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Underestimated theory, 
or overestimated data?
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The main suspect is the 
normalization of the ISR data.

Results
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Results
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Leading neutrons from DIS on protons              
offer a unique way to measure the pion structure 
function at small x.

�⇤p ! nX
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Neutron production off nuclei
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If BBC are fired detecting multiparticle production, one should replace

If BBC are vetoed, the diffractive channels                       dominate, 
i.e. πA -> X  should be replaced by elastic and quasielastic cross sections, 
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However, absorption is order of magnitude stronger, compared with pp ! nX
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Cross sections
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Three different channels of neutron production:
(i) inclusive neutrons;
(ii) multi-particle production (BBC fired);
(iii) rapidity gap diffractive events (BBC vetoed)
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Both amplitudes have the same phase ⌘⇡(t) = i� ctg

⇡↵⇡(t)
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�

No single-spin asymmetry is possible
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Single-spin asymmetry
The amplitude includes both non-flip and spin-flip terms
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Interference with other Reggeons
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π-a  interference1

Three inputs: 

ga1npa1 -nucleon coupling
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From pion diffractive data

Regge-cut trajectory ↵ã1(t)

PCAC and the 2d Weinberg sum rule: ga1NN
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I.Potashnikova, I.Schmidt, J.Soffer &B.K.  Phys.Rev. D84(2011)114012 
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The parameter-free calculations
agree with the PHENIX data.
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Recent measurements by PHENIX of the
single-spin asymmetry of neutrons from polarized 
pA collisions revealed a weird A-dependence

Astonishing spin effects in pA->nX

BBC triggering sheds light on this mistery

inclusive
production

inelastic events
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AN in pA ! nX
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The only difference
with pp->nX

R
3

=
�⇡A
tot

�⇡A
in

R
1

=
1

�⇢p
tot

Z
d2be�

1

2

�⇡p

tot

T

A

(b)
h
1� e�

1

2

�⇢p
tot

T

A

(b)
i
e�

1

2

�pp

tot

T

A

(b)

R
2

=
2

�⇡p
tot

Z
d2b

h
1� e�

1

2

�⇡p

tot

T

A

(b)
i
e�

1

2

�pp

tot

T

A

(b)

ApA!nX
N = App!nX

N ⇥ R1

R2
R3 Nuclear and trigger effects

Nuclear effects for coherent π+A-> πρ+A

Nuclear effects for the denominator πA-> πA Absorption factors

Triggering on nuclear
           breaks-up
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AN in pA ! nX
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Incoherent production:
the nucleus breaks up,
the BBC_S is fired
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This sample of events with nuclear 
break-up is reasonably well explained.

However, the large positive values of A_N
in rapidity-gap events remain unexplained.
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The fraction of rapidity-gap events rises 
with A, while hadronic mechanisms lead to 
a nearly A-independent fraction of 0.25.

     This might indicate at an UPC Coulomb 
excitation mechanism, which has factor 

Rapidity gap vs inclusive channels
�di↵ (pA ! nX)

�incl(pA ! nX)
=

0.25 pp
0.34 pAl
0.66 pAu

     Another peculiar feature of the rapidity 
gap events is the extremely small invariant 
mass M of the diffractive excitation p->nπ.

Too small to relate to the polarized
Primakoff effect.

Z2

The overall momentum transfer in coherent production 
is small compared with the measured neutron                     , and is even much less
in Coulomb excitation. Neglecting qT, and fixing z=0.75, the invariant mass is very small,
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First calculations of leading neutron production off nuclei are done 
for coherent, diffractive, and incoherent events. The fraction of
rapidity-gap events is found to be 25%, nearly independent of A.

Summary
While the cross section of leading neutron production agree well with 
the single pion model, the spin effects are more involved and require 
contribution  of other mechanisms, e.g.          interference. ⇡ � ã1

The nuclear effects for       of leading neutrons due to                 
interference are calculated in good agreement with data for incoherent
neutron production, associated with a nuclear break-up.            

⇡ � ã1AN

Large values of       in diffractive/Coulomb dissociation p->nπ remain
unexplained so far.  

AN
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a  production cross section1
The     is a weak pole: no axial-vector 
dominance for the axial current.      

a1

The cross section of                           
was measured up to 94 GeV.
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Extrapolated to the RHIC
energy range correcting 
for absorption.

Nevertheless, the invariant mass distribution
of diffractively produced         in       state
forms a peak, dominated by the Deck 
mechanism, with a similar position and width 
as    . This singularity in the dispersion
relation can be treated as an effective pole   
“ “ with mass                     .
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aNN  coupling
PCAC miraculously relates the pion-nucleon 
coupling with the axial constant
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      represents the contribution to the 
dispersion relation of all axial-vector states 
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         -peak, we get a1+S
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Regge trajectories
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