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Many Body Localization

Anderson (1958): disorder can produce localization of independent
quantum particles. Exponential decay of the eigenfunctions of the
one-body Schroedinger operator with random disorder ( Froehlich,
Spencer (1983), M. Aizenman and S. Molchanov (1994)...).

If localization persists in presence of interaction (so that one has to
consider the N-particle SE) one speaks of Many Body Localization
(MBL)

Numerical evidence of MBL in a huge number of works ( starting
from Oganesyan, Huse (2007)).

Experimental evidence of MBL in cold atoms experiments: Bloch et
al (2015) by monitoring the time evolution of local observables
following a quench (without interaction Inguscio group (2008)).
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Many Body Localization

Consequences of MBL for non equilibrium Statistical physics: lack of
thermalization and memory of initial state (Pal,Huse (2010)
Goldstein, Huse, Lebowitz, Tumulka (2015),...)

Very few rigorous results. Imbrie (arXiv 2014, PRL 2016) considered
a 1d Heisenberg spin chain with random disorder, and showed that
MBL rigorous consequence in 1d of an assumption of level
attraction.

A proof of MBL in generality is a challenging problem (single
particle description breaks down, full N-particle Schroedinger)
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Quasi random disorder

Singe particle Localization is not only produced by random disorder,
but also by quasi-random (or quasi-periodic) disorder.

Remarkably the cold atom experiments are done with quasi-random
disorder, that is in the interacting Aubry-Andre’ model

Numerical evidence in the same model of MBL in Iyer,
Oganesyan,Refael, Huse (2013)

Proof of localization of the ground state in Mastropietro CMP2015,
PRL2015, CMP2016



Quasi random disorder

Singe particle Localization is not only produced by random disorder,
but also by quasi-random (or quasi-periodic) disorder.

Remarkably the cold atom experiments are done with quasi-random
disorder, that is in the interacting Aubry-Andre’ model

Numerical evidence in the same model of MBL in Iyer,
Oganesyan,Refael, Huse (2013)

Proof of localization of the ground state in Mastropietro CMP2015,
PRL2015, CMP2016



Quasi random disorder

Singe particle Localization is not only produced by random disorder,
but also by quasi-random (or quasi-periodic) disorder.

Remarkably the cold atom experiments are done with quasi-random
disorder, that is in the interacting Aubry-Andre’ model

Numerical evidence in the same model of MBL in Iyer,
Oganesyan,Refael, Huse (2013)

Proof of localization of the ground state in Mastropietro CMP2015,
PRL2015, CMP2016



Quasi random disorder

Singe particle Localization is not only produced by random disorder,
but also by quasi-random (or quasi-periodic) disorder.

Remarkably the cold atom experiments are done with quasi-random
disorder, that is in the interacting Aubry-Andre’ model

Numerical evidence in the same model of MBL in Iyer,
Oganesyan,Refael, Huse (2013)

Proof of localization of the ground state in Mastropietro CMP2015,
PRL2015, CMP2016



The interacting Aubry-Andre’ model

If a+x , a
−
x , x ∈ Z ≡ Λ are spinless creation or annihilation operators

on the Fock space verifying {a+x , a−y } = δx,y ,
{a+x , a+y } = {a−x , a−y } = 0. The Fock space Hamiltonian is

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

ω irrational. Equivalent to XXZ chain with quasi-random disorder.

Spinless version of the model realized in Bloch et al (2015) (here
non local interaction).

Early studies of the extended phase in Mastropietro (1999) and
Giamarchi, Mohunna,Vidal (1999)
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The Aubry-Andre’ model

In the non interacting case the states are obtained by the
antisymmetrization (fermions) of the eigenfunctions of almost
Mathieu equation

−εψ(x + 1)− εψ(x − 1) + u cos(2π(ωx + θ))ψ(x) = Eψ(x)

Deeply studied in mathematics (KAM methods, ten martini).
Dinaburg-Sinai (1975); Froehlich, Spencer, Wittwer (1990);
Jitomirskaya (1999); Avila, Jitomirskaya (2006)....

the spectrum is a Cantor set for all irrational ω. For almost every
ω, θ the almost Mathieu operator has
a)for ε/u < 1

2 exponentially decaying eigenfunctions (Anderson
localization);
b)for ε/u > 1

2 purely absolutely continuous spectrum (extended
quasi-Bloch waves)

Metal insulator transition (with no interaction) seen experimentally
by Inguscio et al (2008)
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The KAM theorem

Such remarkable properties are related to a deep connection between
the non interacting Aubry-Andre model and the
Kolmogorov-Arnold-Moser (KAM) theorem of classical mechanics.

