hongler-Kemppainen-Smirnov(2013)]
- to analyze the energy density field [Hongler-Smirnov, Hongler (2010)]

$$
\varepsilon_{\boldsymbol{e}}:=\delta^{-1} \cdot\left[\sigma_{\boldsymbol{e}^{-}} \sigma_{\boldsymbol{e}^{+}}-\varepsilon_{e}^{\infty}\right]
$$

where $e^{ \pm}$are the two neighboring faces separated by an edge e

- but more involved ones are needed to study spin correlations

Energy density: convergence and conformal covariance

- Three local primary fields:

1, σ (spin), ε (energy density); Scaling exponents: 0, $\frac{1}{8}, \mathbf{1}$.

- Theorem: [Hongler-Smirnov, Hongler (2010)] If $\Omega_{\delta} \rightarrow \Omega$ and $e_{k, \delta} \rightarrow z_{k}$ as $\delta \rightarrow 0$, then

$$
\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}\left[\varepsilon_{e_{1, \delta}} \ldots \varepsilon_{e_{n, \delta}}\right] \underset{\delta \rightarrow 0}{\rightarrow} \mathcal{C}_{\varepsilon}^{n} \cdot\left\langle\varepsilon_{z_{1}} \ldots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+}
$$

where $\mathcal{C}_{\varepsilon}$ is a lattice-dependent constant,

$$
\left\langle\varepsilon_{z_{1}} \ldots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+}=\left\langle\varepsilon_{\varphi\left(z_{1}\right)} \ldots \varepsilon_{\varphi\left(z_{n}\right)}\right\rangle_{\Omega^{\prime}}^{+} \cdot \prod_{s=1}^{n}\left|\varphi^{\prime}\left(u_{s}\right)\right|
$$

for any conformal mapping $\varphi: \Omega \rightarrow \Omega^{\prime}$, and

$$
\left\langle\varepsilon_{z_{1}} \ldots \varepsilon_{z_{n}}\right\rangle_{\mathbb{H}}^{+}=i^{n} \cdot \operatorname{Pf}\left[\left(z_{s}-z_{m}\right)^{-1}\right]_{s, m=1}^{2 n}, \quad z_{s}=\bar{z}_{2 n+1-s} .
$$

- Ingredients: convergence of basic fermionic observables (via Riemann-type b.v.p.) and (built-in) Pfaffian formalism

Energy density: convergence and conformal covariance

- Three local primary fields:

1, σ (spin), ε (energy density); Scaling exponents: $\mathbf{0}, \frac{1}{8}, 1$.

- Theorem: [Hongler-Smirnov, Hongler (2010)] If $\Omega_{\delta} \rightarrow \Omega$ and $e_{k, \delta} \rightarrow z_{k}$ as $\delta \rightarrow 0$, then $\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}\left[\varepsilon_{e_{1, \delta}} \ldots \varepsilon_{e_{n, \delta}}\right] \underset{\delta \rightarrow 0}{\rightarrow} \mathcal{C}_{\varepsilon}^{n} \cdot\left\langle\varepsilon_{z_{1}} \ldots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+}$

- Riemann-type boundary value problem to consider (sketch):
- $\boldsymbol{f}_{\Omega}^{[\eta]}(\boldsymbol{a}, \boldsymbol{z})$ is holomorphic in Ω except at a given point $a \in \Omega$; $\circ \operatorname{Im}\left[f_{\Omega}^{[\eta]}(a, \zeta) \sqrt{\tau(\zeta)}\right]=0$, where $\tau(\zeta)$ is the counterclockwise (clockwise for free boundary conditions) tangent vector at $\zeta \in \partial \Omega$; ○ $f_{\Omega}^{[\eta]}(a, z)=\frac{(2 i)^{-1 / 2} \eta}{z-a}+\ldots$ as $z \rightarrow a$, where η should be thought of as a square root of the direction of the edge $a_{\delta} \rightarrow a$.

Energy density: convergence and conformal covariance

- Three local primary fields:

1, σ (spin), ε (energy density);
Scaling exponents: 0, $\frac{1}{8}, \mathbf{1}$.

- Theorem: [Hongler-Smirnov, Hongler (2010)] If $\Omega_{\delta} \rightarrow \Omega$ and $e_{k, \delta} \rightarrow z_{k}$ as $\delta \rightarrow 0$, then $\delta^{-n} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}\left[\varepsilon_{e_{1, \delta}} \ldots \varepsilon_{e_{n, \delta}}\right] \underset{\delta \rightarrow 0}{\rightarrow} \mathcal{C}_{\varepsilon}^{n} \cdot\left\langle\varepsilon_{z_{1}} \ldots \varepsilon_{z_{n}}\right\rangle_{\Omega}^{+}$

- Riemann-type boundary value problem to consider (sketch):
- $\boldsymbol{f}_{\Omega}^{[\eta]}(\boldsymbol{a}, \boldsymbol{z})$ is holomorphic in Ω except at a given point $a \in \Omega$;
- $\operatorname{Im}\left[f_{\Omega}^{[\eta]}(a, \zeta) \sqrt{\tau(\zeta)}\right]=0$, where $\tau(\zeta)$ is the counterclockwise (clockwise for free boundary conditions) tangent vector at $\zeta \in \partial \Omega$;
- $f_{\Omega}^{[\eta]}(a, z)=\frac{(2 i)^{-1 / 2} \eta}{z-a}+\ldots=2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot \boldsymbol{f}_{\Omega}(\boldsymbol{a}, \boldsymbol{z})+e^{i \frac{\pi}{4}} \bar{\eta} \cdot \boldsymbol{f}_{\Omega}^{\dagger}(\boldsymbol{a}, \boldsymbol{z})\right]$
- $\left\langle\psi_{z} \psi_{a}\right\rangle_{\Omega}^{+}:=f_{\Omega}(a, z),\left\langle\psi_{z} \bar{\psi}_{a}\right\rangle_{\Omega}^{+}:=f_{\Omega}^{\dagger}(a, z)$ and $\varepsilon_{z}:=i \psi_{z} \bar{\psi}_{z}$.

