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consider the N-particle SE) one speaks of Many Body Localization
(MBL)

@ Numerical evidence of MBL in a huge number of works ( starting
from Oganesyan, Huse (2007)).

o Experimental evidence of MBL in cold atoms experiments: Bloch et
al (2015) by monitoring the time evolution of local observables
following a quench (without interaction Inguscio group (2008)).
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o Consequences of MBL for non equilibrium Statistical physics: lack of
thermalization and memory of initial state (Pal,Huse (2010)
Goldstein, Huse, Lebowitz, Tumulka (2015),...)

o Very few rigorous results. Imbrie (arXiv 2014, PRL 2016) considered
a 1d Heisenberg spin chain with random disorder, and showed that
MBL rigorous consequence in 1d of an assumption of level
attraction.

@ A proof of MBL in generality is a challenging problem (single
particle description breaks down, full N-particle Schroedinger)
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@ Singe particle Localization is not only produced by random disorder,
but also by quasi-random (or quasi-periodic) disorder.

@ Remarkably the cold atom experiments are done with quasi-random
disorder, that is in the interacting Aubry-Andre’ model

@ Numerical evidence in the same model of MBL in lyer,
Oganesyan,Refael, Huse (2013)

@ Proof of localization of the ground state in Mastropietro CMP2015,
PRL2015, CMP2016
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e If af,ay, x € Z = A are spinless creation or annihilation operators

on the Fock space verifying {a}, a a, } =0xy,

{al,a)} ={ay,a, } = 0. The Fock space Hamiltonian is

H = _E(Z(Qjﬂax +al_qa)+
xeN

Z ucos(2m(wx + 0))ata, + U Z v(x —y)ala;a)a,
xEN Xy
with v(x —y) =6, _x1 + 0x—y 1.
@ w irrational. Equivalent to XXZ chain with quasi-random disorder.

@ Spinless version of the model realized in Bloch et al (2015) (here
non local interaction).

o Early studies of the extended phase in Mastropietro (1999) and
Giamarchi, Mohunna,Vidal (1999)
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@ In the non interacting case the states are obtained by the
antisymmetrization (fermions) of the eigenfunctions of almost
Mathieu equation

—etp(x + 1) — erp(x — 1) + wcos(2m(wx + 0))Y(x) = Ey(x)

@ Deeply studied in mathematics (KAM methods, ten martini).
Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990);
Jitomirskaya (1999); Avila, Jitomirskaya (2006)....

@ the spectrum is a Cantor set for all irrational w. For almost every
w, 0 the almost Mathieu operator has
a)for e/u < % exponentially decaying eigenfunctions (Anderson
localization);
b)for e/u > % purely absolutely continuous spectrum (extended
quasi-Bloch waves)

e Metal insulator transition (with no interaction) seen experimentally
by Inguscio et al (2008)
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@ Such remarkable properties are related to a deep connection between
the non interacting Aubry-Andre model and the

Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics.

o A crucial assumption of KAM and of the analysis of almost mathieu
is that the frequency verify a number theoretical condition called
Diophantine condition to deal with small divisors.

o We impose a Diophantine condition on the frequency
lwx|| = Golx|™" Vx € Z/{0} (%)

[|.]| is the norm on the one dimensional torus of period 1.
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@ The construction of all the eigenvectors of the N-body Schroedinger
equation with almost-Mathieu potential and interaction seems at the
moment out of reach, especially for infinite N.

@ More modest goal. Information on the localization of the interacting
ground state can be obtained by the zero temperature
grand-canonical truncated correlations of local operators, whose
exponential decay with the distance is a sign of localization. This
allow to use exact RG methods combined with KAM (Lindstedt
series).

@ For w 0 verifying Diophantine conditions, for small =, % the
fermionic zero temperature grand canonical infinite volume
truncated correlations of local operators decays exponentially for
large distances.

@ Renormalized expansion around the anti-integrable limit
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Z ucos(2m(wx + 6))a)ay + U Z v(x —y)afa;ala,

xEN X,y
with v(x — y) = 0y—x1 + 0x—y 1.

o If af = elH—1Nogke=(H-uNo y — (x,x5), N =3 afa; and u
the chemical potential, the Grand-Canonical imaginary time 2-point
correlation is

Tre PH=1nNT {3k}
Tre—B(H=pN)

-t~
<Tagay >=

where T is the time-order product and u is the chemical potential.
@ We introduce a counterterm v so that the renormalized chemical

potential is fixed to an interaction independent value

ucos2m(wX + ). Morally this is equivalent to fix the density.



