Pfaffian Correlation Functions of Planar Dimer Covers

Simone Warzel
(joint work with M. Aizenman \& M. Lainz-Valcazar)
Zentrum Mathematik

TECHNISCHE UNIVERSITAT MUNCHEN

Frascati, Sept 7, 2016

Given a finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$, a dimer cover is a subset of the edge set, $\omega \subset \mathcal{E}$, such that every vertex is covered by exactly one edge.

Given an edge weight $K: \mathcal{E} \mapsto \mathbb{C}$ the dimer-cover partition function is

$$
Z_{\mathbb{G}, K}:=\sum_{\omega \in \Omega_{\mathbb{G}}} \chi_{K}(\omega)
$$

with $\Omega_{\mathbb{G}}$ the set of dimer covers and $\chi_{K}(\omega):=\prod_{b \in \omega} K_{b}$.

Monomer correlation functions

For a collection of monomer sites, $M \subset \mathcal{V}$, the partition function of the monomer-depleted graph is: $\quad Z_{\mathbb{G}, K}(M):=\sum_{\omega \in \Omega_{\mathbb{G}}(M)} \chi_{K}(\omega)$.

Monomer correlation function for an even collection of disjoint sites $\left\{x_{1}, \ldots, x_{2 n}\right\} \subset \mathcal{V}:$

$$
S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right):=\frac{Z_{\mathbb{G}, K}\left(\left\{x_{1}, \ldots, x_{2 n}\right\}\right)}{Z_{\mathbb{G}, K}}=\left\langle\prod_{j=1}^{2 n} \eta_{j}\right\rangle_{\mathbb{G}, K}
$$

The case of planar graphs

Pfaffian structure of the dimer partition function:

P. W. Kasteleyn '63

$$
Z_{\mathbb{G}, K}=\left|\operatorname{Pf} D_{K}\right|
$$

Kasteleyn adjacency matrix D_{K}

Selected further properties:

1 Asymptotic bulk monomer correlation function for $\mathbb{G}=\mathbb{Z}^{2}$ and $K \equiv 1$

$$
S_{2}\left(x_{1}, x_{2}\right) \sim\left|x_{1}-x_{2}\right|^{-1 / 2} \quad\left(\left|x_{1}-x_{2}\right| \rightarrow \infty\right)
$$

Fisher / Stephenson '63, ...
2 Close relation between the partition functions of the dimer cover and of the Ising model

Kasteleyn '63, Fisher '66, Yang / Park '80
3 (Non-)existence of phase transitions
Heilmann / Lieb '72
4 Arctic circle phenomenon
Cohn / Elkies / Propp '96
5 Continuum limits and their description in terms of (conformal) field theory
6 and...

Pfaffian structure of boundary monomer correlations

Theorem

For any finite planar graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$ the boundary values of the monomer correlation functions satisfy

$$
S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{\pi \in \mathrm{\Pi}_{2 n}} \operatorname{sgn}(\pi) \prod_{j=1}^{n} S_{2}\left(x_{\pi(2 j-1)}, x_{\pi(2 j)}\right) \equiv \operatorname{Pf}_{n}\left(S_{2}\left(x_{i}, x_{j}\right)\right)
$$

where $M:=\left\{x_{1}, \ldots, x_{2 n}\right\}$ ranges over sequences of disjoint vertices positioned in a cyclic order along any boundary of \mathbb{G}.

Pfaffian structure of boundary monomer correlations

Theorem

For any finite planar graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$ the boundary values of the monomer correlation functions satisfy

$$
S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{\pi \in \Pi_{2 n}} \operatorname{sgn}(\pi) \prod_{j=1}^{n} S_{2}\left(x_{\pi(2 j-1)}, x_{\pi(2 j)}\right) \equiv \operatorname{Pf}_{n}\left(S_{2}\left(x_{i}, x_{j}\right)\right)
$$

where $M:=\left\{x_{1}, \ldots, x_{2 n}\right\}$ ranges over sequences of disjoint vertices positioned in a cyclic order along any boundary of \mathbb{G}.

