LOCALIZATION IN INTERACTING FERMIONIC CHAINS WITH QUASI-RANDOM DISORDER

Vieri Mastropietro

Universitá di Milano

Many Body Localization

- Anderson (1958): disorder can produce localization of independent quantum particles. Exponential decay of the eigenfunctions of the one-body Schroedinger operator with random disorder (Froehlich, Spencer (1983), M. Aizenman and S. Molchanov (1994)...).

Many Body Localization

- Anderson (1958): disorder can produce localization of independent quantum particles. Exponential decay of the eigenfunctions of the one-body Schroedinger operator with random disorder (Froehlich, Spencer (1983), M. Aizenman and S. Molchanov (1994)...).
- If localization persists in presence of interaction (so that one has to consider the N -particle SE) one speaks of Many Body Localization (MBL)

Many Body Localization

- Anderson (1958): disorder can produce localization of independent quantum particles. Exponential decay of the eigenfunctions of the one-body Schroedinger operator with random disorder (Froehlich, Spencer (1983), M. Aizenman and S. Molchanov (1994)...).
- If localization persists in presence of interaction (so that one has to consider the N -particle SE) one speaks of Many Body Localization (MBL)
- Numerical evidence of MBL in a huge number of works (starting from Oganesyan, Huse (2007)).

Many Body Localization

- Anderson (1958): disorder can produce localization of independent quantum particles. Exponential decay of the eigenfunctions of the one-body Schroedinger operator with random disorder (Froehlich, Spencer (1983), M. Aizenman and S. Molchanov (1994)...).
- If localization persists in presence of interaction (so that one has to consider the N -particle SE) one speaks of Many Body Localization (MBL)
- Numerical evidence of MBL in a huge number of works (starting from Oganesyan, Huse (2007)).
- Experimental evidence of MBL in cold atoms experiments: Bloch et al (2015) by monitoring the time evolution of local observables following a quench (without interaction Inguscio group (2008)).

Many Body Localization

- Consequences of MBL for non equilibrium Statistical physics: lack of thermalization and memory of initial state (Pal,Huse (2010) Goldstein, Huse, Lebowitz, Tumulka (2015),...)

Many Body Localization

- Consequences of MBL for non equilibrium Statistical physics: lack of thermalization and memory of initial state (Pal,Huse (2010) Goldstein, Huse, Lebowitz, Tumulka (2015),...)
- Very few rigorous results. Imbrie (arXiv 2014, PRL 2016) considered a 1d Heisenberg spin chain with random disorder, and showed that MBL rigorous consequence in 1d of an assumption of level attraction.

Many Body Localization

- Consequences of MBL for non equilibrium Statistical physics: lack of thermalization and memory of initial state (Pal,Huse (2010) Goldstein, Huse, Lebowitz, Tumulka (2015),...)
- Very few rigorous results. Imbrie (arXiv 2014, PRL 2016) considered a 1d Heisenberg spin chain with random disorder, and showed that MBL rigorous consequence in 1d of an assumption of level attraction.
- A proof of MBL in generality is a challenging problem (single particle description breaks down, full N-particle Schroedinger)

QUASI RANDOM DISORDER

- Singe particle Localization is not only produced by random disorder, but also by quasi-random (or quasi-periodic) disorder.

QUASI RANDOM DISORDER

- Singe particle Localization is not only produced by random disorder, but also by quasi-random (or quasi-periodic) disorder.
- Remarkably the cold atom experiments are done with quasi-random disorder, that is in the interacting Aubry-Andre' model

QUASI RANDOM DISORDER

- Singe particle Localization is not only produced by random disorder, but also by quasi-random (or quasi-periodic) disorder.
- Remarkably the cold atom experiments are done with quasi-random disorder, that is in the interacting Aubry-Andre' model
- Numerical evidence in the same model of MBL in lyer, Oganesyan, Refael, Huse (2013)

QUASI RANDOM DISORDER

- Singe particle Localization is not only produced by random disorder, but also by quasi-random (or quasi-periodic) disorder.
- Remarkably the cold atom experiments are done with quasi-random disorder, that is in the interacting Aubry-Andre' model
- Numerical evidence in the same model of MBL in lyer, Oganesyan,Refael, Huse (2013)
- Proof of localization of the ground state in Mastropietro CMP2015, PRL2015, CMP2016

The interacting Aubry-Andre' model

- If $a_{x}^{+}, a_{x}^{-}, x \in \mathbb{Z} \equiv \Lambda$ are spinless creation or annihilation operators on the Fock space verifying $\left\{a_{x}^{+}, a_{y}^{-}\right\}=\delta_{x, y}$, $\left\{a_{x}^{+}, a_{y}^{+}\right\}=\left\{a_{x}^{-}, a_{y}^{-}\right\}=0$. The Fock space Hamiltonian is

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

The interacting Aubry-Andre' model

- If $a_{x}^{+}, a_{x}^{-}, x \in \mathbb{Z} \equiv \Lambda$ are spinless creation or annihilation operators on the Fock space verifying $\left\{a_{x}^{+}, a_{y}^{-}\right\}=\delta_{x, y}$, $\left\{a_{x}^{+}, a_{y}^{+}\right\}=\left\{a_{x}^{-}, a_{y}^{-}\right\}=0$. The Fock space Hamiltonian is

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

- ω irrational. Equivalent to XXZ chain with quasi-random disorder.

The interacting Aubry-Andre' model

- If $a_{x}^{+}, a_{x}^{-}, x \in \mathbb{Z} \equiv \Lambda$ are spinless creation or annihilation operators on the Fock space verifying $\left\{a_{x}^{+}, a_{y}^{-}\right\}=\delta_{x, y}$, $\left\{a_{x}^{+}, a_{y}^{+}\right\}=\left\{a_{x}^{-}, a_{y}^{-}\right\}=0$. The Fock space Hamiltonian is

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

- ω irrational. Equivalent to XXZ chain with quasi-random disorder.
- Spinless version of the model realized in Bloch et al (2015) (here non local interaction).

The interacting Aubry-Andre' model

- If $a_{x}^{+}, a_{x}^{-}, x \in \mathbb{Z} \equiv \Lambda$ are spinless creation or annihilation operators on the Fock space verifying $\left\{a_{x}^{+}, a_{y}^{-}\right\}=\delta_{x, y}$, $\left\{a_{x}^{+}, a_{y}^{+}\right\}=\left\{a_{x}^{-}, a_{y}^{-}\right\}=0$. The Fock space Hamiltonian is

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

- ω irrational. Equivalent to XXZ chain with quasi-random disorder.
- Spinless version of the model realized in Bloch et al (2015) (here non local interaction).
- Early studies of the extended phase in Mastropietro (1999) and Giamarchi, Mohunna,Vidal (1999)

The Aubry-Andre' model

- In the non interacting case the states are obtained by the antisymmetrization (fermions) of the eigenfunctions of almost Mathieu equation

$$
-\varepsilon \psi(x+1)-\varepsilon \psi(x-1)+u \cos (2 \pi(\omega x+\theta)) \psi(x)=E \psi(x)
$$

The Aubry-Andre' model

- In the non interacting case the states are obtained by the antisymmetrization (fermions) of the eigenfunctions of almost Mathieu equation

$$
-\varepsilon \psi(x+1)-\varepsilon \psi(x-1)+u \cos (2 \pi(\omega x+\theta)) \psi(x)=E \psi(x)
$$

- Deeply studied in mathematics (KAM methods, ten martini). Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990); Jitomirskaya (1999); Avila, Jitomirskaya (2006)....