LOCALIZED REGIME

THEOREM
For w Diophantine

[lwx[| = Colx|™" Vx € Z/{0} (*)
||.|| is the norm on the one dimensional torus of period 1, and if 0 verifies
[lwx £20|| > Go|x|™7 Vx € Z/{0} (xx)

u=1, p=cos2m(wX + 0) + v there exists an g such that, for
le], |U| < eo,it is possible to choose v so that the limit § — co

1
1+ (Alxo — yo) )V

with A = (1 + min(|x], |y[))™7, & = [log(max([e[, |U]))|

| < Taga)l > | < Ce P ¥iog(1+min(|x||y|))” €D
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LOCALIZED REGIME

@ The exponential decay in the coordinates of the zero temperature
truncated correlations (and the much slower decay in the temporal
direction) is a signature of localization of the many body ground
state.

@ Persistence of localization does not depend from the sign of U at
weak coupling as in Bloch et al (2015). The result is in agreement
with the numerical phase diagram in lyer, Oganesyan,Refael, Huse
(2013)

e For 2 mteger (***) is also true with A replaced by the gap size.

o A S|mp|e consequence of the theorem proof is a localization result
formulated fixing the phase 6 and varying the chemical potential;
namely if we choose § =0, u = cos2rwXx, X € R, than (¥**) if
[lwx £ 2wx|| > C|x|~7, x # 0. If X half-integer A is replaced by the
gap size.

@ The proof can be extended to more general form of quasi-periodic
potential; one simply needs that ¢, = ¢(27(wx + 6)) with ¢ € C*,
even ¢(t) = ¢(—t) and periodic ¢(t) = ¢(t + 1); moreover one
needs d¢ 549 # 0.
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The proof is based on many body perturbation theory around the
anti-integrable limit

When U = u =0, = 1 one has the integrable or free fermion limit.
H=3,(—cosk+u)a)a,.

e'k(x—y)

So(x,¥) BLZ—Ik(M—cosk 1

= cos pr. £pr Fermi momenta. GS occupation number
x(cosk — pu < 0).
Close to the singularity

cos(k’ + pr) — pn ~ +sin pek’ + O(k'?)

linear dispersion relation.
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4 -
XaX

¢ = U = 0 anti-integrable limit H = )" (cos2m(wx + 0) — p)a

< Ta;aj > [0 = dx,y&(X, X0 — Yo)
e~ ko(x0—y0)

B Z —iko + cos 27(wx + 0) — cos 27w (wXk + 6)

g(XaXO }’0

GS occupation number X(cos 2m(wx + 0) < p).
o Let us introduce

X =8 Xx.=-X%-20/w
x4 Fermi coordinates.
o If weset x =x'+X,, p= =, for small (wWx')mod.1
1
—iko £ vo(wx")mod.1

g(xl + )?Pv kO) ~

@ The denominator can be arbitrarily large; for x # pX by (*),(**)
| = Jw(x = pX) +25,,-10]|] > C|x — pX|~7. (wX)mod.1 can be
very small for large x (infrared-ultraviolet mixing)




ANTI-INTEGRABLE LIMIT; PROOF OF LOCALIZATION

The 2-point function is given by ﬁWb
X y

W(9) _ / P(dup)e= V() ~B(0.0)

with P(dv) a gaussian Grassmann integral with propagator
Ox,y8(x, %0 — ¥0), &(x,x0) is the temporal FT of g(x, ko)

V(w) = U/dX Z ’(/J;wa_w)tt-ael wx_-i—ael
a=24
+e/ X e, Uy + Yot )+u/dxwx+w;

8
where [ dx = Y oxen J %5 dxo, Finally B = [ dx(of vy + 1 éy)
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@ In absence of many body interaction there are only chain graphs,
o = +

el Z / dX071...dX07ng'(X17X0 — XO,l)g(Xl + Z Qaj, (X07n — yo))
X1

i<n
n
HE(X1 + E Qtie, X0,i+1 — X0,i)
i—1

k<i

o Propagators g(ko, x) can be arbitrarily large (small divisors)
&(X" £ %, ko) < ColX'|"