Spin correlations and spinor observables: combinatorics

- spin configurations on G^{*}
$\leftrightarrow \rightarrow$ domain walls on G
$\leadsto \leadsto$ dimers on G_{F}
- Kasteleyn's theory: $\mathcal{Z}=\operatorname{Pf}[K]$ $\left[\mathbf{K}=-\mathbf{K}^{\top}\right.$ is a weighted adjacency matrix of G_{F}]

Spin correlations and spinor observables: combinatorics

- spin configurations on G^{*}
$\leadsto \rightarrow$ domain walls on G
$\rightarrow \mu$ dimers on G_{F}
- Kasteleyn's theory: $\mathcal{Z}=\operatorname{Pf}[K]$
[$\mathrm{K}=-\mathrm{K}^{\top}$ is a weighted adjacency matrix of G_{F}]

- Claim:

$$
\mathbb{E}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right]=\frac{\operatorname{Pf}\left[K_{\left[u_{1}, \ldots, u_{n}\right]}\right]}{\operatorname{Pf}[K]}
$$

where $K_{\left[u_{1}, \ldots, u_{n}\right]}$ is obtained from K by changing the sign of its entries on slits linking $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ (and, possibly, $u_{\text {out }}$) pairwise.

- More invariant way to think about entries of $\mathbf{K}_{\left[u_{1}, \ldots, u_{n}\right]}^{-1}$: double-covers of G branching over u_{1}, \ldots, u_{n}

Spin correlations and spinor observables: combinatorics

Main tool: spinors on the double cover $\left[\Omega_{\delta} ; u_{1}, \ldots, u_{n}\right]$.

$$
\begin{aligned}
& F_{\Omega_{\delta}}(z):=\left[\mathcal{Z}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right]\right]_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}\left(u_{1}^{\rightarrow}, z\right)}^{-1} \cdot \sum_{u_{1}, \ldots, u_{n}}(\omega, z) \cdot x_{\text {crit }}^{\# \text { edges }(\omega)}, \\
& \phi_{u_{1}, \ldots, u_{n}}(\omega, z):=e^{-\frac{i}{2} \operatorname{wind}(\mathrm{p}(\omega))} \cdot(-1)^{\# \operatorname{loops}(\omega \backslash \mathrm{p}(\omega))} \cdot \operatorname{sheet}(\mathrm{p}(\omega), z) .
\end{aligned}
$$

- wind $(\mathrm{p}(\gamma))$ is the winding of the path $\mathrm{p}(\gamma): u_{1}=u_{1}+\frac{\delta}{2} \rightsquigarrow z$;
- \#loops - those containing an odd number of u_{1}, \ldots, u_{n} inside;
- sheet $(\mathrm{p}(\gamma), z)=+1$, if $\mathrm{p}(\gamma)$ defines z, and -1 otherwise.
- Note that $\boldsymbol{F}\left(z^{\sharp}\right)=-\boldsymbol{F}\left(z^{b}\right)$ if z^{\sharp}, z^{b} lie over the same edge of Ω_{δ}.

Spin correlations and spinor observables: combinatorics
Main tool: spinors on the double cover $\left[\Omega_{\delta} ; u_{1}, \ldots, u_{n}\right]$.

$$
\begin{aligned}
& F_{\Omega_{\delta}}(z):=\left[\mathcal{Z}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right]\right]_{\omega \in \operatorname{Conf}_{\Omega_{\delta}}\left(u_{1}^{\rightarrow}, z\right)}^{-1} \cdot \sum_{u_{1}, \ldots, u_{n}}(\omega, z) \cdot x_{\text {crit }}^{\# \operatorname{edges}(\omega)}, \\
& \phi_{u_{1}, \ldots, u_{n}}(\omega, z):=e^{-\frac{i}{2} \operatorname{wind}(\mathrm{p}(\omega))} \cdot(-1)^{\# \operatorname{loops}(\omega \backslash \mathrm{p}(\omega))} \cdot \operatorname{sheet}(\mathrm{p}(\omega), z) .
\end{aligned}
$$

Claim:
$F_{\Omega_{\delta}}\left(u_{1}+\frac{3 \delta}{2}\right)=\frac{\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}+2 \delta} \ldots \sigma_{u_{n}}\right]}{\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right]}$
Thus, spatial derivatives of spin correlations can be studied via the analysis of spinor observables.

- Remark: Both fermionic and spinor observables can be introduced using spin-disorder formalism of Kadanoff and Ceva.

Spin-disorder formalism of Kadanoff and Ceva

- Recall that spins σ_{u} are assigned to the faces of G. Given (an even number of) vertices v_{1}, \ldots, v_{m}, link them pairwise by a collection of paths $\varkappa=\varkappa^{\left[v_{1}, \ldots, v_{m}\right]}$ and replace x_{e} by x_{e}^{-1} for all $e \in \varkappa$. Denote

$$
\left\langle\mu_{v_{1}} \ldots \mu_{v_{m}}\right\rangle_{G}:=\mathcal{Z}_{G}^{\left[v_{1}, \ldots, v_{m}\right]} / \mathcal{Z}_{G} .
$$

- Equivalently, one may think of the Ising model on a double-cover $G^{\left[v_{1}, \ldots, v_{m}\right]}$ that branches over each of v_{1}, \ldots, v_{m} with the

[two disorders inserted] spin-flip symmetry constrain $\sigma_{u^{\sharp}}=-\sigma_{u^{b}}$ if u^{\sharp} and u^{b} lie over the same face of G. Let

$$
\left\langle\boldsymbol{\mu}_{\boldsymbol{v}_{1}} \ldots \boldsymbol{\mu}_{\boldsymbol{v}_{m}} \sigma_{\boldsymbol{u}_{1}} \ldots \sigma_{\boldsymbol{u}_{n}}\right\rangle_{\boldsymbol{G}}:=\mathbb{E}_{G\left[v_{1}, \ldots, v_{m}\right]}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right] \cdot\left\langle\mu_{v_{1}} \ldots \mu_{v_{m}}\right\rangle_{G} .
$$

- By definition, $\left\langle\mu_{\boldsymbol{v}_{1}} \ldots \mu_{\boldsymbol{v}_{\boldsymbol{m}}} \sigma_{\boldsymbol{u}_{1}} \ldots \sigma_{\boldsymbol{u}_{n}}\right\rangle_{\boldsymbol{G}}$ changes the sign when one of the faces u_{k} goes around of one of the vertices v_{s}.