The Aubry-Andre' model

- In the non interacting case the states are obtained by the antisymmetrization (fermions) of the eigenfunctions of almost Mathieu equation

$$
-\varepsilon \psi(x+1)-\varepsilon \psi(x-1)+u \cos (2 \pi(\omega x+\theta)) \psi(x)=E \psi(x)
$$

- Deeply studied in mathematics (KAM methods, ten martini). Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990); Jitomirskaya (1999); Avila, Jitomirskaya (2006)....
- the spectrum is a Cantor set for all irrational ω. For almost every ω, θ the almost Mathieu operator has
a)for $\varepsilon / u<\frac{1}{2}$ exponentially decaying eigenfunctions (Anderson localization);
b)for $\varepsilon / u>\frac{1}{2}$ purely absolutely continuous spectrum (extended quasi-Bloch waves)

The Aubry-Andre' model

- In the non interacting case the states are obtained by the antisymmetrization (fermions) of the eigenfunctions of almost Mathieu equation

$$
-\varepsilon \psi(x+1)-\varepsilon \psi(x-1)+u \cos (2 \pi(\omega x+\theta)) \psi(x)=E \psi(x)
$$

- Deeply studied in mathematics (KAM methods, ten martini). Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990); Jitomirskaya (1999); Avila, Jitomirskaya (2006)....
- the spectrum is a Cantor set for all irrational ω. For almost every ω, θ the almost Mathieu operator has
a)for $\varepsilon / u<\frac{1}{2}$ exponentially decaying eigenfunctions (Anderson localization);
b)for $\varepsilon / u>\frac{1}{2}$ purely absolutely continuous spectrum (extended quasi-Bloch waves)
- Metal insulator transition (with no interaction) seen experimentally by Inguscio et al (2008)

The KAM Theorem

- Such remarkable properties are related to a deep connection between the non interacting Aubry-Andre model and the Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics.

The KAM Theorem

- Such remarkable properties are related to a deep connection between the non interacting Aubry-Andre model and the Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics.
- A crucial assumption of KAM and of the analysis of almost mathieu is that the frequency verify a number theoretical condition called Diophantine condition to deal with small divisors.
- We impose a Diophantine condition on the frequency

$$
\|\omega x\| \geq C_{0}|x|^{-\tau} \quad \forall x \in \mathbb{Z} /\{0\} \quad(*)
$$

$\|$.$\| is the norm on the one dimensional torus of period 1$.

LOCALIZATION AND INTERACTION

- The construction of all the eigenvectors of the N-body Schroedinger equation with almost-Mathieu potential and interaction seems at the moment out of reach, especially for infinite N.

LOCALIZATION AND INTERACTION

- The construction of all the eigenvectors of the N-body Schroedinger equation with almost-Mathieu potential and interaction seems at the moment out of reach, especially for infinite N.
- More modest goal. Information on the localization of the interacting ground state can be obtained by the zero temperature grand-canonical truncated correlations of local operators, whose exponential decay with the distance is a sign of localization. This allow to use exact RG methods combined with KAM (Lindstedt series).

LOCALIZATION AND INTERACTION

- The construction of all the eigenvectors of the N-body Schroedinger equation with almost-Mathieu potential and interaction seems at the moment out of reach, especially for infinite N.
- More modest goal. Information on the localization of the interacting ground state can be obtained by the zero temperature grand-canonical truncated correlations of local operators, whose exponential decay with the distance is a sign of localization. This allow to use exact RG methods combined with KAM (Lindstedt series).
- For $\omega \theta$ verifying Diophantine conditions, for small $\frac{\varepsilon}{u}, \frac{U}{u}$ the fermionic zero temperature grand canonical infinite volume truncated correlations of local operators decays exponentially for large distances.

LOCALIZATION AND INTERACTION

- The construction of all the eigenvectors of the N-body Schroedinger equation with almost-Mathieu potential and interaction seems at the moment out of reach, especially for infinite N.
- More modest goal. Information on the localization of the interacting ground state can be obtained by the zero temperature grand-canonical truncated correlations of local operators, whose exponential decay with the distance is a sign of localization. This allow to use exact RG methods combined with KAM (Lindstedt series).
- For $\omega \theta$ verifying Diophantine conditions, for small $\frac{\varepsilon}{u}, \frac{U}{u}$ the fermionic zero temperature grand canonical infinite volume truncated correlations of local operators decays exponentially for large distances.
- Renormalized expansion around the anti-integrable limit

MAIN RESUT

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

Main Resut

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

- If $a_{\mathrm{x}}^{ \pm}=e^{(H-\mu N) x_{0}} a_{x}^{ \pm} e^{-(H-\mu N) x_{0}}, \mathbf{x}=\left(x, x_{0}\right), N=\sum_{x} a_{x}^{+} a_{x}^{-}$and μ the chemical potential, the Grand-Canonical imaginary time 2-point correlation is

$$
<\mathbf{T} a_{\mathbf{x}}^{-} a_{\mathbf{y}}^{+}>=\frac{\operatorname{Tr} e^{-\beta(H-\mu N)} \mathbf{T}\left\{a_{\mathbf{x}}^{-} a_{\mathbf{y}}^{+}\right\}}{\operatorname{Tr} e^{-\beta(H-\mu N)}}
$$

where \mathbf{T} is the time-order product and μ is the chemical potential.

Main Resut

$$
\begin{aligned}
& H=-\varepsilon\left(\sum_{x \in \Lambda}\left(a_{x+1}^{+} a_{x}+a_{x-1}^{+} a_{x}^{-}\right)+\right. \\
& \sum_{x \in \Lambda} u \cos (2 \pi(\omega x+\theta)) a_{x}^{+} a_{x}^{-}+U \sum_{x, y} v(x-y) a_{x}^{+} a_{x}^{-} a_{y}^{+} a_{y}^{-}
\end{aligned}
$$

with $v(x-y)=\delta_{y-x, 1}+\delta_{x-y, 1}$.

- If $a_{\mathrm{x}}^{ \pm}=e^{(H-\mu N) x_{0}} a_{x}^{ \pm} e^{-(H-\mu N) x_{0}}, \mathbf{x}=\left(x, x_{0}\right), N=\sum_{x} a_{x}^{+} a_{x}^{-}$and μ the chemical potential, the Grand-Canonical imaginary time 2-point correlation is

$$
<\mathbf{T} a_{\mathbf{x}}^{-} a_{\mathbf{y}}^{+}>=\frac{\operatorname{Tr} e^{-\beta(H-\mu N)} \mathbf{T}\left\{a_{\mathbf{x}}^{-} a_{\mathbf{y}}^{+}\right\}}{\operatorname{Tr} e^{-\beta(H-\mu N)}}
$$

where \mathbf{T} is the time-order product and μ is the chemical potential.

- We introduce a counterterm ν so that the renormalized chemical potential is fixed to an interaction independent value $u \cos 2 \pi(\omega \hat{x}+\theta)$. Morally this is equivalent to fix the density.