A crucial assumption of KAM and of the analysis of almost mathieu
is that the frequency verify a number theoretical condition called
Diophantine condition to deal with small divisors.

We impose a Diophantine condition on the frequency

||ωx || ≥ C0|x |−τ ∀x ∈ Z/{0} (∗)

||.|| is the norm on the one dimensional torus of period 1.
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Localization and interaction

The construction of all the eigenvectors of the N-body Schroedinger
equation with almost-Mathieu potential and interaction seems at the
moment out of reach, especially for infinite N.

More modest goal. Information on the localization of the interacting
ground state can be obtained by the zero temperature
grand-canonical truncated correlations of local operators, whose
exponential decay with the distance is a sign of localization. This
allow to use exact RG methods combined with KAM (Lindstedt
series).

For ω θ verifying Diophantine conditions, for small εu ,
U
u the

fermionic zero temperature grand canonical infinite volume
truncated correlations of local operators decays exponentially for
large distances.

Renormalized expansion around the anti-integrable limit
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Main resut

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

If a±x = e(H−µN)x0a±x e
−(H−µN)x0 , x = (x , x0), N =

∑
x a

+
x a

−
x and µ

the chemical potential, the Grand-Canonical imaginary time 2-point
correlation is

< Ta−x a
+
y >=

Tre−β(H−µN)T{a−x a+y }
Tre−β(H−µN)

where T is the time-order product and µ is the chemical potential.

We introduce a counterterm ν so that the renormalized chemical
potential is fixed to an interaction independent value
u cos 2π(ωx̂ + θ). Morally this is equivalent to fix the density.



Main resut

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

If a±x = e(H−µN)x0a±x e
−(H−µN)x0 , x = (x , x0), N =

∑
x a

+
x a

−
x and µ

the chemical potential, the Grand-Canonical imaginary time 2-point
correlation is

< Ta−x a
+
y >=

Tre−β(H−µN)T{a−x a+y }
Tre−β(H−µN)

where T is the time-order product and µ is the chemical potential.

We introduce a counterterm ν so that the renormalized chemical
potential is fixed to an interaction independent value
u cos 2π(ωx̂ + θ). Morally this is equivalent to fix the density.



Main resut

H = −ε(
∑
x∈Λ

(a+x+1ax + a+x−1a
−
x ) +∑

x∈Λ

u cos(2π(ωx + θ))a+x a
−
x + U

∑
x,y

v(x − y)a+x a
−
x a

+
y a

−
y

with v(x − y) = δy−x,1 + δx−y ,1.

If a±x = e(H−µN)x0a±x e
−(H−µN)x0 , x = (x , x0), N =

∑
x a

+
x a

−
x and µ

the chemical potential, the Grand-Canonical imaginary time 2-point
correlation is

< Ta−x a
+
y >=

Tre−β(H−µN)T{a−x a+y }
Tre−β(H−µN)

where T is the time-order product and µ is the chemical potential.

We introduce a counterterm ν so that the renormalized chemical
potential is fixed to an interaction independent value
u cos 2π(ωx̂ + θ). Morally this is equivalent to fix the density.



Localized regime

Theorem

For ω Diophantine

||ωx || ≥ C0|x |−τ ∀x ∈ Z/{0} (∗)

||.|| is the norm on the one dimensional torus of period 1, and if θ verifies

||ωx ± 2θ|| ≥ C0|x |−τ ∀x ∈ Z/{0} (∗∗)

u = 1, µ = cos 2π(ωx̂ + θ) + ν there exists an ε0 such that, for
|ε|, |U| ≤ ε0,it is possible to choose ν so that the limit β → ∞

| < Ta−x a
+
y > | ≤ Ce−ξ|x−y | log(1+min(|x ||y |))τ 1

1 + (∆|x0 − y0)|)N
(∗∗∗)

with ∆ = (1 + min(|x |, |y |))−τ , ξ = | log(max(|ε|, |U|))|.