- Case $\mathbb{G}=\mathbb{Z} \times \mathbb{Z}_{+}$and $K \equiv 1$:
V. B. Priezzhev / P. Ruelle '08

$$
S_{2}((\xi, 0),(\eta, 0))= \begin{cases}-\frac{2}{\pi|\xi-\eta|} & \text { if }|\xi-\eta| \text { is odd } \\ 0 & \text { else. }\end{cases}
$$

- General planar graphs:
A. Guilliani / I. Jauslin / E. H. Lieb '15
- Main new point: elementary proof highlighting the topological origin through path integral techniques

Doubled dimer covers with disjoint monomers $M_{1}, M_{2} \subset \mathcal{V}$

$$
\omega^{(2)}=\left(\omega_{1}, \omega_{2}\right) \in \Omega_{\mathbb{G}}\left(M_{1}\right) \times \Omega_{\mathbb{G}}\left(M_{2}\right)=: \Omega_{\mathbb{G}}^{(2)}\left(M_{1}, M_{2}\right) .
$$

The edge multiplicity of $\omega^{(2)}$ coincides with that of a collection $\Gamma=\Gamma\left(\omega^{(2)}\right)$ of 2-colored edge-disjoint loops and paths on a 2-multigraph where each $\gamma \in \Gamma$ is either
i. a double loop covering a single edge,
ii. a simple loop of an even number of non-repeated edges,
iii. a simple path with boundary set $\partial \gamma \subset M_{1} \sqcup M_{2}$.

Doubled dimer covers with disjoint monomers $M_{1}, M_{2} \subset \mathcal{V}$

Double-dimer partition function as path / loop integral

$$
Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2}\right):=Z_{\mathbb{G}, K}\left(M_{1}\right) Z_{\mathbb{G}, K}\left(M_{2}\right)=\sum_{\omega^{(2)} \in \Omega^{(2)}\left(M_{1}, M_{2}\right)} \chi_{K}\left(\omega_{1}\right) \chi_{K}\left(\omega_{2}\right)
$$

Connection amplitudes for $\left\{x_{j}, y_{j}\right\}_{j=1, \ldots, N}$ pairs of sites in $M_{1} \sqcup M_{2}$:

$$
Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2} ; x_{j} \leftrightarrow y_{j} j=1, \ldots, N\right):=\sum_{\omega^{(2)} \in \Omega^{(2)}\left(M_{1}, M_{2}\right)} \chi_{K}\left(\omega_{1}\right) \chi_{K}\left(\omega_{2}\right) \prod_{j=1}^{N} \mathbb{1}\left[x_{j} \stackrel{\omega^{(2)}}{\longrightarrow} y_{j}\right] .
$$

Example: monomer correlation function as path integral

Let Ω_{n}^{A} stand for the set of non-intersecting simple paths Γ_{P} on the graph \mathbb{G}.

Theorem (Path integral for correlations)

For any finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$ and disjoint sites $\left\{x_{1}, \ldots, x_{2 n}\right\} \subset \mathcal{V}$ the monomer correlation function admits the representation

$$
S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{\substack{\Gamma_{P}=\left\{\gamma_{1}, \ldots, \gamma_{n}\right\} \in \Omega_{n}^{\mathrm{A}} \\ \partial \Gamma_{P}=\left\{x_{1}, \ldots, x_{2}\right\}}} w_{K}\left(\Gamma_{P}\right) \prod_{\gamma \in \Gamma_{P}} \mathbb{1}[\gamma \text { is odd }]
$$

with the weight function

$$
w_{K}\left(\Gamma_{P}\right):=\left(\frac{Z_{\mathbb{G}, K}\left(\mathcal{V}\left(\Gamma_{P}\right)\right)}{Z_{\mathbb{G}, K}}\right)^{2} \prod_{\gamma \in \Gamma_{P}} \chi_{K}(\gamma)
$$

Proof idea: Summation over the loops in the complement of Γ_{p}.

Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$, pair of disjoint monomer sets M_{1}, M_{2} and $\{x, y\} \subset \mathcal{V} \backslash\left(M_{1} \sqcup M_{2}\right):$

$$
\begin{aligned}
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x, y\}, M_{2} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2} \sqcup\{x, y\} ; x \leftrightarrow y, C\right), \\
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x\}, M_{2} \sqcup\{y\} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{y\}, M_{2} \sqcup\{x\} ; x \leftrightarrow y, C\right)
\end{aligned}
$$

where C stands for any collection of other connection conditions among monomers in $M_{1} \sqcup M_{2}$.

Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$, pair of disjoint monomer sets M_{1}, M_{2} and $\{x, y\} \subset \mathcal{V} \backslash\left(M_{1} \sqcup M_{2}\right):$

$$
\begin{aligned}
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x, y\}, M_{2} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2} \sqcup\{x, y\} ; x \leftrightarrow y, C\right), \\
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x\}, M_{2} \sqcup\{y\} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{y\}, M_{2} \sqcup\{x\} ; x \leftrightarrow y, C\right)
\end{aligned}
$$

where C stands for any collection of other connection conditions among monomers in $M_{1} \sqcup M_{2}$.

Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$, pair of disjoint monomer sets M_{1}, M_{2} and $\{x, y\} \subset \mathcal{V} \backslash\left(M_{1} \sqcup M_{2}\right):$

$$
\begin{aligned}
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x, y\}, M_{2} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2} \sqcup\{x, y\} ; x \leftrightarrow y, C\right), \\
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x\}, M_{2} \sqcup\{y\} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{y\}, M_{2} \sqcup\{x\} ; x \leftrightarrow y, C\right)
\end{aligned}
$$

where C stands for any collection of other connection conditions among monomers in $M_{1} \sqcup M_{2}$.

Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$, pair of disjoint monomer sets M_{1}, M_{2} and $\{x, y\} \subset \mathcal{V} \backslash\left(M_{1} \sqcup M_{2}\right):$

$$
\begin{aligned}
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x, y\}, M_{2} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1}, M_{2} \sqcup\{x, y\} ; x \leftrightarrow y, C\right), \\
& Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{x\}, M_{2} \sqcup\{y\} ; x \leftrightarrow y, C\right)=Z_{\mathbb{G}, K}^{(2)}\left(M_{1} \sqcup\{y\}, M_{2} \sqcup\{x\} ; x \leftrightarrow y, C\right)
\end{aligned}
$$

where C stands for any collection of other connection conditions among monomers in $M_{1} \sqcup M_{2}$.

Complete proof of the Pfaffian structure of boundary monomer correlations

Sufficient: $\quad S_{2 n}\left(x_{1}, \ldots, x_{2 n}\right)=\sum_{k=2}^{2 n}(-1)^{k} S_{2}\left(x_{1}, x_{k}\right) S_{2(n-1)} .\left(x_{1}, x_{2}, \ldots, x_{k}, \ldots, x_{2 n}\right)$.

Proof.

$$
\begin{aligned}
& \text { r.s. } \times\left(Z_{\mathbb{G}, K}\right)^{2}= \\
& \sum_{k=2}^{2 n}(-1)^{k} Z_{\mathbb{G}, K}^{(2)}\left(\left\{x_{1}, x_{k}\right\},\left\{x_{1}, x_{2}, \ldots, \not \chi_{k}, \ldots, x_{2 n}\right\} ; x_{1} \leftrightarrow x_{k}\right) \\
&+\sum_{k=2}^{2 n}(-1)^{k} \sum_{\substack{1, m=2 \\
k \neq \mid=m \neq k}}^{2 n} Z_{\mathbb{G}, K}^{(2)}\left(\left\{x_{1}, x_{k}\right\},\left\{x_{1}, x_{2}, \ldots, \not \chi_{k}, \ldots, x_{2 n}\right\} ; \begin{array}{l}
x_{1} \leftrightarrow x_{m} \\
x_{k} \leftrightarrow x_{l}
\end{array}\right)
\end{aligned}
$$

Planarity implies: $\quad x_{i} \leftrightarrow x_{j} \Longrightarrow(-1)^{i-j}=-1$

1 term: $\quad(-1)^{k}=1$ and by switching lemma equal to I.s. $\times\left(Z_{\mathbb{G}, K}\right)^{2}$.
2 term: $(-1)^{k-1}=-1$ and hence vanishes by switching symmetry $\left(x_{k} \leftrightarrow x_{l}\right)$.

Generalization to order-disorder variables

For a planar graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$ with edge weights $K: \mathcal{E} \mapsto \mathbb{C}$:
i. the disorder operators $\tau \ell_{j}$ are associate with open-ended, site-avoiding lines $\ell_{1}, \ldots, \ell_{n}$.
These give rise to a partial gauge transformations

$$
K \mapsto T_{\ell_{j}} K
$$

corresponding to sign flips of K over edges which are crossed by ℓ_{j} an odd number of times.

ii. the expectation values of products of such operators are defined as:

$$
\left\langle\prod_{j=1}^{n} \tau_{\ell_{j}}\right\rangle_{\mathbb{G}, K}:=\frac{Z_{\mathbb{G},} \tau_{\ell_{1}} 0 \cdots \circ \tau_{\ell_{n}} K}{Z_{\mathbb{G}, K}} .
$$

We will consider canonical pairs of order-disorder variables $p_{j}=\left(x_{j}, \ell_{j}\right)$ and their operators $\mu_{j}:=\eta_{x_{j}} \tau_{\ell_{j}}$.

