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Rome: exhilarating, surprising, humbling

A suitable background for discussions of integrable systems

A case in point: Jeffersonian serpentine walls [U. Virginia, 1820’s]:

“These walls are called "serpentine" be-
cause they run a sinusoidal course, one
that lends strength to the wall and allows
[for it] to be only one brick thick,
one of many innovations by which Jeffer-
son attempted to combine aesthetics with
utility.”

Also on Wikipedia:

• “Many crinkle crankle walls are found in the East Anglia area of England where the
marshes of the fen country were drained by Dutch engineers starting in the mid-1600s.”

• in Rome one may learn (Vieri M.) – its all related to one of Hardian’s architectural
innovations [“baroque walls”]
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Talk’s main themes

Stochastic geometric perspective on Ising spin systems and related models, through
tools which apply quite generally, but link with integrability in the planar case.

Among the concepts to be discussed:

Pfaffian correlation functions

Ising model’s order - disorder operators (Kaufmann / Kadanoff spinors )

and a generalization of this notion

dimer cover models, and their disorder operators

planar and “almost planar” models ...

emergent planarity

The talk is based on the joint works:

• M. Aizenman H. Duminil-Copin, V. Tassion, S. Warzel: “Fermionic correlation
functions and emergent planarity in 2D Ising models ” (tentative title)

• M. Aizenman, M. Laínz-Valcázar, S. Warzel: “Pfaffian Correlation Functions of Planar
Dimer Covers”
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1. A feature of planar Ising models

A planar Ising model: G = V (G), E(G) a planar graph, and

H(σ) = −
∑

{x,y}∈E(G)

Jx,yσxσy − h
∑

x∈V (G)

Theorem (Groeneveld-Boel-Kasteleyn ’78, (∗))
Let 〈−−〉 be an equilibrium state of a ferromagnetic Ising model on a planar graph with
a connected boundary segment Γ.

Then, for any collection of boundary sites {x1, ...., x2n} ⊂ Γ, ordered cyclicly along Γ:

〈
2n∏

j=1

σxj 〉 =
∑

pairings π

ε(π)
n∏

j=1

〈σxπ(2j−1)
σxπ(2j) 〉 ≡ Pf

(
S2(xj , xk )

)

where ε(π) = ±1 is the pairing’s parity.

• Realized in increasing generality, starting with Schultz-Mattis-Lieb ’65 for graphs with
a regular transf. matrix.

• Not true for the correlation functions in the bulk, nor for non-planar models (BK ’78)

• The statement is valid for amorphous graphs and arbitrary sets of couplings.

• Our proof & explanation (ADTW) utilizes the random current representation.
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1 b. Remarks on the Pfaffian structure (to be clarified in the talk)

〈
2n∏

j=1

σxj 〉 =
∑

pairings π

ε(π)
n∏

j=1

〈σxπ(2j−1)
σxπ(2j)〉 ≡ Pf (S2(xj , xk ))

1) A Pfaffian structure for the scalar correlation function in the bulk would not
be consistent with conformal invariance. (A simple argument.)

2) A relevant topological distinction between the two cases.

3) Reason why it does not hold for finite range (and thus non-planar) models.

3) An extension of the correlation functions (into the correlators of
order-disorder pairs) for which the Pfaffian structure does extend to the bulk.

4) A generalization of the principle by a construction which applies also to the
(related) dimer cover model.

5) Emergent planarity – at the critical point from a stochastic geometric
perspective.

6) The latter statement is linked with universality results of Spencer-Pinson,
and Giuliani-Greenblatt-Mastropietro ’12.
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2 a. The Ising model – the spin perspective

Ising spins on a general graph G:

σ : G → {−1,+1}

H(σ) = −
∑

(x,y)∈E
Jx,yσxσy − h

∑

x∈G
σx

Gibb’s equil. measure

PrΛ(σ) = e−βHΛ(σ)/ZΛ

ZΛ =
∑

σ∈{−1,1}
e−βHΛ(σ)