Localized regime

The exponential decay in the coordinates of the zero temperature
truncated correlations (and the much slower decay in the temporal
direction) is a signature of localization of the many body ground
state.

Persistence of localization does not depend from the sign of U at
weak coupling as in Bloch et al (2015). The result is in agreement
with the numerical phase diagram in Iyer, Oganesyan,Refael, Huse
(2013).

For 2θ
ω integer (***) is also true with ∆ replaced by the gap size.

A simple consequence of the theorem proof is a localization result
formulated fixing the phase θ and varying the chemical potential;
namely if we choose θ = 0, µ = cos 2πωx̄ , x̄ ∈ R, than (***) if
||ωx ± 2ωx̄ || ≥ C |x |−τ , x 6= 0. If x̄ half-integer ∆ is replaced by the
gap size.

The proof can be extended to more general form of quasi-periodic
potential; one simply needs that φx = φ̄(2π(ωx + θ)) with φ̄ ∈ C 1,
even φ̄(t) = φ̄(−t) and periodic φ̄(t) = φ̄(t + 1); moreover one
needs ∂φ̄ωx̂+θ 6= 0.
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Integrable limit

The proof is based on many body perturbation theory around the
anti-integrable limit

When U = u = 0, ε = 1 one has the integrable or free fermion limit.
H =

∑
k(− cos k + µ)a+k a

−
k .

S0(x, y) =
1

βL

∑
k0,k

e ik(x−y)

−ik0 + cos k − µ

µ = cos pF . ±pF Fermi momenta. GS occupation number
χ(cos k − µ ≤ 0).

Close to the singularity

cos(k ′ ± pF )− µ ∼ ± sin pFk
′ + O(k ′2)

linear dispersion relation.
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cos(k ′ ± pF )− µ ∼ ± sin pFk
′ + O(k ′2)

linear dispersion relation.
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Anti-integrable or molecular limit

ε = U = 0 anti-integrable limit H =
∑

x(cos 2π(ωx + θ)− µ)a+x a
−
x

< Ta−x a
+
y > |0 = δx,y ḡ(x , x0 − y0)

ḡ(x , x0 − y0) =
1

β

∑
k0

e−ik0(x0−y0)

−ik0 + cos 2π(ωx + θ)− cos 2π(ωx̂ + θ)

GS occupation number χ(cos 2π(ωx + θ) ≤ µ).
Let us introduce

x̄+ = x̂ x̄− = −x̂ − 2θ/ω

x± Fermi coordinates.
If we set x = x ′ + x̄ρ, ρ = ±, for small (ωx ′)mod.1

ĝ(x ′ + x̄ρ, k0) ∼
1

−ik0 ± v0(ωx ′)mod.1

The denominator can be arbitrarily large; for x 6= ρx̂ by (*),(**)
,||ωx ′|| = ||ω(x − ρx̂) + 2δρ,−1θ|| ≥ C |x − ρx̂ |−τ . (ωx ′)mod.1 can be
very small for large x (infrared-ultraviolet mixing)
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Anti-integrable limit; proof of localization

The 2-point function is given by ∂2

∂φ+
x ∂φ

−
y
W |0

eW (φ) =

∫
P(dψ)e−V (ψ)−B(ψ,φ)

with P(dψ) a gaussian Grassmann integral with propagator
δx,y ḡ(x , x0 − y0), ḡ(x , x0) is the temporal FT of ĝ(x , k0)

V (ψ) = U

∫
dx

∑
α=±

ψ+
x ψ

−
x ψ

+
x+αe1ψ

−
x+αe1

+ε

∫
dx(ψ+

x+e1ψ
−
x + ψ+

x−e1ψ
−
x ) + ν

∫
dxψ+

x ψ
−
x

where
∫
dx =

∑
x∈Λ

∫ β
2

− β
2

dx0, Finally B =
∫
dx(φ+x ψ

−
x + ψ+

x φ
−
x )



Small divisors

In absence of many body interaction there are only chain graphs,
αi = ±

εn
∑
x1

∫
dx0,1...dx0,nḡ(x1, x0 − x0,1)ḡ(x1 +

∑
i≤n

αi , (x0,n − y0))

n∏
i=1

ḡ(x1 +
∑
k≤i

αk , x0,i+1 − x0,i )

