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Dimer model P. W. Kasteleyn / M. E. Fisher / H. V. N. Temperley ’61

Given a finite graph G = (V, E), a dimer cover is a subset of the edge set,
ω ⊂ E , such that every vertex is covered by exactly one edge.

Given an edge weight K : E 7→ C the dimer-cover partition function is

ZG,K :=
∑
ω∈ΩG

χK (ω)

with ΩG the set of dimer covers and χK (ω) :=
∏
b∈ω

Kb.

(In the following, wlog: ZG,K 6= 0)



Monomer correlation functions

For a collection of monomer sites, M ⊂ V, the partition function of the
monomer-depleted graph is: ZG,K (M) :=

∑
ω∈ΩG(M)

χK (ω).
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Monomer correlation function for an even collection of disjoint sites
{x1, ..., x2n} ⊂ V:

S2n(x1, ..., x2n) :=
ZG,K ({x1, ..., x2n})

ZG,K
=
〈 2n∏

j=1

ηj
〉
G,K



The case of planar graphs

Pfaffian structure of the dimer partition function: P. W. Kasteleyn ’63

ZG,K = |Pf DK | Kasteleyn adjacency matrix DK

Selected further properties:

1 Asymptotic bulk monomer correlation function for G = Z2 and K ≡ 1

S2(x1, x2) ∼ |x1 − x2|−1/2 (|x1 − x2| → ∞)

Fisher / Stephenson ’63, . . .

2 Close relation between the partition functions of the dimer cover and of
the Ising model Kasteleyn ’63, Fisher ’66, Yang / Park ’80

3 (Non-)existence of phase transitions Heilmann / Lieb ’72

4 Arctic circle phenomenon Cohn / Elkies / Propp ’96

5 Continuum limits and their description in terms of (conformal) field
theory Kenyon ’14

6 and . . .



Pfaffian structure of boundary monomer correlations

Theorem

For any finite planar graph G = (V, E) the boundary values of the monomer
correlation functions satisfy

S2n(x1, ..., x2n) =
∑
π∈Π2n

sgn(π)
n∏

j=1

S2(xπ(2j−1), xπ(2j)) ≡ Pfn (S2(xi , xj ))

where M := {x1, ..., x2n} ranges over sequences of disjoint vertices
positioned in a cyclic order along any boundary of G.
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Pfaffian structure of boundary monomer correlations

Theorem

For any finite planar graph G = (V, E) the boundary values of the monomer
correlation functions satisfy

S2n(x1, ..., x2n) =
∑
π∈Π2n

sgn(π)
n∏

j=1

S2(xπ(2j−1), xπ(2j)) ≡ Pfn (S2(xi , xj ))

where M := {x1, ..., x2n} ranges over sequences of disjoint vertices
positioned in a cyclic order along any boundary of G.

Case G = Z× Z+ and K ≡ 1: V. B. Priezzhev / P. Ruelle ’08

S2((ξ, 0), (η, 0)) =

{
− 2
π |ξ−η| if |ξ − η| is odd

0 else.

General planar graphs: A. Guilliani / I. Jauslin / E. H. Lieb ’15

Main new point: elementary proof highlighting the topological origin
through path integral techniques



Doubled dimer covers with disjoint monomers M1,M2 ⊂ V

ω(2) = (ω1, ω2) ∈ ΩG(M1)× ΩG(M2) =: Ω
(2)
G (M1,M2) .
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The edge multiplicity of ω(2) coincides with that of a collection Γ = Γ(ω(2)) of
2-colored edge-disjoint loops and paths on a 2-multigraph where each
γ ∈ Γ is either

i. a double loop covering a single edge,

ii. a simple loop of an even number of non-repeated edges,

iii. a simple path with boundary set ∂γ ⊂ M1 tM2.



Doubled dimer covers with disjoint monomers M1,M2 ⊂ V
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Double-dimer partition function as path / loop integral

Z (2)
G,K (M1,M2) := ZG,K (M1) ZG,K (M2) =

∑
ω(2)∈Ω(2)(M1,M2)

χK (ω1)χK (ω2)

Connection amplitudes for {xj , yj}j=1,...,N pairs of sites in M1 tM2:

Z (2)
G,K (M1,M2; xj ↔ yj j = 1, . . . ,N) :=

∑
ω(2)∈Ω(2)(M1,M2)

χK (ω1)χK (ω2)
N∏

j=1

1

[
xj

ω(2)

←−→yj

]
.



Example: monomer correlation function as path integral

Let ΩA
n stand for the set of non-intersecting simple paths ΓP on the graph G.

Theorem (Path integral for correlations)

For any finite graph G = (V, E) and disjoint sites {x1, . . . , x2n} ⊂ V the
monomer correlation function admits the representation

S2n(x1, . . . , x2n) =
∑

ΓP ={γ1,...,γn}⊂ΩA
n

∂ΓP ={x1,...,x2n}

wK (ΓP)
∏
γ∈ΓP

1 [γ is odd] ,

with the weight function

wK (ΓP) :=

(
ZG,K (V(ΓP))

ZG,K

)2 ∏
γ∈ΓP

χK (γ) .

Proof idea: Summation over the loops in the complement of ΓP .



Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph G = (V, E), pair of disjoint monomer sets M1,M2 and
{x , y} ⊂ V\(M1 tM2):

Z (2)
G,K (M1 t {x , y},M2; x ↔ y ,C) = Z (2)

G,K (M1,M2 t {x , y}; x ↔ y ,C) ,

Z (2)
G,K (M1 t {x},M2 t {y}; x ↔ y ,C) = Z (2)

G,K (M1 t {y},M2 t {x}; x ↔ y ,C)

where C stands for any collection of other connection conditions among
monomers in M1 tM2.
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Switching symmetries of connection amplitudes

Lemma (Switching principle)
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Switching symmetries of connection amplitudes

Lemma (Switching principle)

For any finite graph G = (V, E), pair of disjoint monomer sets M1,M2 and
{x , y} ⊂ V\(M1 tM2):

Z (2)
G,K (M1 t {x , y},M2; x ↔ y ,C) = Z (2)

G,K (M1,M2 t {x , y}; x ↔ y ,C) ,

Z (2)
G,K (M1 t {x},M2 t {y}; x ↔ y ,C) = Z (2)

G,K (M1 t {y},M2 t {x}; x ↔ y ,C)

where C stands for any collection of other connection conditions among
monomers in M1 tM2.
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Complete proof of the Pfaffian structure of boundary monomer correlations

Sufficient: S2n(x1, ..., x2n) =
2n∑

k=2

(−1)k S2(x1, xk ) S2(n−1) .(��x1, x2, ...,��xk , ..., x2n).

Proof. r.s.× (ZG,K )2 =
2n∑

k=2

(−1)k Z (2)
G,K ({x1, xk}, {��x1, x2, ...,��xk , ..., x2n}; x1 ↔ xk )

+
2n∑

k=2

(−1)k
2n∑

l,m=2
k 6=l 6=m 6=k

Z (2)
G,K

(
{x1, xk}, {��x1, x2, ...,��xk , ..., x2n};

x1 ↔ xm

xk ↔ xl

)

Planarity implies: xi ↔ xj =⇒ (−1)i−j = −1

1 term: (−1)k = 1 and by switching lemma equal to l.s.× (ZG,K )2.

2 term: (−1)k−l = −1 and hence vanishes by switching symmetry
(xk ↔ xl ).



Generalization to order-disorder variables

For a planar graph G = (V, E) with edge weights K : E 7→ C:

i. the disorder operators τ`j are
associate with open-ended,
site-avoiding lines `1, . . . , `n.
These give rise to a partial
gauge transformations

K 7→ T`j K

corresponding to sign flips of K
over edges which are crossed by
`j an odd number of times.
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ii. the expectation values of products of such operators are defined as:

〈
n∏

j=1

τ`j 〉G,K :=
ZG,T`1

◦···◦T`n K

ZG,K
.

We will consider canonical pairs of order-disorder variables pj = (xj , `j )
and their operators µj := ηxj τ`j .



Pfaffian structure of order-disorder correlations

Theorem

For a finite planar graph G = (V, E) with edge weights K : E 7→ C, and any
collection of canonical pairs of order-disorder variables pj = (xj , `j ),
j ∈ {1, . . . , 2n}, which are cyclicly ordered:

〈
2n∏

j=1

µj〉G,K = Pfn (〈µjµk 〉G,K ) .

1 Generalizes the result for boundary

2 In case monomers {x2j−1, x2j} are pairwise adjacent, the disorder lines
may be chosen so that their actions are pairwise equivalent, and thus
cancel each other, i.e. τ2j−1τ2j = ηx2j−1ηx2j and

〈 2n∏
j=1

τj
〉
G,K =

〈 n∏
j=1

µx2j−1µx2j

〉
G,K .

3 Proof idea is similar to boundary case - main modification: count
intersection parities of loops.



Key elements in the proof for the order-disorder variables

Connection amplitudes for order disorder pairs (M1,L1), (M2,L2):

W (2)
G,K ({M1,L1}, {M2,L2}; C) :=∑

ω(2)∈Ω(2)(M1,M2)

1
[
ω(2) satisfies C

]
χK (ω1) (−1)(ω1 | L1) χK (ω2) (−1)(ω2 | L2)

where (ωj | Lj ) is the number of intersections of ωj with Lj .
Illustration of switching principle, e.g.

W (2)
G,K ({p1, pk}, {��p1, p2, . . . ,��pk , . . . , p2n}; x1 ↔ xk )

= (−1)k W (2)
G,K (∅, {p1, . . . , p2n}; x1 ↔ xk )



Key elements in the proof for the order-disorder variables

Switching transform bijection: (ω1, ω2) 7→ (ω1∆γ(1,k), ω2∆γ(1,k))

Effect on the intersection parity:

(−1)(ω2∆γ(1,k)|L)

(−1)(ω1|`1,k ) (−1)(ω2|L\`1,k )
= (−1)(γ(1,k)|L) (−1)(ω(2)|`1,k ) = (∗)

Main idea: Consider the loop ensemble composed of γ(1,k) concatenated
with `1,k and the remaining loops arising from concatenating the rest:

(∗) = (−1)(γ(1,k)|L\`1,k ) (−1)(`1,k |ω(2)\γ(1,k))

= (−1)k intersection parity of lines L within grand central .



Conclusion

1 As in the Ising model and its random current representation, doubling
the dimer model reveals its underlying symmetries.

path /loop integral representation

switching lemmata

2 Similar reasoning leads to analogous results / proofs for Pfaffian
structure of boundary correlation functions of Ising spins and
order-disorder correlation functions.

M. Aizenman / H. Duminil-Copin / V. Tassion / S.W. ’16