Spin-disorder formalism of Kadanoff and Ceva

- By definition, $\left\langle\mu_{\nu_{1}} \ldots \mu_{v_{m}} \sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{G}$ changes the sign when one of the faces u_{k} goes around of one of the vertices v_{s}.
- For a corner c lying in a face $u(c)$ near a vertex $v(c)$, denote $\chi_{c}:=\mu_{v(c)} \sigma_{u(c)}$.
- Claim:

$$
\left\langle\chi_{c_{1}} \cdots \chi_{c_{2 k}}\right\rangle_{G}=\operatorname{Pf}\left[\left\langle\chi_{c_{p}} \chi_{c_{q}}\right\rangle_{G}\right]_{\boldsymbol{p}, \boldsymbol{q}=1}^{2 k}
$$

and $\left\langle\chi_{d} \chi_{c}\right\rangle_{G}=\mathrm{K}_{c, d}^{-1}$ provided that all the vertices $v\left(c_{q}\right)$ are pairwise distinct.

[two disorders inserted]

- Remark: This also works in presence of other spins and disorders. The antisymmetry $\left\langle\chi_{d} \chi_{c}\right\rangle_{G}=-\left\langle\chi_{c} \chi_{d}\right\rangle_{G}$ is caused by the sign change of the corresponding spin-disorder correlation.

Spin-disorder formalism of Kadanoff and Ceva

- By definition, $\left\langle\mu_{\boldsymbol{v}_{1}} \ldots \mu_{\boldsymbol{v}_{m}} \sigma_{\boldsymbol{u}_{1} \ldots} \ldots \sigma_{\boldsymbol{u}_{n}}\right\rangle_{\boldsymbol{G}}$ changes the sign when one of the faces u_{k} goes around of one of the vertices v_{s}.
- For a corner c lying in a face $u(c)$ near a vertex $v(c)$, denote $\chi_{c}:=\mu_{v(c)} \sigma_{u(c)}$.

- Claim:

$$
\left\langle\chi_{c_{1}} \cdots \chi_{c_{2 k}}\right\rangle_{G}=\operatorname{Pf}\left[\left\langle\chi_{c_{p}} \chi_{c_{q}}\right\rangle_{G}\right]_{\boldsymbol{p}, \boldsymbol{q}=1}^{2 k}
$$

and $\left\langle\chi_{d} \chi_{c}\right\rangle_{G}=K_{c, d}^{-1}$ provided that all the vertices $v\left(c_{q}\right)$ are pairwise distinct.

[two disorders inserted]

- The "corner" (resp., "edge") values of the special spinor observable on $\left[\Omega_{\delta} ; u_{1}, \ldots, u_{n}\right.$] discussed above can be written as
[ψ_{z} can be thought of as linear combinations of nearby χ_{c} 's]

Spin correlations: convergence and conformal covariance

- Three local primary fields:

1, σ (spin), ε (energy density);
Scaling exponents: $\mathbf{0}, \frac{1}{8}, \mathbf{1}$.

- Theorem: [Ch.-Hongler-Izyurov (2012)]

If $\Omega_{\delta} \rightarrow \Omega$ and $u_{k, \delta} \rightarrow u_{k}$ as $\delta \rightarrow 0$, then
$\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1, \delta}} \ldots \sigma_{u_{n, \delta}}\right] \underset{\delta \rightarrow 0}{\rightarrow} \mathcal{C}_{\sigma}^{n} \cdot\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}$
 where \mathcal{C}_{σ} is a lattice-dependent constant,

$$
\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}=\left\langle\sigma_{\varphi\left(u_{1}\right)} \ldots \sigma_{\varphi\left(u_{n}\right)}\right\rangle_{\Omega^{\prime}}^{+} \cdot \prod_{s=1}^{n}\left|\varphi^{\prime}\left(u_{s}\right)\right|^{\frac{1}{8}}
$$

for any conformal mapping $\varphi: \Omega \rightarrow \Omega^{\prime}$, and

$$
\left[\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\mathbb{H}}^{+}\right]^{2}=\prod_{1 \leqslant s \leqslant n}\left(2 \operatorname{Im} u_{s}\right)^{-\frac{1}{4}} \times \sum_{\beta \in\{ \pm 1\}^{n}} \prod_{s<m}\left|\frac{u_{s}-u_{m}}{u_{s}-\bar{u}_{m}}\right|^{\frac{\beta_{s} \beta_{m}}{2}}
$$

Spin correlations: convergence and conformal covariance

- Three local primary fields:

1, σ (spin), ε (energy density);
Scaling exponents: $\mathbf{0}, \frac{1}{8}, \mathbf{1}$.

- Theorem: [Ch.-Hongler-Izyurov (2012)] If $\Omega_{\delta} \rightarrow \Omega$ and $u_{k, \delta} \rightarrow u_{k}$ as $\delta \rightarrow 0$, then $\delta^{-\frac{n}{8}} \cdot \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1, \delta}} \ldots \sigma_{u_{n, \delta}}\right] \underset{\delta \rightarrow 0}{\rightarrow} \mathcal{C}_{\sigma}^{n} \cdot\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}$

General strategy: • in discrete: encode spatial derivatives as values of discrete holomorphic spinors F^{δ} that solve some discrete Riemann-type boundary value problems;

- discrete \rightarrow continuum: prove convergence of F^{δ} to the solutions f of the similar continuous b.v.p. [non-trivial technicalities];
- continuum \rightarrow discrete: find the limit of (spatial derivatives of) using the convergence $F^{\delta} \rightarrow f$ [via coefficients at singularities].