Propagators g(k0, x) can be arbitrarily large (small divisors)

|ĝ(x ′ ± x̄ , k0)| ≤ C0|x ′|τ

Chain graphs are apparently O(n!τ ); as in classical KAM theory,
small divisors which can destroy the validity of a perturbative
approach. Similar graphs in Lindstedt series for KAM (proof of
convergence by Gallavotti (1994))
When U 6= 0 there also loops producing additional divergences,
absent in KAM or in the non interacting case.
To establish localization in presence of interaction one has to prove
that such small divisors are harmless, even with loops.
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Some idea of the proof

We perform an RG analysis decomposing the propagator as sum of
propagators living at γ2h−1 ≤ k2

0 + |φx − φx̂ |2 ≤ γ2h+1,
h = 0,−1,−2..., γ > 1, φx = cos 2π(ωx + θ) ; this correspond to
two regions, around x̄+ and x̄−.

This implies that the single scale propagator has the form∑
ρ=± g

(h)
ρ with |g (h)

ρ (x)| ≤ CN

1+(γh(x0−y0))N
; the corresponding

Grasmann variable is ψ
(h)
x,ρ.

We integrate the fields with decreasing scale; for instance W (0) (the
partition function) can be written as∫

P(dψ)eV =

∫
P(dψ≤−1)

∫
P(dψ0)eV =

∫
P(dψ≤−1)eV

−1

...

The effective potential V h sum of monomials of any order in∑
x′
1

∫
dx0,1...dx0,nW

h
∏

i ψ
εi
x′
i ,x0,i ,ρi

(we have integrated the deltas in

the propagators).
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Some idea of the proof

According to power counting, the theory is non renormalizable ; all
effective interactions have positive dimension, D = 1 and usually
this makes a perturbative approach impossible.

One has to distinguish among the monomials
∏

i ψ
εi

x′
i ,x0,i ,ρi

in the

effective potential between resonant and non resonant terms.
Resonant terms; x ′i = x ′. Non Resonant terms x ′i 6= x ′j for some i , j .
(In the non interacting case only two external lines are present).

It turns out that the non resonant terms are irrelevant (even if they
are relevant according to power counting).

Roughly speaking, the idea is that if two propagators have similar
(not equal) small size (non resonant subgraphs) , then the difference
of their coordinates is large and this produces a ”gain” as passing
from x to x + n one needs n vertices. That is if
(ωx ′1)mod1 ∼ (ωx ′2)mod1 ∼ Λ−1 then by the Diophantine condition

2Λ−1 ≥ ||ω(x ′1 − x ′2)|| ≥ C0|x ′1 − x ′2|−τ

that is |x ′1 − x ′2| ≥ C̄Λτ
−1
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Some idea of the proof

As usual in renormalization theory, one needs to introduce clusters v
with scale hv ; the propagators in v have divisors smaller than γhv

(necessary to avoid overlapping divergences). Gallavotti-Nicolo’
trees. v ′ is the cluster containing v .

Naive bound for each tree
∏

v γ
−hv (Sv−1), v vertex, Sv number of

clusters in v . Determinant bounds (Caianiello (1956), Gawedski,
Kupiainen (1985)) How we can improve?

Consider two vertices w1,w2 such that x ′w1
and x ′w2

are coordinates
of the external fields, and let be cw1,w2 the path (vertices and lines)
in T̄v connecting w1 with w2; we call |cw1,w2 | the number of vertices
in cw1,w2 . The following relation holds, if δiw = ±1 it corresponds to
an ε end-point and δiw = (0,±1) is a U end-point

x ′w1
− x ′w2

= x̄ρw2 − x̄ρw1 +
∑

w∈cw1,w2

δiww

As xi − xj = M ∈ Z and x ′i = x ′j then (x̄ρi − x̄ρj ) +M = 0, so that
ρi = ρj as x̄+ = x̂ and x̄− = −x̂ − 2θ/ω and x̂ ∈ Z.



Some idea of the proof

As usual in renormalization theory, one needs to introduce clusters v
with scale hv ; the propagators in v have divisors smaller than γhv

(necessary to avoid overlapping divergences). Gallavotti-Nicolo’
trees. v ′ is the cluster containing v .