The spontaneous magnetization:

m∗(T ) ≡ M(T , h = 0+) := 〈σx 〉T ,h=0+

is

{
0 T > Tc

> 0 T < Tc

Tc

h

T

y
V

n
.

a

Phase diagram for 〈·〉 = lim
Λ↗G

EΛ[·]

[On transitive graphs the corresponding
critical exponents are bounded by their
mean field values (ABF‘87 ):
γ ≥ 1, β ≤ 1/2, δ ≥ 3 .]
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2 b. The model’s Random Current representation

The (ferr.) Ising spin system on a graph G of edge set E (finite subsets Λ ⊂ G) is:

σ : G 7→ {−1, 1}, PrΛ(σ) = e−βHΛ(σ)

ZΛ

with H(σ) = −∑(x,y)∈E Jx,y σxσy − h
∑

x∈G σx ; Jx,y ≥ 0 (ferromag. interaction)

The Random Current representation (starting from the high temp. exp., as GHS did)

n : E 7→ {0, 1, 2, ...} ∂n := {x ∈ G : (−1)
∑

y nx,y = −1} - the set of sources

weights: w(n) :=
∏

b∈E
(βJb)nb /nb! with “b” an alternative symbol for (x , y) ∈ E

Basics relations (for h = 0):

Z :=
∑

σ

e−βH(σ) =
∑

n: ∂n=∅
w(n)

pictorially:

and for any A ⊂ G:

〈
∏

x∈A

σx 〉 =
∑

n: ∂n=A

w(n)/Z
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3 b. The stochastic geometry of correlations

This yields a suggestive explanation of the phenomenon of upper critical dimension:
in high dimensions (as it turns out d > 4), at large separations:

〈σx1 . . . σx4 〉 ≈[
〈σx1σx2 〉〈σx3σx4 〉+ 〈σx1σx3 〉〈σx2σx4 〉+ 〈σx1σx4 〉〈σx2σx3 〉

]
[1 + o(1)]

Theorem (A 81) For the n.n. Ising models on Zd in d > 4, if for some κ(δ)→∞ the
scaled correlation functions converge (pointwise for x1, ..., x2n ∈ Rd )

S2n(x1, ..., x2n) = lim
δ→0

κ(δ)2n〈
2n∏

j=1

σ[xj/δ] 〉Tc

then the limiting functions satisfy S2n(x1, ..., x2n) =
∑

pairingsπ

n∏

j=1

S2(xπ(2j−1), xπ(2j))

Under the above conditions also (A-Barsky-Fernandez ‘87) :

γ = 1, β = 1/2, δ = 3 .
8 / 19



4. An instructive stochastic geometric expression

Defining u4(x1, ..., x4) so that:

〈σx1σx2σx3σx4 〉 =
[
〈σx1σx2 〉 〈σx3σx4 〉+ 〈σx1σx3 〉 〈σx2σx4 〉+ 〈σx1σx4 〉 〈σx2σx3 〉

]
+ u4(x1, ..., x4)

we have:

Lemma: For any Ising model on a finite graph:

u4(x1, ..., x4) = −2 〈σx1σx2 〉 〈σx3σx4 〉 Prob
(

Cn1+n2 (x1) 3 x2, x3, x4 | ∂n1={x1,x2}
∂n2={x3,x4}

)

Note:

i) In situations where |u4(x1, ..., x4)|/〈σx1σx2σx3σx4 〉 → 0 one gets Gaussian limits

ii) If for intertwined pairs: Prob(...)→ 1, then one gets a fermonic expression.

ii) The argument has a simple extension to to all even-n boundary correlation
functions (ADTW).

iv) Important here are not just the statistics, but the apparent “free-ness”
(or integrability) of the model.