Localized Regime

Theorem

For ω Diophantine

$$
\| \omega x| | \geq C_{0}|x|^{-\tau} \quad \forall x \in \mathbb{Z} /\{0\} \quad(*)
$$

$$
\|\omega x \pm 2 \theta\| \geq C_{0}|x|^{-\tau} \quad \forall x \in \mathbb{Z} /\{0\} \quad(* *)
$$

$u=1, \mu=\cos 2 \pi(\omega \hat{x}+\theta)+\nu$ there exists an ε_{0} such that, for $|\varepsilon|,|U| \leq \varepsilon_{0}$, it is possible to choose ν so that the limit $\beta \rightarrow \infty$
$\left|<\mathbf{T} a_{\mathrm{x}}^{-} a_{\mathrm{y}}^{+}>\right| \leq C e^{-\xi|x-y|} \log (1+\min (|x||y|))^{\tau} \frac{1}{\left.1+\left(\Delta \mid x_{0}-y_{0}\right) \mid\right)^{N}}(* * *)$
with $\Delta=(1+\min (|x|,|y|))^{-\tau}, \xi=|\log (\max (|\varepsilon|,|U|))|$.

Localized Regime

- The exponential decay in the coordinates of the zero temperature truncated correlations (and the much slower decay in the temporal direction) is a signature of localization of the many body ground state.

Localized Regime

- The exponential decay in the coordinates of the zero temperature truncated correlations (and the much slower decay in the temporal direction) is a signature of localization of the many body ground state.
- Persistence of localization does not depend from the sign of U at weak coupling as in Bloch et al (2015). The result is in agreement with the numerical phase diagram in lyer, Oganesyan,Refael, Huse (2013).

LOCALIZED REGIME

- The exponential decay in the coordinates of the zero temperature truncated correlations (and the much slower decay in the temporal direction) is a signature of localization of the many body ground state.
- Persistence of localization does not depend from the sign of U at weak coupling as in Bloch et al (2015). The result is in agreement with the numerical phase diagram in lyer, Oganesyan,Refael, Huse (2013).
- For $\frac{2 \theta}{\omega}$ integer $\left({ }^{* * *}\right)$ is also true with Δ replaced by the gap size.

Localized Regime

- The exponential decay in the coordinates of the zero temperature truncated correlations (and the much slower decay in the temporal direction) is a signature of localization of the many body ground state.
- Persistence of localization does not depend from the sign of U at weak coupling as in Bloch et al (2015). The result is in agreement with the numerical phase diagram in lyer, Oganesyan,Refael, Huse (2013).
- For $\frac{2 \theta}{\omega}$ integer $\left({ }^{* * *}\right)$ is also true with Δ replaced by the gap size.
- A simple consequence of the theorem proof is a localization result formulated fixing the phase θ and varying the chemical potential; namely if we choose $\theta=0, \mu=\cos 2 \pi \omega \bar{x}, \bar{x} \in \mathbb{R}$, than (${ }^{* * *)}$ if $\|\omega x \pm 2 \omega \bar{x}\| \geq C|x|^{-\tau}, x \neq 0$. If \bar{x} half-integer Δ is replaced by the gap size.

Localized Regime

- The exponential decay in the coordinates of the zero temperature truncated correlations (and the much slower decay in the temporal direction) is a signature of localization of the many body ground state.
- Persistence of localization does not depend from the sign of U at weak coupling as in Bloch et al (2015). The result is in agreement with the numerical phase diagram in lyer, Oganesyan,Refael, Huse (2013).
- For $\frac{2 \theta}{\omega}$ integer $\left({ }^{* * *}\right)$ is also true with Δ replaced by the gap size.
- A simple consequence of the theorem proof is a localization result formulated fixing the phase θ and varying the chemical potential; namely if we choose $\theta=0, \mu=\cos 2 \pi \omega \bar{x}, \bar{x} \in \mathbb{R}$, than (${ }^{* * *)}$ if $\|\omega x \pm 2 \omega \bar{x}\| \geq C|x|^{-\tau}, x \neq 0$. If \bar{x} half-integer Δ is replaced by the gap size.
- The proof can be extended to more general form of quasi-periodic potential; one simply needs that $\phi_{x}=\bar{\phi}(2 \pi(\omega x+\theta))$ with $\bar{\phi} \in C^{1}$, even $\bar{\phi}(t)=\bar{\phi}(-t)$ and periodic $\bar{\phi}(t)=\bar{\phi}(t+1)$; moreover one needs $\partial \bar{\phi}_{\omega \hat{x}+\theta} \neq 0$.

InTEGRABLE LIMIT

- The proof is based on many body perturbation theory around the anti-integrable limit

InTEGRABLE LIMIT

- The proof is based on many body perturbation theory around the anti-integrable limit
- When $U=u=0, \varepsilon=1$ one has the integrable or free fermion limit. $H=\sum_{k}(-\cos k+\mu) a_{k}^{+} a_{k}^{-}$.

InTEGRABLE LIMIT

- The proof is based on many body perturbation theory around the anti-integrable limit
- When $U=u=0, \varepsilon=1$ one has the integrable or free fermion limit. $H=\sum_{k}(-\cos k+\mu) a_{k}^{+} a_{k}^{-}$.
-

$$
S_{0}(\mathbf{x}, \mathbf{y})=\frac{1}{\beta L} \sum_{k_{0}, k} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{-i k_{0}+\cos k-\mu}
$$

$\mu=\cos p_{F} . \pm p_{F}$ Fermi momenta. GS occupation number $\chi(\cos k-\mu \leq 0)$.

InTEGRABLE LIMIT

- The proof is based on many body perturbation theory around the anti-integrable limit
- When $U=u=0, \varepsilon=1$ one has the integrable or free fermion limit. $H=\sum_{k}(-\cos k+\mu) a_{k}^{+} a_{k}^{-}$.
-

$$
S_{0}(\mathbf{x}, \mathbf{y})=\frac{1}{\beta L} \sum_{k_{0}, k} \frac{e^{i \mathbf{k}(\mathbf{x}-\mathbf{y})}}{-i k_{0}+\cos k-\mu}
$$

$\mu=\cos p_{F} . \pm p_{F}$ Fermi momenta. GS occupation number $\chi(\cos k-\mu \leq 0)$.

- Close to the singularity

$$
\cos \left(k^{\prime} \pm p_{F}\right)-\mu \sim \pm \sin p_{F} k^{\prime}+O\left(k^{\prime 2}\right)
$$

linear dispersion relation.

Anti-Integrable or molecular limit

- $\varepsilon=U=0$ anti-integrable limit $H=\sum_{x}(\cos 2 \pi(\omega x+\theta)-\mu) a_{x}^{+} a_{x}^{-}$

AnTI-INTEGRABLE OR MOLECULAR LIMIT

- $\varepsilon=U=0$ anti-integrable limit $H=\sum_{x}(\cos 2 \pi(\omega x+\theta)-\mu) a_{x}^{+} a_{x}^{-}$

$$
\begin{aligned}
& <\mathbf{T} a_{\mathrm{x}}^{-} a_{\mathrm{y}}^{+}>\left.\right|_{0}=\delta_{x, y} \bar{g}\left(x, x_{0}-y_{0}\right) \\
& \bar{g}\left(x, x_{0}-y_{0}\right)=\frac{1}{\beta} \sum_{k_{0}} \frac{e^{-i k_{0}\left(x_{0}-y_{0}\right)}}{-i k_{0}+\cos 2 \pi(\omega x+\theta)-\cos 2 \pi(\omega \hat{x}+\theta)}
\end{aligned}
$$

GS occupation number $\chi(\cos 2 \pi(\omega x+\theta) \leq \mu)$.