Chain graphs are apparently O(n!"); as in classical KAM theory,
small divisors which can destroy the validity of a perturbative
approach. Similar graphs in Lindstedt series for KAM (proof of
convergence by Gallavotti (1994))

o When U # 0 there also loops producing additional divergences,
absent in KAM or in the non interacting case.

o To establish localization in presence of interaction one has to prove
that such small divisors are harmless, even with loops.
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SOME IDEA OF THE PROOF

o We perform an RG analysis decomposing the propagator as sum of
propagators Iiving at Y21 < K2 + |y — pg]? < 20
h=0,—- oy > 1, ¢y = cos2m(wx + 9) this correspond to
two reglons, around X4 and X_.

@ This implies that the single scale propagator has the form
3 " \with 1g$" (x)| < =5y the correspondin
p=+ &P & WIS TR0 o)) ponding
Grasmann variable is z/;,((f'g.
o We integrate the fields with decreasing scale; for instance W(0) (the
partition function) can be written as

/P(dq/))ev :/P(dwﬁ—l)/P(dwo)eV :/P(dwﬁ—l)e‘/’l

o The effective potential V" sum of monomials of any order in
Do f dxo,1..-dxo,n W T, wx Sorupi (we have integrated the deltas in
the propagators)
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@ According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D =1 and usually
this makes a perturbative approach impossible.

@ One has to distinguish among the monomials wa;,xw,pz in the

effective potential between resonant and non resonant terms.

Resonant terms; x{ = x". Non Resonant terms x; # x; for some i, .

(In the non interacting case only two external lines are present).

@ It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

@ Roughly speaking, the idea is that if two propagators have similar
(not equal) small size (non resonant subgraphs) , then the difference
of their coordinates is large and this produces a "gain” as passing
from x to x + n one needs n vertices. That is if
(WX])mod1 ~ (WX3)moa1 ~ A~ then by the Diophantine condition

N> lw(xg =)l > Golxg — x| 77

that is x| — x4| > CA™
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@ As usual in renormalization theory, one needs to introduce clusters v
with scale h,; the propagators in v have divisors smaller than 7"
(necessary to avoid overlapping divergences). Gallavotti-Nicolo'
trees. v/ is the cluster containing v.

o Naive bound for each tree [, v~ "(5=1, v vertex, S, number of

clusters in v. Determinant bounds (Caianiello (1956), Gawedski,

Kupiainen (1985)) How we can improve?

o Consider two vertices wy, wy such that x|, and x;,, are coordinates
of the external fields, and let be ¢y, w, the path (vertices and lines)
in T, connecting wy with wy; we call |cy, w,| the number of vertices
in Cwy,w,- Ihe following relation holds, if 8!, = +1 it corresponds to
an ¢ end-point and 6, = (0,41) is a U end-point

/ ! _ = < i
le - XW2 - Xpw2 — Xpw + E 5VV|/V

WECw; ,wy

o As x; —x; = M € Z and x{ = x] then (X,, — X,,) + M =0, so that
pi=pjas Xy =Xand X_ = —x —20/w and X € Z.
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FIG. 1: A tree T, with attached wiggly lines representing the external lines P,; the lines represent
propagators with scale > h,, connecting wy, wq, Wy, W, wa, representing the end-points following v

in 7.
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o By the Diophantine condition a) p,, = pw, the (*); b)if py, = —pw,
by (**)

2 1,_th

\I(wXW1)||1 + I (wxi)l = Hlw(x, = xu,)ll = Gollewm )"

h
so that |Cu,.w,| > Ay~ . If two external propagators are small but
not exactly equal, you need a lot of hopping or interactions to
produce them
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o If £=max(|e|,|U|)) from the &" factor we can then extract (we
. 0 _oh—1
write E=J[,__ & )

— 00

_n hy1
g1 S Hé,/\lv2v

vel

b,
where N, is the number of points in v ; as Ny > |Cpy w,| > Ay 7

then
n h,r
£i < H Ay 2
vel
where L are the non resonant vertices If fyi/2 > 1 then

< C" HVeL 30,5, where SL is the number of non resonant clusters
inv.
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@ We localize the resonant terms x = xp ;, x with all x/ equal

ﬁwel En _ €1 En

X1,P" " Xnyp T XL P XL, P

Note that one has to renormalize monomial of all orders, a
potentially very dangerous situation (this is like in KAM).