Naive bound for each tree
∏

v γ
−hv (Sv−1), v vertex, Sv number of

clusters in v . Determinant bounds (Caianiello (1956), Gawedski,
Kupiainen (1985)) How we can improve?

Consider two vertices w1,w2 such that x ′w1
and x ′w2

are coordinates
of the external fields, and let be cw1,w2 the path (vertices and lines)
in T̄v connecting w1 with w2; we call |cw1,w2 | the number of vertices
in cw1,w2 . The following relation holds, if δiw = ±1 it corresponds to
an ε end-point and δiw = (0,±1) is a U end-point

x ′w1
− x ′w2

= x̄ρw2 − x̄ρw1 +
∑

w∈cw1,w2

δiww

As xi − xj = M ∈ Z and x ′i = x ′j then (x̄ρi − x̄ρj ) +M = 0, so that
ρi = ρj as x̄+ = x̂ and x̄− = −x̂ − 2θ/ω and x̂ ∈ Z.



Some idea of the proof

As usual in renormalization theory, one needs to introduce clusters v
with scale hv ; the propagators in v have divisors smaller than γhv

(necessary to avoid overlapping divergences). Gallavotti-Nicolo’
trees. v ′ is the cluster containing v .

Naive bound for each tree
∏

v γ
−hv (Sv−1), v vertex, Sv number of

clusters in v . Determinant bounds (Caianiello (1956), Gawedski,
Kupiainen (1985)) How we can improve?

Consider two vertices w1,w2 such that x ′w1
and x ′w2

are coordinates
of the external fields, and let be cw1,w2 the path (vertices and lines)
in T̄v connecting w1 with w2; we call |cw1,w2 | the number of vertices
in cw1,w2 . The following relation holds, if δiw = ±1 it corresponds to
an ε end-point and δiw = (0,±1) is a U end-point

x ′w1
− x ′w2

= x̄ρw2 − x̄ρw1 +
∑

w∈cw1,w2

δiww

As xi − xj = M ∈ Z and x ′i = x ′j then (x̄ρi − x̄ρj ) +M = 0, so that
ρi = ρj as x̄+ = x̂ and x̄− = −x̂ − 2θ/ω and x̂ ∈ Z.



Some idea of the proof

As usual in renormalization theory, one needs to introduce clusters v
with scale hv ; the propagators in v have divisors smaller than γhv

(necessary to avoid overlapping divergences). Gallavotti-Nicolo’
trees. v ′ is the cluster containing v .

Naive bound for each tree
∏

v γ
−hv (Sv−1), v vertex, Sv number of

clusters in v . Determinant bounds (Caianiello (1956), Gawedski,
Kupiainen (1985)) How we can improve?

Consider two vertices w1,w2 such that x ′w1
and x ′w2

are coordinates
of the external fields, and let be cw1,w2 the path (vertices and lines)
in T̄v connecting w1 with w2; we call |cw1,w2 | the number of vertices
in cw1,w2 . The following relation holds, if δiw = ±1 it corresponds to
an ε end-point and δiw = (0,±1) is a U end-point

x ′w1
− x ′w2

= x̄ρw2 − x̄ρw1 +
∑

w∈cw1,w2

δiww

As xi − xj = M ∈ Z and x ′i = x ′j then (x̄ρi − x̄ρj ) +M = 0, so that
ρi = ρj as x̄+ = x̂ and x̄− = −x̂ − 2θ/ω and x̂ ∈ Z.



Some idea of the proof

.

w1
wa

wbwc

w2

FIG. 1: A tree T̄v with attached wiggly lines representing the external lines Pv; the lines represent

propagators with scale ≥ hv connecting w1, wa, wb, wc, w2, representing the end-points following v

in τ .

.

.