AnTI-INTEGRABLE OR MOLECULAR LIMIT

- $\varepsilon=U=0$ anti-integrable limit $H=\sum_{x}(\cos 2 \pi(\omega x+\theta)-\mu) a_{x}^{+} a_{x}^{-}$

$$
\begin{aligned}
& <\mathbf{T} a_{\mathrm{x}}^{-} a_{\mathrm{y}}^{+}>\left.\right|_{0}=\delta_{x, y} \bar{g}\left(x, x_{0}-y_{0}\right) \\
& \bar{g}\left(x, x_{0}-y_{0}\right)=\frac{1}{\beta} \sum_{k_{0}} \frac{e^{-i k_{0}\left(x_{0}-y_{0}\right)}}{-i k_{0}+\cos 2 \pi(\omega x+\theta)-\cos 2 \pi(\omega \hat{x}+\theta)}
\end{aligned}
$$

GS occupation number $\chi(\cos 2 \pi(\omega x+\theta) \leq \mu)$.

- Let us introduce

$$
\bar{x}_{+}=\hat{x} \quad \bar{x}_{-}=-\hat{x}-2 \theta / \omega
$$

$x_{ \pm}$Fermi coordinates.

AnTI-INTEGRABLE OR MOLECULAR LIMIT

- $\varepsilon=U=0$ anti-integrable limit $H=\sum_{x}(\cos 2 \pi(\omega x+\theta)-\mu) a_{x}^{+} a_{x}^{-}$

$$
\begin{aligned}
& <\mathbf{T} a_{\mathrm{x}}^{-} a_{\mathrm{y}}^{+}>\left.\right|_{0}=\delta_{x, y} \bar{g}\left(x, x_{0}-y_{0}\right) \\
& \bar{g}\left(x, x_{0}-y_{0}\right)=\frac{1}{\beta} \sum_{k_{0}} \frac{e^{-i k_{0}\left(x_{0}-y_{0}\right)}}{-i k_{0}+\cos 2 \pi(\omega x+\theta)-\cos 2 \pi(\omega \hat{x}+\theta)}
\end{aligned}
$$

GS occupation number $\chi(\cos 2 \pi(\omega x+\theta) \leq \mu)$.

- Let us introduce

$$
\bar{x}_{+}=\hat{x} \quad \bar{x}_{-}=-\hat{x}-2 \theta / \omega
$$

$x_{ \pm}$Fermi coordinates.

- If we set $x=x^{\prime}+\bar{x}_{\rho}, \rho= \pm$, for small $\left(\omega x^{\prime}\right)_{\text {mod. } 1}$

$$
\hat{g}\left(x^{\prime}+\bar{x}_{\rho}, k_{0}\right) \sim \frac{1}{-i k_{0} \pm v_{0}\left(\omega x^{\prime}\right)_{\bmod .1}}
$$

ANTI-INTEGRABLE OR MOLECULAR LIMIT

- $\varepsilon=U=0$ anti-integrable limit $H=\sum_{x}(\cos 2 \pi(\omega x+\theta)-\mu) a_{x}^{+} a_{x}^{-}$

$$
\begin{aligned}
& <\mathbf{T} a_{\mathrm{x}}^{-} a_{\mathrm{y}}^{+}>\left.\right|_{0}=\delta_{x, y} \bar{g}\left(x, x_{0}-y_{0}\right) \\
& \bar{g}\left(x, x_{0}-y_{0}\right)=\frac{1}{\beta} \sum_{k_{0}} \frac{e^{-i k_{0}\left(x_{0}-y_{0}\right)}}{-i k_{0}+\cos 2 \pi(\omega x+\theta)-\cos 2 \pi(\omega \hat{x}+\theta)}
\end{aligned}
$$

GS occupation number $\chi(\cos 2 \pi(\omega x+\theta) \leq \mu)$.

- Let us introduce

$$
\bar{x}_{+}=\hat{x} \quad \bar{x}_{-}=-\hat{x}-2 \theta / \omega
$$

$x_{ \pm}$Fermi coordinates.

- If we set $x=x^{\prime}+\bar{x}_{\rho}, \rho= \pm$, for small $\left(\omega x^{\prime}\right)_{\text {mod. } 1}$

$$
\hat{g}\left(x^{\prime}+\bar{x}_{\rho}, k_{0}\right) \sim \frac{1}{-i k_{0} \pm v_{0}\left(\omega x^{\prime}\right)_{\bmod .1}}
$$

- The denominator can be arbitrarily large; for $x \neq \rho \hat{x}$ by $\left({ }^{*}\right),\left({ }^{* *}\right)$, $\left|\omega x^{\prime}\|=\| \omega(x-\rho \hat{x})+2 \delta_{\rho,-1} \theta \| \geq C\right| x-\left.\rho \hat{x}\right|^{-\tau}$. $\left(\omega x^{\prime}\right)_{\text {mod. } 1}$ can be very small for large x (infrared-ultraviolet mixing)

Anti-Integrable limit; Proof of localization

The 2-point function is given by $\left.\frac{\partial^{2}}{\partial \phi_{x}^{+} \partial \phi_{y}^{-}} W\right|_{0}$

$$
e^{W(\phi)}=\int P(d \psi) e^{-V(\psi)-\mathcal{B}(\psi, \phi)}
$$

with $P(d \psi)$ a gaussian Grassmann integral with propagator $\delta_{x, y} \bar{g}\left(x, x_{0}-y_{0}\right), \bar{g}\left(x, x_{0}\right)$ is the temporal FT of $\hat{g}\left(x, k_{0}\right)$

$$
\begin{aligned}
& V(\psi)=U \int d \mathbf{x} \sum_{\alpha= \pm} \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-} \psi_{\mathbf{x}+\alpha \mathbf{e}_{1}}^{+} \psi_{\mathbf{x}+\alpha \mathbf{e}_{\mathbf{1}}}^{-} \\
& +\varepsilon \int d \mathbf{x}\left(\psi_{\mathbf{x}+\mathbf{e}_{1}}^{+} \psi_{\mathbf{x}}^{-}+\psi_{\mathbf{x}-\mathbf{e}_{1}}^{+} \psi_{\mathbf{x}}^{-}\right)+\nu \int d \mathbf{x} \psi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-}
\end{aligned}
$$

where $\int d \mathbf{x}=\sum_{x \in \Lambda} \int_{-\frac{\beta}{2}}^{\frac{\beta}{2}} d x_{0}$, Finally $B=\int d \mathbf{x}\left(\phi_{\mathbf{x}}^{+} \psi_{\mathbf{x}}^{-}+\psi_{\mathbf{x}}^{+} \phi_{\mathbf{x}}^{-}\right)$

Small DIVISORS

- In absence of many body interaction there are only chain graphs, $\alpha_{i}= \pm$

$$
\begin{aligned}
& \varepsilon^{n} \sum_{x_{1}} \int d x_{0,1} \ldots d x_{0, n} \bar{g}\left(x_{1}, x_{0}-x_{0,1}\right) \bar{g}\left(x_{1}+\sum_{i \leq n} \alpha_{i},\left(x_{0, n}-y_{0}\right)\right) \\
& \prod_{i=1}^{n} \bar{g}\left(x_{1}+\sum_{k \leq i} \alpha_{k}, x_{0, i+1}-x_{0, i}\right)
\end{aligned}
$$

Small DIVISORS

- In absence of many body interaction there are only chain graphs,

$$
\alpha_{i}= \pm
$$

$$
\begin{aligned}
& \varepsilon^{n} \sum_{x_{1}} \int d x_{0,1} \ldots d x_{0, n} \bar{g}\left(x_{1}, x_{0}-x_{0,1}\right) \bar{g}\left(x_{1}+\sum_{i \leq n} \alpha_{i},\left(x_{0, n}-y_{0}\right)\right) \\
& \prod_{i=1}^{n} \bar{g}\left(x_{1}+\sum_{k \leq i} \alpha_{k}, x_{0, i+1}-x_{0, i}\right)
\end{aligned}
$$