Pfaffian structure of order-disorder correlations

Theorem

For a finite planar graph $\mathbb{G}=(\mathcal{V}, \mathcal{E})$ with edge weights $K: \mathcal{E} \mapsto \mathbb{C}$, and any collection of canonical pairs of order-disorder variables $p_{j}=\left(x_{j}, \ell_{j}\right)$,
$j \in\{1, \ldots, 2 n\}$, which are cyclicly ordered:

$$
\left\langle\prod_{j=1}^{2 n} \mu_{j}\right\rangle_{\mathbb{G}, K}=\operatorname{Pf}_{n}\left(\left\langle\mu_{j} \mu_{k}\right\rangle_{\mathbb{G}, K}\right)
$$

1 Generalizes the result for boundary
2 In case monomers $\left\{x_{2 j-1}, x_{2 j}\right\}$ are pairwise adjacent, the disorder lines may be chosen so that their actions are pairwise equivalent, and thus cancel each other, i.e. $\tau_{2 j-1} \tau_{2 j}=\eta_{x_{2 j-1}} \eta_{x_{2 j}}$ and

$$
\left\langle\prod_{j=1}^{2 n} \tau_{j}\right\rangle_{\mathbb{G}, K}=\left\langle\prod_{j=1}^{n} \mu_{x_{2 j-1}} \mu_{x_{2 j}}\right\rangle_{\mathbb{G}, K}
$$

3 Proof idea is similar to boundary case - main modification: count intersection parities of loops.

Key elements in the proof for the order-disorder variables

Connection amplitudes for order disorder pairs $\left(M_{1}, \mathcal{L}_{1}\right),\left(M_{2}, \mathcal{L}_{2}\right)$:

$$
\begin{aligned}
& W_{\mathbb{G}, K}^{(2)}\left(\left\{M_{1}, \mathcal{L}_{1}\right\},\left\{M_{2}, \mathcal{L}_{2}\right\} ; C\right):= \\
& \sum_{\omega^{(2)} \in \Omega^{(2)}\left(M_{1}, M_{2}\right)} \mathbb{1}\left[\omega^{(2)} \text { satisfies } C\right] \chi_{K}\left(\omega_{1}\right)(-1)^{\left(\omega_{1} \mid \mathcal{L}_{1}\right)} \chi_{K}\left(\omega_{2}\right)(-1)^{\left(\omega_{2} \mid \mathcal{L}_{2}\right)}
\end{aligned}
$$

where $\left(\omega_{j} \mid \mathcal{L}_{j}\right)$ is the number of intersections of ω_{j} with \mathcal{L}_{j}. Illustration of switching principle, e.g.

$$
\begin{aligned}
W_{\mathbb{G}, K}^{(2)}\left(\left\{p_{1}, p_{k}\right\},\left\{p 1, p_{2}, \ldots, p_{K}\right.\right. & \left.\left., \ldots, p_{2 n}\right\} ; x_{1} \leftrightarrow x_{k}\right) \\
& =(-1)^{k} W_{\mathbb{G}, K}^{(2)}\left(\emptyset,\left\{p_{1}, \ldots, p_{2 n}\right\} ; x_{1} \leftrightarrow x_{k}\right)
\end{aligned}
$$

Key elements in the proof for the order-disorder variables

Switching transform bijection: $\quad\left(\omega_{1}, \omega_{2}\right) \mapsto\left(\omega_{1} \Delta \gamma^{(1, k)}, \omega_{2} \Delta \gamma^{(1, k)}\right)$
Effect on the intersection parity:

$$
\frac{(-1)^{\left(\omega_{2} \Delta \gamma^{(1, k)} \mid \mathcal{L}\right)}}{(-1)^{\left(\omega_{1} \mid \ell_{1, k}\right)}(-1)^{\left(\omega_{2} \mid \mathcal{C} \backslash \ell_{1, k}\right.}}=(-1)^{\left(\gamma^{(1, k)} \mid \mathcal{L}\right)}(-1)^{\left(\omega^{(2)} \mid \ell_{1, k}\right)}=(*)
$$

Main idea: Consider the loop ensemble composed of $\gamma^{(1, k)}$ concatenated with $\ell_{1, k}$ and the remaining loops arising from concatenating the rest:

$$
\begin{aligned}
(*) & =(-1)^{\left(\gamma^{(1, k)} \mid \mathcal{L} \backslash \ell_{1}, k\right)}(-1)^{\left(\ell_{1, k} \mid \omega^{(2)} \backslash \gamma^{(1, k)}\right)} \\
& =(-1)^{k} \quad \text { intersection parity of lines } \mathcal{L} \text { within grand central. }
\end{aligned}
$$

Conclusion

1 As in the Ising model and its random current representation, doubling the dimer model reveals its underlying symmetries.

- path /loop integral representation
- switching lemmata

2 Similar reasoning leads to analogous results / proofs for Pfaffian structure of boundary correlation functions of Ising spins and order-disorder correlation functions.
M. Aizenman / H. Duminil-Copin / V. Tassion / S.W. '16