X1 X2 X 2n 9 / 19



An interesting contrast

For d > 4 the critical correlations S2n(x1, ..., x2n) = κ(δ)2n〈∏2n
j=1 σ[xj/δ] 〉Tc

satisfy S2n(x1, ..., x2n) ≈
∑

π

n∏

j=1

S2(xπ(2j−1), xπ(2j)) Gauss-Wick rule (Aiz 81)

with equality in the scaling limit (δ → 0, κ(δ)→∞ adjusted so the limit exists),

In d = 2 dimensions for any ferromag. Ising model on a planar graph, with a
connected boundary segment, the boundary fields satisfy (SML 65, McCoy-Wu‘73, GBK 78):

S2n(x1, ..., x2n) =
∑

π

ε(π)
n∏

j=1

S2(xπ(2j−1), xπ(2j))
Fermi-Wick rule

xj∈[0,∞)×Rd−1

= Pf
(
S2(xj , xk )

)

X1 X2 X 2n

Curiously, both relation have a relatively simple explanation through the
“random current representation”. Using it, the Pfaffian structure of correlations
(on which more can be read in Chelkak-Cimasoni-Kassel ‘15) appears as a
consequence of elementary topological arguments (ADTW).
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5. Emergent planarity

“Almost planar” – finite-range models on planar graphs.

For a class of such models we have the following statement of emergent planarity.

Theorem (ADTW ’16) In any finite range ferromagnetic Ising model in G = Z× Z+

whose couplings J are: i) translation invariant, ii) acyclic, iii) invariant under reflections:
for any cyclicly ordered (x1, . . . , x2n) ∈ ∂G := Z× {0}

〈σx1 · · ·σx2n 〉βc = Pfn
([
〈σxiσxj 〉βc

]
1≤i,j≤2n

) (
1 + o(1)

)

where o(1) is a quantity tending to zero with the smallest distance in G between any
two xi .

In the stochastic geometric argument the effective planarity emerges due to
the critical random currents’ fractal nature (at βc ).

Related universality results -stability of the law under weak perturbations-
were previously derived using rigorous (perturbative) renormalization arguments by
Pinson-Spencer and Giuliani-Greenblatt-Mastropietro ’12.

11 / 19



6. ‘Order - disorder’ variables for 2D models

A natural question: Does the fermionic structure extend to variables in the bulk?

Our answer: “Yes / but”: a natural extension is found in the order-disorder operators.

`j : dual lines linking sites of {x ′j }
with x∗0 ∈ G∗ (the grand central).

Coupling-reversing transform’s:
(R`J)x,y = −Jx,y

for edges {x , y} crossed by `.
65

2

1

4

3

The “order - disorder” variables τx̂ = σxµx ‘ are defined by:

〈
2n∏

j=1

τx̂j
〉 :=

∑

σ




2n∏

j=1

σxj


 e
−βR`1

...R`j
...H(σ)

/Z

Of particular interest:
τj for neighboring pairs
x̂j = (xj , x ‘j ) ∈ G × G∗.

Theorem 4 In planar Ising models, of pair interaction J with ZG(J ) 6= 0, for any
collection of “order - disorder” variables labeled cyclicly in terms of the disorder lines

〈
2n∏

j=1

τx̂j
〉 =

∑

pairingsπ

ε(π)
n∏

j=1

〈τx̂π(2j−1)
τx̂π(2j)

〉 ≡ Pf
(
〈τx̂j

τx̂k
〉
)

.
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6 b. ‘Order-disorder’ operators’ stochastic geometric interpretation

i) In terms of random currents:

h⌧x̂1
⌧x̂2

i =
X

@n1={x1,x2}
n2=;

w(n1)

Z
w(n2)

Z
(�1)(n1,�1,2)

which in the case of x1, x2, x3 2 @G, x4 2 G reduces to:

ii) In terms of the Kac-Ward (“parafermionic”) amplitudes

h⌧x̂1
⌧x̂2

i = ei\(x̃1,x̃2)hē2| (1� KW )�1 |e1i

= ei\(x̃1,x̃2)
X

�:e1!ē2

�KW (�) ei
R
� dArg(e)/2
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7. A more general perspective

The disorder operators represent partial (incomplete) gauge transformations.

IN D = 2 dimensions a disorder operator, µ`, act on the Hamiltonian,
changing it across a line ` (and more generally across a D − 1 dimensional surface).

The underlying gauge symmetry =⇒

µ`’s effect on the Hamiltonian’s Gibbs states is homologous,
i.e., a homotopy-invariant function of `, up to a simple gauge transformation.