- Propagators $g\left(k_{0}, x\right)$ can be arbitrarily large (small divisors)

$$
\left|\hat{g}\left(x^{\prime} \pm \bar{x}, k_{0}\right)\right| \leq C_{0}\left|x^{\prime}\right|^{\tau}
$$

Chain graphs are apparently $O\left(n!^{\tau}\right)$; as in classical KAM theory, small divisors which can destroy the validity of a perturbative approach. Similar graphs in Lindstedt series for KAM (proof of convergence by Gallavotti (1994))

Small DIVISORS

- In absence of many body interaction there are only chain graphs, $\alpha_{i}= \pm$

$$
\begin{aligned}
& \varepsilon^{n} \sum_{x_{1}} \int d x_{0,1} \ldots d x_{0, n} \bar{g}\left(x_{1}, x_{0}-x_{0,1}\right) \bar{g}\left(x_{1}+\sum_{i \leq n} \alpha_{i},\left(x_{0, n}-y_{0}\right)\right) \\
& \prod_{i=1}^{n} \bar{g}\left(x_{1}+\sum_{k \leq i} \alpha_{k}, x_{0, i+1}-x_{0, i}\right)
\end{aligned}
$$

- Propagators $g\left(k_{0}, x\right)$ can be arbitrarily large (small divisors)

$$
\left|\hat{g}\left(x^{\prime} \pm \bar{x}, k_{0}\right)\right| \leq C_{0}\left|x^{\prime}\right|^{\tau}
$$

Chain graphs are apparently $O\left(n!^{\tau}\right)$; as in classical KAM theory, small divisors which can destroy the validity of a perturbative approach. Similar graphs in Lindstedt series for KAM (proof of convergence by Gallavotti (1994))

- When $U \neq 0$ there also loops producing additional divergences, absent in KAM or in the non interacting case.

Small DIVISORS

- In absence of many body interaction there are only chain graphs, $\alpha_{i}= \pm$

$$
\begin{aligned}
& \varepsilon^{n} \sum_{x_{1}} \int d x_{0,1} \ldots d x_{0, n} \bar{g}\left(x_{1}, x_{0}-x_{0,1}\right) \bar{g}\left(x_{1}+\sum_{i \leq n} \alpha_{i},\left(x_{0, n}-y_{0}\right)\right) \\
& \prod_{i=1}^{n} \bar{g}\left(x_{1}+\sum_{k \leq i} \alpha_{k}, x_{0, i+1}-x_{0, i}\right)
\end{aligned}
$$

- Propagators $g\left(k_{0}, x\right)$ can be arbitrarily large (small divisors)

$$
\left|\hat{g}\left(x^{\prime} \pm \bar{x}, k_{0}\right)\right| \leq C_{0}\left|x^{\prime}\right|^{\tau}
$$

Chain graphs are apparently $O\left(n!^{\tau}\right)$; as in classical KAM theory, small divisors which can destroy the validity of a perturbative approach. Similar graphs in Lindstedt series for KAM (proof of convergence by Gallavotti (1994))

- When $U \neq 0$ there also loops producing additional divergences, absent in KAM or in the non interacting case.
- To establish localization in presence of interaction one has to prove that such small divisors are harmless, even with loops.

SOME IDEA OF THE PROOF

- We perform an $R G$ analysis decomposing the propagator as sum of propagators living at $\gamma^{2 h-1} \leq k_{0}^{2}+\left|\phi_{x}-\phi_{\hat{x}}\right|^{2} \leq \gamma^{2 h+1}$, $h=0,-1,-2 \ldots, \gamma>1, \phi_{x}=\cos 2 \pi(\omega x+\theta)$; this correspond to two regions, around \bar{x}_{+}and \bar{x}_{-}.

SOME IDEA OF THE PROOF

- We perform an $R G$ analysis decomposing the propagator as sum of propagators living at $\gamma^{2 h-1} \leq k_{0}^{2}+\left|\phi_{x}-\phi_{\hat{x}}\right|^{2} \leq \gamma^{2 h+1}$, $h=0,-1,-2 \ldots, \gamma>1, \phi_{x}=\cos 2 \pi(\omega x+\theta)$; this correspond to two regions, around \bar{x}_{+}and \bar{x}_{-}.
- This implies that the single scale propagator has the form $\sum_{\rho= \pm} g_{\rho}^{(h)}$ with $\left|g_{\rho}^{(h)}(\mathbf{x})\right| \leq \frac{c_{N}}{1+\left(\gamma^{h}\left(x_{0}-y_{0}\right)\right)^{N}}$; the corresponding Grasmann variable is $\psi_{\mathbf{x}, \rho}^{(h)}$.

SOME IDEA OF THE PROOF

- We perform an $R G$ analysis decomposing the propagator as sum of propagators living at $\gamma^{2 h-1} \leq k_{0}^{2}+\left|\phi_{x}-\phi_{\hat{x}}\right|^{2} \leq \gamma^{2 h+1}$, $h=0,-1,-2 \ldots, \gamma>1, \phi_{x}=\cos 2 \pi(\omega x+\theta)$; this correspond to two regions, around \bar{x}_{+}and \bar{x}_{-}.
- This implies that the single scale propagator has the form $\sum_{\rho= \pm} g_{\rho}^{(h)}$ with $\left|g_{\rho}^{(h)}(\mathbf{x})\right| \leq \frac{C_{N}}{1+\left(\gamma^{h}\left(x_{0}-y_{0}\right)\right)^{N}}$; the corresponding Grasmann variable is $\psi_{\mathbf{x}, \rho}^{(h)}$.
- We integrate the fields with decreasing scale; for instance $W(0)$ (the partition function) can be written as

$$
\int P(d \psi) e^{V}=\int P\left(d \psi^{\leq-1}\right) \int P\left(d \psi^{0}\right) e^{V}=\int P\left(d \psi^{\leq-1}\right) e^{V^{-1}} \ldots
$$

SOME IDEA OF THE PROOF

- We perform an $R G$ analysis decomposing the propagator as sum of propagators living at $\gamma^{2 h-1} \leq k_{0}^{2}+\left|\phi_{x}-\phi_{\grave{x}}\right|^{2} \leq \gamma^{2 h+1}$, $h=0,-1,-2 \ldots, \gamma>1, \phi_{x}=\cos 2 \pi(\omega x+\theta)$; this correspond to two regions, around \bar{x}_{+}and \bar{x}_{-}.
- This implies that the single scale propagator has the form $\sum_{\rho= \pm} g_{\rho}^{(h)}$ with $\left|g_{\rho}^{(h)}(\mathbf{x})\right| \leq \frac{C_{N}}{1+\left(\gamma^{h}\left(x_{0}-y_{0}\right)\right)^{N}}$; the corresponding Grasmann variable is $\psi_{\mathbf{x}, \rho}^{(h)}$.
- We integrate the fields with decreasing scale; for instance $W(0)$ (the partition function) can be written as

$$
\int P(d \psi) e^{V}=\int P\left(d \psi^{\leq-1}\right) \int P\left(d \psi^{0}\right) e^{V}=\int P\left(d \psi^{\leq-1}\right) e^{V^{-1}} \ldots
$$

- The effective potential V^{h} sum of monomials of any order in $\sum_{x_{1}^{\prime}} \int d x_{0,1} \ldots d x_{0, n} W^{h} \prod_{i} \psi_{x_{i}^{\prime}, x_{0, i}, \rho_{i}}^{\varepsilon_{i}}$ (we have integrated the deltas in the propagators).