Spin correlations: convergence and conformal covariance

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u}\right]$, one should consider the following b.v.p.:

- $g\left(z^{\sharp}\right) \equiv-g\left(z^{b}\right)$, branches over u;
- $\operatorname{Im}[g(\zeta) \sqrt{\tau(\zeta)}]=0$ for $\zeta \in \partial \Omega$;
$\circ g(z)=\frac{(2 i)^{-1 / 2}}{\sqrt{z-u}}+\ldots$

Spin correlations: convergence and conformal covariance

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u}\right]$, one should consider the following b.v.p.:

- $g\left(z^{\sharp}\right) \equiv-g\left(z^{b}\right)$, branches over u;
- $\operatorname{Im}[g(\zeta) \sqrt{\tau(\zeta)}]=0$ for $\zeta \in \partial \Omega$;
$\circ g(z)=\frac{(2 i)^{-1 / 2}}{\sqrt{z-u}}\left[1+2 \mathcal{A}_{\Omega}(u)(z-u)+\ldots\right]$
Claim: If Ω_{δ} converges to Ω as $\delta \rightarrow 0$, then

$$
\begin{aligned}
& \circ(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow \operatorname{Re}\left[\mathcal{A}_{\Omega}(u)\right] \\
& \circ \quad(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 i \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow-\operatorname{Im}\left[\mathcal{A}_{\Omega}(u)\right]
\end{aligned}
$$

Spin correlations: convergence and conformal covariance

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u}\right]$, one should consider the following b.v.p.:

- $g\left(z^{\sharp}\right) \equiv-g\left(z^{b}\right)$, branches over u;
- $\operatorname{Im}[g(\zeta) \sqrt{\tau(\zeta)}]=0$ for $\zeta \in \partial \Omega$;
$\circ g(z)=\frac{(2 i)^{-1 / 2}}{\sqrt{z-u}}\left[1+2 \mathcal{A}_{\Omega}(u)(z-u)+\ldots\right]$
Claim: If Ω_{δ} converges to Ω as $\delta \rightarrow 0$, then

$$
\begin{aligned}
& \circ(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow \operatorname{Re}\left[\mathcal{A}_{\Omega}(u)\right] ; \\
& \circ \quad(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 i \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow-\operatorname{Im}\left[\mathcal{A}_{\Omega}(u)\right] .
\end{aligned}
$$

Conformal covariance $\frac{1}{8}$: for any conformal map $\phi: \Omega \rightarrow \Omega^{\prime}$,

$$
\text { - } f_{[\Omega, a]}(w)=f_{\left[\Omega^{\prime}, \phi(a)\right]}(\phi(w)) \cdot\left(\phi^{\prime}(w)\right)^{1 / 2} ;
$$

- $\mathcal{A}_{\Omega}(z)=\mathcal{A}_{\Omega^{\prime}}(\phi(z)) \cdot \phi^{\prime}(z)+\frac{1}{8} \cdot \phi^{\prime \prime}(z) / \phi^{\prime}(z)$.

Spin correlations: convergence and conformal covariance

Example: to handle $\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u}\right]$, one should consider the following b.v.p.:

- $g\left(z^{\sharp}\right) \equiv-g\left(z^{b}\right)$, branches over u;
- $\operatorname{Im}[g(\zeta) \sqrt{\tau(\zeta)}]=0$ for $\zeta \in \partial \Omega$;
$\circ g(z)=\frac{(2 i)^{-1 / 2}}{\sqrt{z-u}}\left[1+2 \mathcal{A}_{\Omega}(u)(z-u)+\ldots\right]$
Claim: If Ω_{δ} converges to Ω as $\delta \rightarrow 0$, then

$$
\begin{aligned}
& \circ(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow \operatorname{Re}\left[\mathcal{A}_{\Omega}(u)\right] \\
& \circ \quad(2 \delta)^{-1} \log \left[\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}+2 i \delta}\right] / \mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{\delta}}\right]\right] \rightarrow-\operatorname{Im}\left[\mathcal{A}_{\Omega}(u)\right]
\end{aligned}
$$

Quite a lot of technical work is needed, e.g.:

- to handle tricky boundary conditions [Dirichlet for $\int \operatorname{Re}\left[f^{2} d z\right]$];
- to prove convergence, incl. near singularities [complex analysis];
- to recover the normalization of $\mathbb{E}_{\Omega_{\delta}}^{+}\left[\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right]$ [probability].

Spin correlations: multiplicative normalization

We define $\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}:=\exp \left[\int \mathcal{L}\left(u_{1}, \ldots, u_{n}\right)\right]$, where

$$
\mathcal{L}_{\Omega}\left(u_{1}, \ldots, u_{n}\right):=\sum_{s=1}^{n} \operatorname{Re}\left[\mathcal{A}_{\Omega}\left(u_{s} ; u_{1}, \ldots, \hat{u}_{s}, \ldots, u_{n}\right) d u_{s}\right],
$$

where the coefficients $\mathcal{A}_{\Omega}(\ldots)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

$$
\begin{array}{rlr}
\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+} & \sim\left\langle\sigma_{u_{1} \ldots} \sigma_{u_{n-1}}\right\rangle_{\Omega}^{+} \cdot\left\langle\sigma_{u_{n}}\right\rangle_{\Omega}^{+} \quad \text { as } u_{n} \rightarrow \partial \Omega \\
\left\langle\sigma_{u_{1}} \sigma_{u_{2}}\right\rangle_{\Omega}^{+} & \sim\left|u_{2}-u_{1}\right|^{-1 / 4} \quad \text { as } u_{2} \rightarrow u_{1} \in \Omega .
\end{array}
$$

Spin correlations: multiplicative normalization

We define $\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}:=\exp \left[\int \mathcal{L}\left(u_{1}, \ldots, u_{n}\right)\right]$, where

$$
\mathcal{L}_{\Omega}\left(u_{1}, \ldots, u_{n}\right):=\sum_{s=1}^{n} \operatorname{Re}\left[\mathcal{A}_{\Omega}\left(u_{s} ; u_{1}, \ldots, \hat{u}_{s}, \ldots, u_{n}\right) d u_{s}\right]
$$

where the coefficients $\mathcal{A}_{\Omega}(\ldots)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

$$
\begin{array}{rlr}
\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+} & \sim\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n-1}}\right\rangle_{\Omega}^{+} \cdot\left\langle\sigma_{u_{n}}\right\rangle_{\Omega}^{+} \quad \text { as } u_{n} \rightarrow \partial \Omega \\
\left\langle\sigma_{u_{1}} \sigma_{u_{2}}\right\rangle_{\Omega}^{+} & \sim\left|u_{2}-u_{1}\right|^{-1 / 4} & \text { as } u_{2} \rightarrow u_{1} \in \Omega .
\end{array}
$$