.
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Some idea of the proof

By the Diophantine condition a) ρw1 = ρw2 the (*); b)if ρw1 = −ρw2

by (**)

2cv−1
0 γhv̄′ ≥

||(ωx ′w1
)||1 + ||(ωx ′w2

)||1 ≥ ||ω(x ′w1
− x ′w2

)||1 ≥ C0(|cw2,w1 |)−τ

so that |cw1,w2 | ≥ Aγ
−hv̄′

τ . If two external propagators are small but
not exactly equal, you need a lot of hopping or interactions to
produce them



Ideas of proof

If ε̄ = max(|ε|, |U|)) from the ε̄n factor we can then extract (we

write ε̄ =
∏0

h=−∞ ε̄2
h−1

)

ε̄
n
4 ≤

∏
v∈L

εNv2
hv′

where Nv is the number of points in v ; as Nv ≥ |cw1,w2 | ≥ Aγ
−h

v′
τ

then

ε̄
n
4 ≤

∏
v∈L

ε̄Aγ
−h

v′
τ 2hv′

where L are the non resonant vertices If γ
1
τ /2 > 1 then

≤ C n
∏

v∈L γ
3hvS

L
v where SL

v is the number of non resonant clusters
in v .



Ideas of proof

We localize the resonant terms x = x0,i , x with all x ′i equal

Lψε1x1,ρ...ψ
εn
xn,ρ = ψε1x1,ρ...ψ

εn
x1,ρ

Note that one has to renormalize monomial of all orders, a
potentially very dangerous situation (this is like in KAM).

The terms with n ≥ 4 are vanishing by anticommutativity; there are
no non-irrelevant quartic terms if the fermions are spinless and
ri = r by the diophantine condition (**).

We write V h = LV h +RV h. The RV h term is the usual
renormalized term in QFT; the bound has an extra γhv′−hv ; then
there is an γhv′ for each renormalized vertex v .

In order to sum over the number of external fieds one uses both the
cancellations due to anticommutativity and the diophantine
condition.
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Ideas of proof

In the invariant tori for KAM the local part is vanishing by
remarkable cancellations; here the local part is vanishing if the
number of fields is greater than two by anticommutativity and (**).

There remain the local terms with 2 field which are relevant and
produce renormalization of the chemical potential; the flow is
controlled by the countertem ν.

If 2θ/ω is integer there is also a mass term ψ+
ρ ψ

−
−ρ producing gaps.

With spin quartic terms are not irrelevant.

This concludes the discussion of the localized regime; we discuss
briefly the extended regime.
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Extended regime

Different behavior is found close to the integrable limit. Fix
ε = 1,θ = 0, U, u small, µ = cos pF , ||2πωn||2π ≥ C |n|−τ , n 6= 0,
then (Mastropietro, CMP99, PRB2016) :

1)If ||2pF + 2πnω||2π ≥ C |n|−τ a decay of the two point function
O(|x − y |−1−η), η = aU2 + O(U3) (metallic Luttinger liquid
behavior).

2) If pF = nωπ a faster than any power decay with rate

∆n,U ∼ [u2n(an + F )]Xn

with F = O(|U|+ |u|), an non vanishing and
Xn = Xn(U) = 1+ bU +O(U2); the decay rate is of the order of the
interacting gap.

All gaps are renormalized via a critical exponent
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Extended regime

The gaps are are strongly decreased or increased depending on the
attractive or repulsive nature of the interaction, but even the
smallest gaps remain open.

In the case of a Fibonacci quasi-periodic potentialit was proposed
that the interaction closes the smallest gaps, Giamarchi (1999),
causing an insulating to metal transition.

In the case of Aubry-Andre’ potential all gaps persists instead; no
quantum phase transition at small coupling.
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Extended regime

In the extended regime the scaling dimension is different; the theory
is renormalizable but dimensionally there are an infinite number of
coupling constants.

Combined effect of Umklapp and the incommensurability of
potential has the effect that a large momentum exchange can
connect points arbitrarily close to the Fermi points.

m∑
i=1

εiρik
′
i = −

m∑
i=1

εiρipF + 2nπω + 2lπ

The scaling dimension of non resonant terms can be improved by
the diophantine condition, and they are all irrelevant.

Only resonances are marginal, only a small number running coupling
constants.

This is true for quasi-periodic functions with fast decaying Fourier
transform; With other quasi-random noise, is believed instead that
there are infinitely many rcc.
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Conclusions

System of fermions with quasi-random Aubry-Andre’ noise and
interaction.

First proof of ground state localization in the ground state with
interaction for large disorder.

Anomalous exponents in the extended regime.

Small divisor problem similar to the one in KAM Lindstdedt series in
the non interacting case; the many body interaction produces loops

Spin? Coupled chains? other eigenstates? 2 or 3 dimension?
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