SOME IDEA OF THE PROOF

- According to power counting, the theory is non renormalizable ; all effective interactions have positive dimension, $D=1$ and usually this makes a perturbative approach impossible.

SOME IDEA OF THE PROOF

- According to power counting, the theory is non renormalizable ; all effective interactions have positive dimension, $D=1$ and usually this makes a perturbative approach impossible.
- One has to distinguish among the monomials $\prod_{i} \psi_{x_{i}^{i}, x_{0}, i, \rho_{i}}^{\varepsilon_{i}}$ in the effective potential between resonant and non resonant terms. Resonant terms; $x_{i}^{\prime}=x^{\prime}$. Non Resonant terms $x_{i}^{\prime} \neq x_{j}^{\prime}$ for some i, j. (In the non interacting case only two external lines are present).

SOME IDEA OF THE PROOF

- According to power counting, the theory is non renormalizable ; all effective interactions have positive dimension, $D=1$ and usually this makes a perturbative approach impossible.
- One has to distinguish among the monomials $\prod_{i} \psi_{x_{i}^{i}, x_{0}, i, \rho_{i}}^{\varepsilon_{i}}$ in the effective potential between resonant and non resonant terms. Resonant terms; $x_{i}^{\prime}=x^{\prime}$. Non Resonant terms $x_{i}^{\prime} \neq x_{j}^{\prime}$ for some i, j. (In the non interacting case only two external lines are present).
- It turns out that the non resonant terms are irrelevant (even if they are relevant according to power counting).

SOME IDEA OF THE PROOF

- According to power counting, the theory is non renormalizable ; all effective interactions have positive dimension, $D=1$ and usually this makes a perturbative approach impossible.
- One has to distinguish among the monomials $\prod_{i} \psi_{x_{i}^{\prime}, x_{0}, i, \rho_{i}}^{\varepsilon_{i}}$ in the effective potential between resonant and non resonant terms. Resonant terms; $x_{i}^{\prime}=x^{\prime}$. Non Resonant terms $x_{i}^{\prime} \neq x_{j}^{\prime}$ for some i, j. (In the non interacting case only two external lines are present).
- It turns out that the non resonant terms are irrelevant (even if they are relevant according to power counting).
- Roughly speaking, the idea is that if two propagators have similar (not equal) small size (non resonant subgraphs), then the difference of their coordinates is large and this produces a "gain" as passing from x to $x+n$ one needs n vertices. That is if $\left(\omega x_{1}^{\prime}\right)_{\bmod 1} \sim\left(\omega x_{2}^{\prime}\right)_{\bmod 1} \sim \Lambda^{-1}$ then by the Diophantine condition

$$
2 \Lambda^{-1} \geq\left\|\omega\left(x_{1}^{\prime}-x_{2}^{\prime}\right)\right\| \geq C_{0}\left|x_{1}^{\prime}-x_{2}^{\prime}\right|^{-\tau}
$$

that is $\left|x_{1}^{\prime}-x_{2}^{\prime}\right| \geq \bar{C} \Lambda^{\tau^{-1}}$

SOME IDEA OF THE PROOF

- As usual in renormalization theory, one needs to introduce clusters v with scale h_{v}; the propagators in v have divisors smaller than $\gamma^{h_{v}}$ (necessary to avoid overlapping divergences). Gallavotti-Nicolo' trees. v^{\prime} is the cluster containing v.

SOME IDEA OF THE PROOF

- As usual in renormalization theory, one needs to introduce clusters v with scale h_{v}; the propagators in v have divisors smaller than $\gamma^{h_{v}}$ (necessary to avoid overlapping divergences). Gallavotti-Nicolo' trees. v^{\prime} is the cluster containing v.
- Naive bound for each tree $\prod_{v} \gamma^{-h_{v}\left(S_{v}-1\right)}, v$ vertex, S_{v} number of clusters in v. Determinant bounds (Caianiello (1956), Gawedski, Kupiainen (1985)) How we can improve?

SOME IDEA OF THE PROOF

- As usual in renormalization theory, one needs to introduce clusters v with scale h_{v}; the propagators in v have divisors smaller than $\gamma^{h_{v}}$ (necessary to avoid overlapping divergences). Gallavotti-Nicolo' trees. v^{\prime} is the cluster containing v.
- Naive bound for each tree $\prod_{v} \gamma^{-h_{v}\left(S_{v}-1\right)}, v$ vertex, S_{v} number of clusters in v. Determinant bounds (Caianiello (1956), Gawedski, Kupiainen (1985)) How we can improve?
- Consider two vertices w_{1}, w_{2} such that $x_{w_{1}}^{\prime}$ and $x_{w_{2}}^{\prime}$ are coordinates of the external fields, and let be $c_{w_{1}, w_{2}}$ the path (vertices and lines) in \bar{T}_{v} connecting w_{1} with w_{2}; we call $\left|c_{w_{1}, w_{2}}\right|$ the number of vertices in $c_{w_{1}, w_{2}}$. The following relation holds, if $\delta_{w}^{i}= \pm 1$ it corresponds to an ε end-point and $\delta_{w}^{i}=(0, \pm 1)$ is a U end-point

$$
x_{w_{1}}^{\prime}-x_{w_{2}}^{\prime}=\bar{x}_{\rho_{w_{2}}}-\bar{x}_{\rho w_{1}}+\sum_{w \in c_{w_{1}, w_{2}}} \delta_{w}^{i_{w}}
$$

SOME IDEA OF THE PROOF

- As usual in renormalization theory, one needs to introduce clusters v with scale h_{v}; the propagators in v have divisors smaller than $\gamma^{h_{v}}$ (necessary to avoid overlapping divergences). Gallavotti-Nicolo' trees. v^{\prime} is the cluster containing v.
- Naive bound for each tree $\prod_{v} \gamma^{-h_{v}\left(S_{v}-1\right)}, v$ vertex, S_{v} number of clusters in v. Determinant bounds (Caianiello (1956), Gawedski, Kupiainen (1985)) How we can improve?
- Consider two vertices w_{1}, w_{2} such that $x_{w_{1}}^{\prime}$ and $x_{w_{2}}^{\prime}$ are coordinates of the external fields, and let be $c_{w_{1}, w_{2}}$ the path (vertices and lines) in \bar{T}_{v} connecting w_{1} with w_{2}; we call $\left|c_{w_{1}, w_{2}}\right|$ the number of vertices in $c_{w_{1}, w_{2}}$. The following relation holds, if $\delta_{w}^{i}= \pm 1$ it corresponds to an ε end-point and $\delta_{w}^{i}=(0, \pm 1)$ is a U end-point

$$
x_{w_{1}}^{\prime}-x_{w_{2}}^{\prime}=\bar{x}_{\rho_{w_{2}}}-\bar{x}_{\rho w_{1}}+\sum_{w \in c_{w_{1}, w_{2}}} \delta_{w}^{i_{w}}
$$

- As $x_{i}-x_{j}=M \in \mathbb{Z}$ and $x_{i}^{\prime}=x_{j}^{\prime}$ then $\left(\bar{x}_{\rho_{i}}-\bar{x}_{\rho_{j}}\right)+M=0$, so that $\rho_{i}=\rho_{j}$ as $\bar{x}_{+}=\hat{x}$ and $\bar{x}_{-}=-\hat{x}-2 \theta / \omega$ and $\hat{x} \in \mathbb{Z}$.