○ $g\left(z^{\sharp}\right) \equiv-g\left(z^{b}\right)$ is a holomorphic spinor on $\left[\Omega ; u_{1}, \ldots, u_{n}\right]$;

- $\operatorname{Im}\left[g(\zeta)(\tau(\zeta))^{\frac{1}{2}}\right]=0$ for $\zeta \in \partial \Omega$;
- $g(z)=e^{i \frac{\pi}{4}} c_{s} \cdot\left(z-u_{s}\right)^{-\frac{1}{2}}+\ldots$ for some (unknown) $c_{s} \in \mathbb{R}, s \geqslant 2$;
$\circ g(z)=2^{-\frac{1}{2}} e^{-i \frac{\pi}{4}}\left(z-u_{1}\right)^{-\frac{1}{2}}\left[1+2 \mathcal{A}_{\Omega}\left(\boldsymbol{u}_{1} ; \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right)\left(z-u_{1}\right)+\ldots\right]$

Spin correlations: multiplicative normalization

We define $\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+}:=\exp \left[\int \mathcal{L}\left(u_{1}, \ldots, u_{n}\right)\right]$, where

$$
\mathcal{L}_{\Omega}\left(u_{1}, \ldots, u_{n}\right):=\sum_{s=1}^{n} \operatorname{Re}\left[\mathcal{A}_{\Omega}\left(u_{s} ; u_{1}, \ldots, \hat{u}_{s}, \ldots, u_{n}\right) d u_{s}\right],
$$

where the coefficients $\mathcal{A}_{\Omega}(\ldots)$ are defined via solutions to similar Riemann boundary values problems and the normalization satisfies

$$
\begin{array}{rlr}
\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{+} & \sim\left\langle\sigma_{u_{1} \ldots} \sigma_{u_{n-1}}\right\rangle_{\Omega}^{+} \cdot\left\langle\sigma_{u_{n}}\right\rangle_{\Omega}^{+} & \text {as } u_{n} \\
\left\langle\sigma_{u_{1}} \sigma_{u_{2}}\right\rangle_{\Omega}^{+} & \sim\left|u_{2}-u_{1}\right|^{-1 / 4} u_{2} \rightarrow u_{1} \in \Omega .
\end{array}
$$

Remarks: - The fact that $\mathcal{L}_{\Omega, n}$ is a closed differential form and the existence of an appropriate multiplicative normalization are not a priori clear but can be deduced along the proof of convergence.

- This also works for mixed fixed/free boundary conditions and/or in multiply connected domains. (No explicit formulae!)
[not published, a part of a larger project in progress...]

Mixed correlations: convergence

[Ch.-Hongler-Izyurov (2016, in progress)]

- Convergence of mixed correlations: spins (σ), disorders (μ), fermions (ψ), energy densities (ε) (in multiply connected domains Ω, with mixed fixed/free boundary conditions \mathfrak{b}) to conformally covariant limits that can be defined via solutions to appropriate Riemann-type boundary value problems in Ω.

- Standard CFT fusion rules

$$
\begin{aligned}
& \sigma \mu \rightsquigarrow \eta \psi+\bar{\eta} \bar{\psi}, \quad \psi \sigma \rightsquigarrow \mu, \quad \psi \mu \rightsquigarrow \sigma, \\
& i \psi \bar{\psi} \rightsquigarrow \varepsilon, \quad \sigma \sigma \rightsquigarrow 1+\varepsilon, \quad \mu \mu \rightsquigarrow 1-\varepsilon
\end{aligned}
$$

can be deduced from properties of solutions to Riemann-type b.v.p.

- Stress-energy tensor: [Ch.-Glazman-Smirnov (2016)]

Mixed correlations: convergence

[Ch.-Hongler-Izyurov (2016, in progress)]

- Convergence of mixed correlations: spins (σ), disorders (μ), fermions (ψ), energy densities (ε) (in multiply connected domains Ω, with mixed fixed/free boundary conditions \mathfrak{b}) to conformally covariant limits that can be defined via solutions to appropriate Riemann-type boundary value problems in Ω.

- Standard CFT fusion rules, e.g. $\sigma \sigma \rightsquigarrow 1+\varepsilon$:

$$
\left\langle\sigma_{u^{\prime}} \sigma_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=\left|u^{\prime}-u\right|^{-\frac{1}{4}}\left[\langle\ldots\rangle_{\Omega}^{\mathfrak{b}}+\frac{1}{2}\left|u^{\prime}-u\right|\left\langle\varepsilon_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+\ldots\right],
$$

can be deduced from properties of solutions to Riemann-type b.v.p.

- More details: arXiv:1605.09035, arXiv:1[6]??.?????

Mixed correlations: properties (fusion rules) and existence
(I) Each $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1} \ldots} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ is a spinor defined on the Riemann surface of the function $\left[\prod_{l=1}^{n} \prod_{s=1}^{m}\left(v_{l}-u_{s}\right)\right]^{\frac{1}{2}}$. As some of the points v_{1}, \ldots, v_{n} approach $u_{1}, . ., u_{m}$ along the rays $v_{s}-u_{s} \in \eta_{s}^{2} \mathbb{R}$, where $\left|\eta_{s}\right|=1$, there exist limits
$\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$

$$
\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega_{1}}^{\mathfrak{b}} .
$$

These (real) limits change signs if η_{s} is replaced by $-\eta_{s}$ and are anti-symmetric with respect to the order in which ψ 's are written.

Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$

$$
\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}} .
$$

(II) These functions satisfy Pfaffian identites (fermionic Wick rules). Moreover, they depend on η 's in a real-linear way:
$\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

One has $\overline{\langle\mathcal{O}[\psi, \mu, \sigma]\rangle_{\Omega}^{\mathfrak{b}}}=\left\langle\mathcal{O}\left[\psi^{*}, \mu, \sigma\right]\right\rangle_{\Omega}^{\mathfrak{b}}$ with $\psi_{z}^{*}:=\bar{\psi}_{z}, \bar{\psi}_{z}^{*}:=\psi_{z}$.
Each of the functions $\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ is holomorphic in z and each of $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ is anti-holomorphic in z. Moreover,

$$
\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}} \text { for } z \in \partial \Omega,
$$

where $\tau(z)$ denotes the (properly oriented) tangent vector to $\partial \Omega$.

Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$

$$
\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}} .
$$

(II) $\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

Moreover, $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.
(III) Each of the functions $\left\langle\psi_{z} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}$ has the following asymptotics (aka operator product expansions) as ψ_{z} approaches other fields:
$\left\langle\psi_{z} \psi_{z^{\prime}} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=\left(z-z^{\prime}\right)^{-1}\left[\langle\ldots\rangle_{\Omega}^{\mathfrak{b}}+O\left(\left|z-z^{\prime}\right|^{2}\right)\right],\left\langle\psi_{z} \bar{\psi}_{z^{\prime}} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=O(1)$,
$\left\langle\psi_{z} \sigma_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=2^{-\frac{1}{2}} e^{\frac{i \pi}{4}}(z-u)^{-\frac{1}{2}}\left[\left\langle\mu_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+4(z-u) \partial_{u}\left\langle\mu_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+\ldots\right]$,
$\left\langle\psi_{z} \mu_{v} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=2^{-\frac{1}{2}} e^{\frac{-i \pi}{4}}(z-v)^{-\frac{1}{2}}\left[\left\langle\sigma_{v} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+4(z-v) \partial_{v}\left\langle\sigma_{v} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+\ldots\right]$,
Similar OPEs hold true for the antiholomorphic functions $\left\langle\bar{\psi}_{z} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}$.

Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$

$$
\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}
$$

(II) $\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

Moreover, $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.
(III) $\psi \psi \rightsquigarrow 1+\ldots, \quad \psi \sigma \rightsquigarrow 2^{-\frac{1}{2}} e^{i \frac{\pi}{4}}[\mu+4 \partial \mu+\ldots]$,

$$
\psi \mu \rightsquigarrow 2^{-\frac{1}{2}} e^{-i \frac{\pi}{4}}[\sigma+4 \partial \sigma+\ldots]
$$

(IV) Denote $\left\langle\varepsilon_{\boldsymbol{u}} \mathcal{O}[\varepsilon, \psi, \sigma, \boldsymbol{\mu}]\right\rangle_{\Omega}^{\mathfrak{b}}:=i\left\langle\psi_{u} \bar{\psi}_{u} \mathcal{O}[\varepsilon, \psi, \sigma, \mu]\right\rangle_{\Omega}^{\mathfrak{b}}$. Then

$$
\begin{aligned}
& \left\langle\sigma_{u^{\prime}} \sigma_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=\left|u^{\prime}-u\right|^{-\frac{1}{4}}\left[\langle\ldots\rangle_{\Omega}^{\mathfrak{b}}+\frac{1}{2}\left|u^{\prime}-u\right|\left\langle\varepsilon_{u} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+\ldots\right] ; \\
& \left\langle\mu_{v^{\prime}} \mu_{v} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}=\left|v^{\prime}-v\right|^{-\frac{1}{4}}\left[\langle\ldots\rangle_{\Omega}^{\mathfrak{b}}-\frac{1}{2}\left|v^{\prime}-v\right|\left\langle\varepsilon_{v} \ldots\right\rangle_{\Omega}^{\mathfrak{b}}+\ldots\right] .
\end{aligned}
$$

Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$
$\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$.
(II) $\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

Moreover, $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.
(III) $\psi \psi \rightsquigarrow 1+\ldots, \quad \psi \sigma \rightsquigarrow 2^{-\frac{1}{2}} e^{i \frac{\pi}{4}}[\mu+4 \partial \mu+\ldots]$,

$$
\psi \mu \rightsquigarrow 2^{-\frac{1}{2}} e^{-i \frac{\pi}{4}}[\sigma+4 \partial \sigma+\ldots] .
$$

(IV) $\varepsilon_{\boldsymbol{u}}:=i \psi_{\boldsymbol{u}} \bar{\psi}_{\boldsymbol{u}} \Longrightarrow \sigma \sigma \rightsquigarrow 1+\frac{1}{2} \varepsilon+\ldots, \mu \mu \rightsquigarrow 1-\frac{1}{2} \varepsilon+\ldots$

Mixed correlations: properties (fusion rules) and existence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$ $\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$.
(II) $\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

Moreover, $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.
(III) $\psi \psi \rightsquigarrow 1+\ldots, \quad \psi \sigma \rightsquigarrow 2^{-\frac{1}{2}} e^{i \frac{\pi}{4}}[\mu+4 \partial \mu+\ldots]$,

$$
\psi \mu \rightsquigarrow 2^{-\frac{1}{2}} e^{-i \frac{\pi}{4}}[\sigma+4 \partial \sigma+\ldots]
$$

(IV) $\varepsilon_{\boldsymbol{u}}:=i \psi_{\boldsymbol{u}} \bar{\psi}_{\boldsymbol{u}} \Longrightarrow \sigma \sigma \rightsquigarrow 1+\frac{1}{2} \varepsilon+\ldots, \mu \mu \rightsquigarrow 1-\frac{1}{2} \varepsilon+\ldots$

Claim: The set of conditions (I)-(IV) admits a (unique) solution.
Sketch: $\circ \boldsymbol{f}_{\left[\Omega ; u_{1}, \ldots, u_{n}\right]}^{[\eta]}(\boldsymbol{a}, \boldsymbol{z}):=\left\langle\psi_{z} \psi_{a}^{[\eta]} \sigma_{u_{1} \ldots} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{\mathfrak{b}} /\left\langle\sigma_{u_{1}} \ldots \sigma_{u_{n}}\right\rangle_{\Omega}^{\mathfrak{b}} ;$

- Define all the other correlations starting with these functions;
- Prove all other fusion rules [interplays with convergence(!)].