14 / 19



Another example: disorder operators for the dimer cover model

Given a finite graph G = (V, E) of vertex set V, a perfect matching or dimer cover is a
subset of the edge set, ω ⊂ E , such that every vertex is covered by exactly one edge.

The set of perfect matchings is denoted ΩG . The dimer-cover partition function counts
the number of the graph’s perfect matchings.
Perfect matchings can also be weighted through a complex-valued edge function
K : E 7→ C. Given an edge weight, the weighted dimer-cover partition function is

ZG,K :=
∑

ω∈ΩG

χ(ω) , with χ(ω) :=
∏

b∈ω
Kb .

Of particular interest is the effect on the dimer-cover partition function of the
removal of a collection of sites, M ⊂ V, which are regarded as covered by separate
monomers.
The collection of perfect matchings of the remaining vertices is denoted by ΩG(M) and

ZG,K (M) :=
∑

ω∈ΩG (M)

χ(ω)

stands for the weighted partition function of the monomer-depleted graph.

Not all graphs admit a perfect matching (recall unbalanced bipartite graphs).
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The dimer model’s correlation function and its gauge symmetry

The monomer correlation function for an even collection of disjoint sites
{x1, ..., x2n} ⊂ V is

S2n(x1, ..., x2n) := 〈
n∏

j=1

ηxj 〉G,K :=
ZG,K ({x1, ..., x2n})

ZG,K

As was noted already in the early work of P. W. Kasteleyn, (Kas‘63), in the dependence
of ZG,K on the kernel K the dimer model has a Z2 gauge symmetry:

For subsets B ⊂ V the (edge) boundary is denoted

∂B = {[x , y ] ∈ E | if exactly one of the two points is in B} .

For each such set, let T∂B : CE → CE be the map

(T∂BK )b =

{
−Kb if b ∈ ∂B

Kb otherwise.

Under its action:

ZΛ,T∂BK = (−1)|B| ZΛ,K .

More on the subject, including:

• general references

• loop gas representation

• the combinatorial and topological arguments

will be presented in Simone’s talk. Here let us just briefly stress the statements which
are analogous to the Ising model results:
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Pfaffian structure of the dimer cover order-disorder correlators

As for the Ising model, we define the expec-
tation values of products of order-disorder
operators µj := ηxj τ`j as:

〈
2n∏

j=1

µj 〉G,K :=
ZG,T`1

◦···◦T`2n
K ({x1, . . . , x2n})

ZG,K
,

with pj := (xj , `j ) denoting an order-
disorder pair.

65

2

1

4

3

We then have

Theorem (ALW ’16) For any finite planar graph G = (V, E) with edge weights
K : E 7→ C, and any collection of canonical pairs of order-disorder variables
pj = (xj , `j ), j ∈ {1, . . . , 2n}, which are cyclicly ordered

〈
2n∏

j=1

µj 〉G,K =
∑

π∈Πn

sign(π)
n∏

j=1

〈µπ(2j−1) µπ(2j)〉G,K ≡ Pfn
(
〈µjµk 〉G,K

)
.

As before, for collections of boundary sites this reduces to Pfaffian relation for the
regular monomer correlation functions.
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Related observations and questions

The order-disorder variables form the Kaufman spinors, and are operators of
interest in the Kadanoff - Ceva list.

In addition, their product also yields the energy density operator. Through this relation,
the above fermonic rule yields yet another intuitive explanation, a-la Kadanoff, of some
of the (already well known) critical exponents, e.g.:

the energy- energy correlations decay in 2D as 1/r2

(and hence the energy density has, in 2D, a logarithmic cusp at Tc ).

boundary spin correlators decay as 1/r , etc.

Emergent planarity: There is still room for a more complete mathematical
grasp of the stochastic geometry of the critical models. As we saw, this may adds
some robust insight on the emergent planarity at criticality in two dimensional models
with non-planar interactions / weights, thus supplementing the rigorous (perturbative)
renormalization group analysis.
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Thank you for your attention.
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