SOME IDEA OF THE PROOF

FIG. 1: A tree \bar{T}_{v} with attached wiggly lines representing the external lines P_{v}; the lines represent propagators with scale $\geq h_{v}$ connecting $w_{1}, w_{a}, w_{b}, w_{c}, w_{2}$, representing the end-points following v in τ.

SOME IDEA OF THE PROOF

- By the Diophantine condition a) $\rho_{w_{1}}=\rho_{w_{2}}$ the $\left(^{*}\right)$; b)if $\rho_{w_{1}}=-\rho_{w_{2}}$ by (**)

$$
\begin{aligned}
& 2 c v_{0}^{-1} \gamma^{h_{\bar{v}^{\prime}} \geq} \\
& \left\|\left(\omega x_{w_{1}}^{\prime}\right)\right\|_{1}+\left\|\left(\omega x_{w_{2}}^{\prime}\right)\right\|_{1} \geq\left\|\omega\left(x_{w_{1}}^{\prime}-x_{w_{2}}^{\prime}\right)\right\|_{1} \geq C_{0}\left(\left|c_{w_{2}, w_{1}}\right|\right)^{-\tau}
\end{aligned}
$$

so that $\left|c_{w_{1}, w_{2}}\right| \geq A \gamma \frac{-h_{\bar{T}^{\prime}}}{\tau}$. If two external propagators are small but not exactly equal, you need a lot of hopping or interactions to produce them

IDEAS OF PROOF

- If $\bar{\varepsilon}=\max (|\varepsilon|,|U|))$ from the $\bar{\varepsilon}^{n}$ factor we can then extract (we write $\left.\bar{\varepsilon}=\prod_{h=-\infty}^{0} \bar{\varepsilon}^{2^{h-1}}\right)$

$$
\bar{\varepsilon}^{\frac{n}{4}} \leq \prod_{v \in L} \varepsilon^{N_{v} 2^{h_{v}}}
$$

where N_{v} is the number of points in v; as $N_{v} \geq\left|c_{w_{1}, w_{2}}\right| \geq A \gamma^{\frac{-h_{v^{\prime}}}{\tau}}$ then

$$
\bar{\varepsilon}^{\frac{n}{4}} \leq \prod_{v \in L} \bar{\varepsilon}^{A \gamma-\frac{b_{v^{\prime}}}{\tau} 2^{b_{v}}}
$$

where L are the non resonant vertices If $\gamma^{\frac{1}{\tau}} / 2>1$ then $\leq C^{n} \prod_{v \in L} \gamma^{3 h_{v}} S_{v}^{L}$ where S_{v}^{L} is the number of non resonant clusters in v.

IDEAS OF PROOF

- We localize the resonant terms $\mathbf{x}=x_{0, i}, x$ with all x_{i}^{\prime} equal

$$
\mathcal{L} \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{n}, \rho}^{\varepsilon_{n}}=\psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{n}}
$$

Note that one has to renormalize monomial of all orders, a potentially very dangerous situation (this is like in KAM).

IDEAS OF PROOF

- We localize the resonant terms $\mathbf{x}=x_{0, i}, x$ with all x_{i}^{\prime} equal

$$
\mathcal{L} \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{n}, \rho}^{\varepsilon_{n}}=\psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{n}}
$$

Note that one has to renormalize monomial of all orders, a potentially very dangerous situation (this is like in KAM).

- The terms with $n \geq 4$ are vanishing by anticommutativity; there are no non-irrelevant quartic terms if the fermions are spinless and $r_{i}=r$ by the diophantine condition $\left({ }^{* *}\right)$.

IDEAS OF PROOF

- We localize the resonant terms $\mathbf{x}=x_{0, i}, x$ with all x_{i}^{\prime} equal

$$
\mathcal{L} \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{n}, \rho}^{\varepsilon_{n}}=\psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{n}}
$$

Note that one has to renormalize monomial of all orders, a potentially very dangerous situation (this is like in KAM).

- The terms with $n \geq 4$ are vanishing by anticommutativity; there are no non-irrelevant quartic terms if the fermions are spinless and $r_{i}=r$ by the diophantine condition (**).
- We write $V^{h}=\mathcal{L} V^{h}+\mathcal{R} V^{h}$. The $\mathcal{R} V^{h}$ term is the usual renormalized term in QFT; the bound has an extra $\gamma^{h_{v^{\prime}}-h_{v}}$; then there is an $\gamma^{h_{v^{\prime}}}$ for each renormalized vertex v.

IDEAS OF PROOF

- We localize the resonant terms $\mathbf{x}=x_{0, i}, x$ with all x_{i}^{\prime} equal

$$
\mathcal{L} \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{n}, \rho}^{\varepsilon_{n}}=\psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{1}} \ldots \psi_{\mathbf{x}_{1}, \rho}^{\varepsilon_{n}}
$$

Note that one has to renormalize monomial of all orders, a potentially very dangerous situation (this is like in KAM).

- The terms with $n \geq 4$ are vanishing by anticommutativity; there are no non-irrelevant quartic terms if the fermions are spinless and $r_{i}=r$ by the diophantine condition $\left({ }^{* *}\right)$.
- We write $V^{h}=\mathcal{L} V^{h}+\mathcal{R} V^{h}$. The $\mathcal{R} V^{h}$ term is the usual renormalized term in QFT; the bound has an extra $\gamma^{h_{v^{\prime}}-h_{v}}$; then there is an $\gamma^{h_{v^{\prime}}}$ for each renormalized vertex v.
- In order to sum over the number of external fieds one uses both the cancellations due to anticommutativity and the diophantine condition.

IDEAS OF PROOF

- In the invariant tori for KAM the local part is vanishing by remarkable cancellations; here the local part is vanishing if the number of fields is greater than two by anticommutativity and (${ }^{* *)}$.

IDEAS OF PROOF

- In the invariant tori for KAM the local part is vanishing by remarkable cancellations; here the local part is vanishing if the number of fields is greater than two by anticommutativity and $\left({ }^{* *}\right)$.
- There remain the local terms with 2 field which are relevant and produce renormalization of the chemical potential; the flow is controlled by the countertem ν.

IDEAS OF PROOF

- In the invariant tori for KAM the local part is vanishing by remarkable cancellations; here the local part is vanishing if the number of fields is greater than two by anticommutativity and $\left({ }^{* *}\right)$.
- There remain the local terms with 2 field which are relevant and produce renormalization of the chemical potential; the flow is controlled by the countertem ν.
- If $2 \theta / \omega$ is integer there is also a mass term $\psi_{\rho}^{+} \psi_{-\rho}^{-}$producing gaps.

IDEAS OF PROOF

- In the invariant tori for KAM the local part is vanishing by remarkable cancellations; here the local part is vanishing if the number of fields is greater than two by anticommutativity and (**).
- There remain the local terms with 2 field which are relevant and produce renormalization of the chemical potential; the flow is controlled by the countertem ν.
- If $2 \theta / \omega$ is integer there is also a mass term $\psi_{\rho}^{+} \psi_{-\rho}^{-}$producing gaps.
- With spin quartic terms are not irrelevant.