Mixed correlations: properties (fusion rules) and convergence
The spin-disorder correlations $\left\langle\mu_{v_{1}} \ldots \mu_{v_{n}} \sigma_{u_{1}} \ldots \sigma_{u_{m}}\right\rangle_{\Omega}^{\mathfrak{b}}$ lead to
(I) $\left\langle\psi_{\boldsymbol{u}_{1}}^{\left[\eta_{1}\right]} \ldots \psi_{\boldsymbol{u}_{k}}^{\left[\eta_{k}\right]} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}:=$

$$
\lim _{v_{s} \rightarrow u_{s}}\left|\left(v_{1}-u_{1}\right) \ldots\left(v_{k}-u_{k}\right)\right|^{\frac{1}{4}}\left\langle\mu_{v_{1}} \sigma_{u_{1}} \ldots \mu_{v_{k}} \sigma_{u_{k}} \mathcal{O}[\mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}} .
$$

(II) $\left\langle\psi_{z}^{[\eta]} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=$

$$
2^{-\frac{1}{2}}\left[e^{-i \frac{\pi}{4}} \eta \cdot\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}+e^{i \frac{\pi}{4}} \bar{\eta} \cdot\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}\right] .
$$

Moreover, $\left\langle\bar{\psi}_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}=\tau(z)\left\langle\psi_{z} \mathcal{O}[\psi, \mu, \sigma]\right\rangle_{\Omega}^{\mathfrak{b}}$ for $z \in \partial \Omega$.
(III) $\psi \psi \rightsquigarrow 1+\ldots, \quad \psi \sigma \rightsquigarrow 2^{-\frac{1}{2}} e^{i \frac{\pi}{4}}[\mu+4 \partial \mu+\ldots]$,

$$
\psi \mu \rightsquigarrow 2^{-\frac{1}{2}} e^{-i \frac{\pi}{4}}[\sigma+4 \partial \sigma+\ldots] .
$$

(IV) $\varepsilon_{\boldsymbol{u}}:=i \psi_{\boldsymbol{u}} \bar{\psi}_{\boldsymbol{u}} \Longrightarrow \sigma \sigma \rightsquigarrow 1+\frac{1}{2} \varepsilon+\ldots, \mu \mu \rightsquigarrow 1-\frac{1}{2} \varepsilon+\ldots$

Theorem: [Ch.-Hongler-Izyurov, 2016] All mixed correlations of spins, disorders, discrete fermions and energy densities in the Ising model on Ω_{δ} with boundary conditions \mathfrak{b}, after a proper rescaling, converge to their continuous counterparts $\langle\ldots\rangle_{\Omega}^{\mathfrak{b}}$ as $\delta \rightarrow 0$.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- There exist several ways to introduce a stress-energy tensor as a local field (function of several nearby spins) in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \rightarrow 0$, correlations of these different local fields should have the same scaling limits: CFT correlations of (components of) the holomorphic T_{z} and anti-holomorphic \bar{T}_{z} defined on a given Ω.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- There exist several ways to introduce a stress-energy tensor as a local field (function of several nearby spins) in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \rightarrow 0$, correlations of these different local fields should have the same scaling limits: CFT correlations of (components of) the holomorphic T_{z} and anti-holomorphic \bar{T}_{z} defined on a given Ω.
- We would like to have a definition of T_{z} in discrete, which
- "geometrically" describes a perturbation of the metric,
- satisfies (at least, a part of) Cauchy-Riemann equations,
- resembles the "free fermion" formula $\boldsymbol{T}_{\boldsymbol{z}}=-\frac{1}{2}: \psi_{\boldsymbol{z}} \partial \psi_{\boldsymbol{z}}:$,
\circ and leads to the correct scaling limits of correlations.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- There exist several ways to introduce a stress-energy tensor as a local field (function of several nearby spins) in the 2D Ising model. Presumably, the first was suggested by Kadanoff and Ceva in 1970.
- As $\delta \rightarrow 0$, correlations of these different local fields should have the same scaling limits: CFT correlations of (components of) the holomorphic T_{z} and anti-holomorphic \bar{T}_{z} defined on a given Ω.
- We would like to have a definition of T_{z} in discrete, which
- "geometrically" describes a perturbation of the metric, - satisfies (at least, a part of) Cauchy-Riemann equations,
- resembles the "free fermion" formula $\boldsymbol{T}_{\boldsymbol{z}}=-\frac{1}{2}: \psi_{\boldsymbol{z}} \partial \psi_{z}:$,
- and hence leads to the correct scaling limits of correlations.

Remark: in continuum, all the standard properties of T_{Z} (holomorphicity, Schwarzian covariance under conformal maps $\phi: \Omega \rightarrow \Omega^{\prime}$, standard OPEs for $T T, T \sigma, T \varepsilon$) can be deduced from the expression of T_{z} via fermions.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Ising model on faces of (a part of) the honeycomb lattice can be equivalently thought of as the loop $O(1)$ model on a discrete domain glued from equilateral triangles \Longleftrightarrow "standard lozenges".
- One can consistently define the loop $O(n)$ model on any (possible, non-flat) discrete domain glued from rhombi and equilateral triangles using the Nienhuis' "integrable" weights.