@ The terms with n > 4 are vanishing by anticommutativity; there are
no non-irrelevant quartic terms if the fermions are spinless and
r; = r by the diophantine condition (**).

o We write V" = LV + RV". The RV" term is the usual
renormalized term in QFT; the bound has an extra v ~"v; then
there is an v for each renormalized vertex v.

@ In order to sum over the number of external fieds one uses both the

cancellations due to anticommutativity and the diophantine
condition.



IDEAS OF PROOF

@ In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).



IDEAS OF PROOF

@ In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).

@ There remain the local terms with 2 field which are relevant and
produce renormalization of the chemical potential; the flow is
controlled by the countertem v.



IDEAS OF PROOF

@ In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).

@ There remain the local terms with 2 field which are relevant and
produce renormalization of the chemical potential; the flow is
controlled by the countertem v.

o If 20/w is integer there is also a mass term ij:p producing gaps.



IDEAS OF PROOF

@ In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).

@ There remain the local terms with 2 field which are relevant and
produce renormalization of the chemical potential; the flow is
controlled by the countertem v.

o If 20/w is integer there is also a mass term ij:p producing gaps.

@ With spin quartic terms are not irrelevant.



IDEAS OF PROOF

@ In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).

@ There remain the local terms with 2 field which are relevant and
produce renormalization of the chemical potential; the flow is
controlled by the countertem v.

o If 20/w is integer there is also a mass term ij:p producing gaps.

@ With spin quartic terms are not irrelevant.

@ This concludes the discussion of the localized regime; we discuss
briefly the extended regime.
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o Different behavior is found close to the integrable limit. Fix
e=1,0=0, U,usmall, u = cospr, ||2rwn||2 > C|n|~7, n# 0,
then (Mastropietro, CMP99, PRB2016) :

o 1)If ||2pg 4 2mnw||2x > C|n|~7" a decay of the two point function
O(|x — y|=t="), n = aU? + O(U?) (metallic Luttinger liquid
behavior).

@ 2) If pr = nwm a faster than any power decay with rate
Dy~ [P (an + F)

with F = O(JU| + |u]), a, non vanishing and
X, = Xa(U) = 1+ bU + O(U?); the decay rate is of the order of the
interacting gap.

@ All gaps are renormalized via a critical exponent
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@ The gaps are are strongly decreased or increased depending on the
attractive or repulsive nature of the interaction, but even the
smallest gaps remain open.

@ In the case of a Fibonacci quasi-periodic potentialit was proposed
that the interaction closes the smallest gaps, Giamarchi (1999),
causing an insulating to metal transition.

o In the case of Aubry-Andre’ potential all gaps persists instead; no
quantum phase transition at small coupling.
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@ In the extended regime the scaling dimension is different; the theory
is renormalizable but dimensionally there are an infinite number of
coupling constants.

o Combined effect of Umklapp and the incommensurability of
potential has the effect that a large momentum exchange can
connect points arbitrarily close to the Fermi points.

m m
Za;p;k,-’ = - Ze;p;pp + 2nmw + 2Iw
i=1 i=1

@ The scaling dimension of non resonant terms can be improved by
the diophantine condition, and they are all irrelevant.

@ Only resonances are marginal, only a small number running coupling
constants.

@ This is true for quasi-periodic functions with fast decaying Fourier
transform; With other quasi-random noise, is believed instead that
there are infinitely many rcc.
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CONCLUSIONS

@ System of fermions with quasi-random Aubry-Andre’ noise and
interaction.

o First proof of ground state localization in the ground state with
interaction for large disorder.

@ Anomalous exponents in the extended regime.

@ Small divisor problem similar to the one in KAM Lindstdedt series in
the non interacting case; the many body interaction produces loops

@ Spin? Coupled chains? other eigenstates? 2 or 3 dimension?