IDEAS OF PROOF

- In the invariant tori for KAM the local part is vanishing by remarkable cancellations; here the local part is vanishing if the number of fields is greater than two by anticommutativity and (**).
- There remain the local terms with 2 field which are relevant and produce renormalization of the chemical potential; the flow is controlled by the countertem ν.
- If $2 \theta / \omega$ is integer there is also a mass term $\psi_{\rho}^{+} \psi_{-\rho}^{-}$producing gaps.
- With spin quartic terms are not irrelevant.
- This concludes the discussion of the localized regime; we discuss briefly the extended regime.

Extended Regime

- Different behavior is found close to the integrable limit. Fix $\varepsilon=1, \theta=0, U, u$ small, $\mu=\cos p_{F},\|2 \pi \omega n\|_{2 \pi} \geq C|n|^{-\tau}, n \neq 0$, then (Mastropietro, CMP99, PRB2016) :

Extended Regime

- Different behavior is found close to the integrable limit. Fix $\varepsilon=1, \theta=0, U, u$ small, $\mu=\cos p_{F},\|2 \pi \omega n\|_{2 \pi} \geq C|n|^{-\tau}, n \neq 0$, then (Mastropietro, CMP99, PRB2016) :
- 1)If $\left\|2 p_{F}+2 \pi n \omega\right\|_{2 \pi} \geq C|n|^{-\tau}$ a decay of the two point function $O\left(|x-y|^{-1-\eta}\right), \eta=a U^{2}+O\left(U^{3}\right)$ (metallic Luttinger liquid behavior).

Extended Regime

- Different behavior is found close to the integrable limit. Fix $\varepsilon=1, \theta=0, U, u$ small, $\mu=\cos p_{F},\|2 \pi \omega n\|_{2 \pi} \geq C|n|^{-\tau}, n \neq 0$, then (Mastropietro, CMP99, PRB2016) :
- 1)If $\| 2 p_{F}+2 \pi n \omega| |_{2 \pi} \geq C|n|^{-\tau}$ a decay of the two point function $O\left(|x-y|^{-1-\eta}\right), \eta=a U^{2}+O\left(U^{3}\right)$ (metallic Luttinger liquid behavior).
- 2) If $p_{F}=n \omega \pi$ a faster than any power decay with rate

$$
\Delta_{n, U} \sim\left[u^{2 n}\left(a_{n}+F\right)\right]^{X_{n}}
$$

with $F=O(|U|+|u|), a_{n}$ non vanishing and $X_{n}=X_{n}(U)=1+b U+O\left(U^{2}\right)$; the decay rate is of the order of the interacting gap.

Extended Regime

- Different behavior is found close to the integrable limit. Fix $\varepsilon=1, \theta=0, U, u$ small, $\mu=\cos p_{F},\|2 \pi \omega n\|_{2 \pi} \geq C|n|^{-\tau}, n \neq 0$, then (Mastropietro, CMP99, PRB2016) :
- 1)If $\| 2 p_{F}+2 \pi n \omega| |_{2 \pi} \geq C|n|^{-\tau}$ a decay of the two point function $O\left(|x-y|^{-1-\eta}\right), \eta=a U^{2}+O\left(U^{3}\right)$ (metallic Luttinger liquid behavior).
- 2) If $p_{F}=n \omega \pi$ a faster than any power decay with rate

$$
\Delta_{n, U} \sim\left[u^{2 n}\left(a_{n}+F\right)\right]^{x_{n}}
$$

with $F=O(|U|+|u|), a_{n}$ non vanishing and
$X_{n}=X_{n}(U)=1+b U+O\left(U^{2}\right)$; the decay rate is of the order of the interacting gap.

- All gaps are renormalized via a critical exponent

Extended Regime

- The gaps are are strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but even the smallest gaps remain open.

Extended Regime

- The gaps are are strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but even the smallest gaps remain open.
- In the case of a Fibonacci quasi-periodic potentialit was proposed that the interaction closes the smallest gaps, Giamarchi (1999), causing an insulating to metal transition.

Extended Regime

- The gaps are are strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but even the smallest gaps remain open.
- In the case of a Fibonacci quasi-periodic potentialit was proposed that the interaction closes the smallest gaps, Giamarchi (1999), causing an insulating to metal transition.
- In the case of Aubry-Andre' potential all gaps persists instead; no quantum phase transition at small coupling.

Extended Regime

- In the extended regime the scaling dimension is different; the theory is renormalizable but dimensionally there are an infinite number of coupling constants.

Extended Regime

- In the extended regime the scaling dimension is different; the theory is renormalizable but dimensionally there are an infinite number of coupling constants.
- Combined effect of Umklapp and the incommensurability of potential has the effect that a large momentum exchange can connect points arbitrarily close to the Fermi points.

$$
\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} k_{i}^{\prime}=-\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} p_{F}+2 n \pi \omega+2 / \pi
$$

Extended Regime

- In the extended regime the scaling dimension is different; the theory is renormalizable but dimensionally there are an infinite number of coupling constants.
- Combined effect of Umklapp and the incommensurability of potential has the effect that a large momentum exchange can connect points arbitrarily close to the Fermi points.

$$
\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} k_{i}^{\prime}=-\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} p_{F}+2 n \pi \omega+2 / \pi
$$

- The scaling dimension of non resonant terms can be improved by the diophantine condition, and they are all irrelevant.

Extended Regime

- In the extended regime the scaling dimension is different; the theory is renormalizable but dimensionally there are an infinite number of coupling constants.
- Combined effect of Umklapp and the incommensurability of potential has the effect that a large momentum exchange can connect points arbitrarily close to the Fermi points.

$$
\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} k_{i}^{\prime}=-\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} p_{F}+2 n \pi \omega+2 / \pi
$$

- The scaling dimension of non resonant terms can be improved by the diophantine condition, and they are all irrelevant.
- Only resonances are marginal, only a small number running coupling constants.

Extended Regime

- In the extended regime the scaling dimension is different; the theory is renormalizable but dimensionally there are an infinite number of coupling constants.
- Combined effect of Umklapp and the incommensurability of potential has the effect that a large momentum exchange can connect points arbitrarily close to the Fermi points.

$$
\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} k_{i}^{\prime}=-\sum_{i=1}^{m} \varepsilon_{i} \rho_{i} p_{F}+2 n \pi \omega+2 / \pi
$$

- The scaling dimension of non resonant terms can be improved by the diophantine condition, and they are all irrelevant.
- Only resonances are marginal, only a small number running coupling constants.
- This is true for quasi-periodic functions with fast decaying Fourier transform; With other quasi-random noise, is believed instead that there are infinitely many rcc.

Conclusions

- System of fermions with quasi-random Aubry-Andre' noise and interaction.

Conclusions

- System of fermions with quasi-random Aubry-Andre' noise and interaction.
- First proof of ground state localization in the ground state with interaction for large disorder.

Conclusions

- System of fermions with quasi-random Aubry-Andre' noise and interaction.
- First proof of ground state localization in the ground state with interaction for large disorder.
- Anomalous exponents in the extended regime.

Conclusions

- System of fermions with quasi-random Aubry-Andre' noise and interaction.
- First proof of ground state localization in the ground state with interaction for large disorder.
- Anomalous exponents in the extended regime.
- Small divisor problem similar to the one in KAM Lindstdedt series in the non interacting case; the many body interaction produces loops

Conclusions

- System of fermions with quasi-random Aubry-Andre' noise and interaction.
- First proof of ground state localization in the ground state with interaction for large disorder.
- Anomalous exponents in the extended regime.
- Small divisor problem similar to the one in KAM Lindstdedt series in the non interacting case; the many body interaction produces loops
- Spin? Coupled chains? other eigenstates? 2 or 3 dimension?