- Consistency: $x=u_{1}\left(\frac{\pi}{3}\right), x^{2}=u_{2}\left(\frac{\pi}{3}\right)=v\left(\frac{\pi}{3}\right)=w_{1}\left(\frac{\pi}{3}\right), w_{2}\left(\frac{\pi}{3}\right)=0$.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Ising model on faces of (a part of) the honeycomb lattice can be equivalently thought of as the loop $O(1)$ model on a discrete domain glued from equilateral triangles \Longleftrightarrow "standard lozenges".
- One can consistently define the loop $O(n)$ model on any (possible, non-flat) discrete domain glued from rhombi and equilateral triangles using the Nienhuis' "integrable" weights.
- Consistency: $x=u_{1}\left(\frac{\pi}{3}\right), x^{2}=u_{2}\left(\frac{\pi}{3}\right)=v\left(\frac{\pi}{3}\right)=w_{1}\left(\frac{\pi}{3}\right), w_{2}\left(\frac{\pi}{3}\right)=0$; wrt re-gluing of "flat" vertices:

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Definition: Let m be a midline of some hexagon in a discrete domain Ω_{δ}. We deform the lattice by gluing an additional tiny rhombus of angle $\theta \rightarrow 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m, \theta)$, and define $\boldsymbol{T}_{\Omega_{\delta}}(\boldsymbol{m}):=\boldsymbol{c s t}+\left.\frac{\boldsymbol{d}}{\boldsymbol{d} \theta} \log \mathcal{Z}_{\Omega_{\delta}}(\boldsymbol{m}, \theta)\right|_{\theta=0}$
- In fact, one can work with pictures drawn on the original lattice:

weighted by $\quad d_{1}:=u_{1}^{\prime}(0), \quad d_{2}:=u_{2}^{\prime}(0), \quad d_{3}:=v^{\prime}(0), \quad d_{4}:=w_{1}^{\prime}(0), \quad d_{5}:=w_{2}^{\prime}(0)$.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Definition: Let m be a midline of some hexagon in a discrete domain Ω_{δ}. We deform the lattice by gluing an additional tiny rhombus of angle $\theta \rightarrow 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m, \theta)$, and define $\boldsymbol{T}_{\Omega_{\delta}}(\boldsymbol{m}):=\boldsymbol{c s t}+\left.\frac{\boldsymbol{d}}{\boldsymbol{d} \theta} \log \mathcal{Z}_{\Omega_{\delta}}(\boldsymbol{m}, \theta)\right|_{\theta=0}$
- In fact, one can work with pictures drawn on the original lattice:

weighted by $\quad d_{1}:=u_{1}^{\prime}(0), \quad d_{2}:=u_{2}^{\prime}(0), \quad d_{3}:=v^{\prime}(0), \quad d_{4}:=w_{1}^{\prime}(0), d_{5}:=w_{2}^{\prime}(0)$.
- For the loop $O(1)$ model, one has $d_{4}+d_{5}=2 d_{1}=-2 d_{3}$. This allows one to rewrite all these sums via fermions and leads to the cancelation of main terms in all contributions except of type d_{2}.

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Definition: Let m be a midline of some hexagon in a discrete domain Ω_{δ}. We deform the lattice by gluing an additional tiny rhombus of angle $\theta \rightarrow 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m, \theta)$, and define $\boldsymbol{T}_{\Omega_{\delta}}(\boldsymbol{m}):=\boldsymbol{c s t}+\left.\frac{\boldsymbol{d}}{\boldsymbol{d} \theta} \log \mathcal{Z}_{\Omega_{\delta}}(\boldsymbol{m}, \theta)\right|_{\theta=0}$
- At the same time, $T(m)$ can be thought of as a local field:

Stress-energy tensor [Ch.-Glazman-Smirnov, arXiv:1604.06339]

- Definition: Let m be a midline of some hexagon in a discrete domain Ω_{δ}. We deform the lattice by gluing an additional tiny rhombus of angle $\theta \rightarrow 0$ along m, denote the new partition function by $\mathcal{Z}_{\Omega_{\delta}}(m, \theta)$, and define $\boldsymbol{T}_{\Omega_{\delta}}(\boldsymbol{m}):=\boldsymbol{c s t}+\left.\frac{\boldsymbol{d}}{\boldsymbol{d} \theta} \log \mathcal{Z}_{\Omega_{\delta}}(\boldsymbol{m}, \theta)\right|_{\theta=0}$
- At the same time, $T(m)$ can be thought of as a local field:

- Theorem: Let $\Omega_{\delta} \rightarrow \Omega$ and m_{δ} be a midline of a hexagon $w_{\delta} \rightarrow w \in \Omega$ oriented in the direction τ. Then

$$
\delta^{-2} \mathbb{E}_{\Omega_{\delta}}^{+}\left[\boldsymbol{T}\left(\boldsymbol{m}_{\delta}\right)\right] \rightarrow \operatorname{Re}\left[\tau^{2}\left\langle\boldsymbol{T}_{w}\right\rangle_{\Omega}^{+}\right]
$$

- Since the question is essentially reduced to the convergence of fermions, similar results can be proved for multi-point correlations.

Some research routes and open questions

- Better understanding of "geometric" observables at criticality: e.g., probability distributions on topological classes of domain walls.
- Near-critical (massive) regime $x-x_{\text {crit }}=m \cdot \delta$: convergence of correlations, massive SLE_{3} curves and loop ensembles.
- Super-critical regime: e.g., convergence of interfaces to SLE_{6} curves for any fixed $x>x_{\text {crit }}$ [known only for $x=1$ (percolation)]
- Renormalization

$$
\begin{aligned}
& \xrightarrow{\text { fixed } x>x_{\text {crit }}, \delta \rightarrow 0} \\
& \left(x-x_{\text {crit }}\right) \cdot \delta^{-1} \rightarrow \infty
\end{aligned}
$$

$$
x=x_{\text {crit }}
$$

$x=1$

Some research routes and open questions

- Better understanding of "geometric" observables at criticality: e.g., probability distributions on topological classes of domain walls.
- Near-critical (massive) regime $x-x_{\text {crit }}=m \cdot \delta$: convergence of correlations, massive SLE_{3} curves and loop ensembles.
- Super-critical regime: e.g., convergence of interfaces to SLE_{6} curves for any fixed $x>x_{\text {crit }}$ [known only for $x=1$ (percolation)]
- Renormalization

$$
\begin{gathered}
\text { fixed } x>x_{\text {crit }}, \delta \rightarrow 0 \\
\left(x-x_{\text {crit }}\right) \cdot \delta^{-1} \rightarrow \infty
\end{gathered}
$$

$$
x=x_{\text {crit }}
$$

$x=1$

Thank you!

