<u>Ceading neutrons from</u> polarized pA collisions

Boris Kopeliovich Valparaiso, Chile

Neutron production in the vicinity of pion pole

$$\mathbf{p} + \mathbf{p} \rightarrow \mathbf{n} + \mathbf{X}$$

$$= \frac{\mathbf{p}_{\mathbf{n}}^{+}}{\mathbf{p}_{\mathbf{p}}^{+}} \rightarrow \mathbf{1} ; \mathbf{M}_{\mathbf{X}}^{2} = (\mathbf{1} - \mathbf{z})\mathbf{s}$$

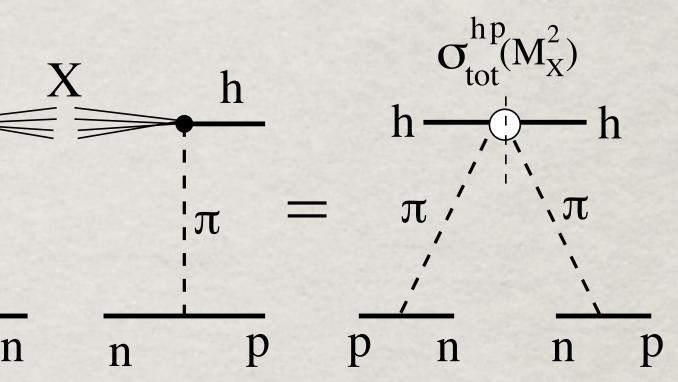
$$\stackrel{\mathbf{h}}{\xrightarrow{\sum}} \frac{\pi}{\pi}$$

$$\mathbf{A}_{\mathbf{p}\to\mathbf{n}}^{\mathbf{B}}(\tilde{\mathbf{q}},\mathbf{z}) = \bar{\xi}_{\mathbf{n}} \left[\sigma_{\mathbf{3}} \, \mathbf{q}_{\mathbf{L}} + \frac{1}{\sqrt{\mathbf{z}}} \, \tilde{\sigma} \cdot \tilde{\mathbf{q}}_{\mathbf{T}} \right] \xi_{\mathbf{p}} \, \phi^{\mathbf{B}}(\mathbf{q}_{\mathbf{T}},\mathbf{z})$$

$$\phi^{\mathbf{B}}(\mathbf{q_T}, \mathbf{z}) = \frac{\alpha'_{\pi}}{8} \mathbf{G}_{\pi^+ \mathbf{pn}}(\mathbf{t}) \eta_{\pi}(\mathbf{t}) (\mathbf{1} - \mathbf{z})^{-\alpha_{\pi}(\mathbf{t})} \mathbf{A}$$

$${f z} {{f d} \sigma^{f B}_{{f p}
ightarrow {f n}}\over {f dz dq^2_T}} = {{f g}^2_{\pi^+ {f p} {f n}}\over (4\pi)^2} {|f t|\,{f F}^2({f t})\over ({f m}^2_\pi - {f t})^2} (1$$

Z =



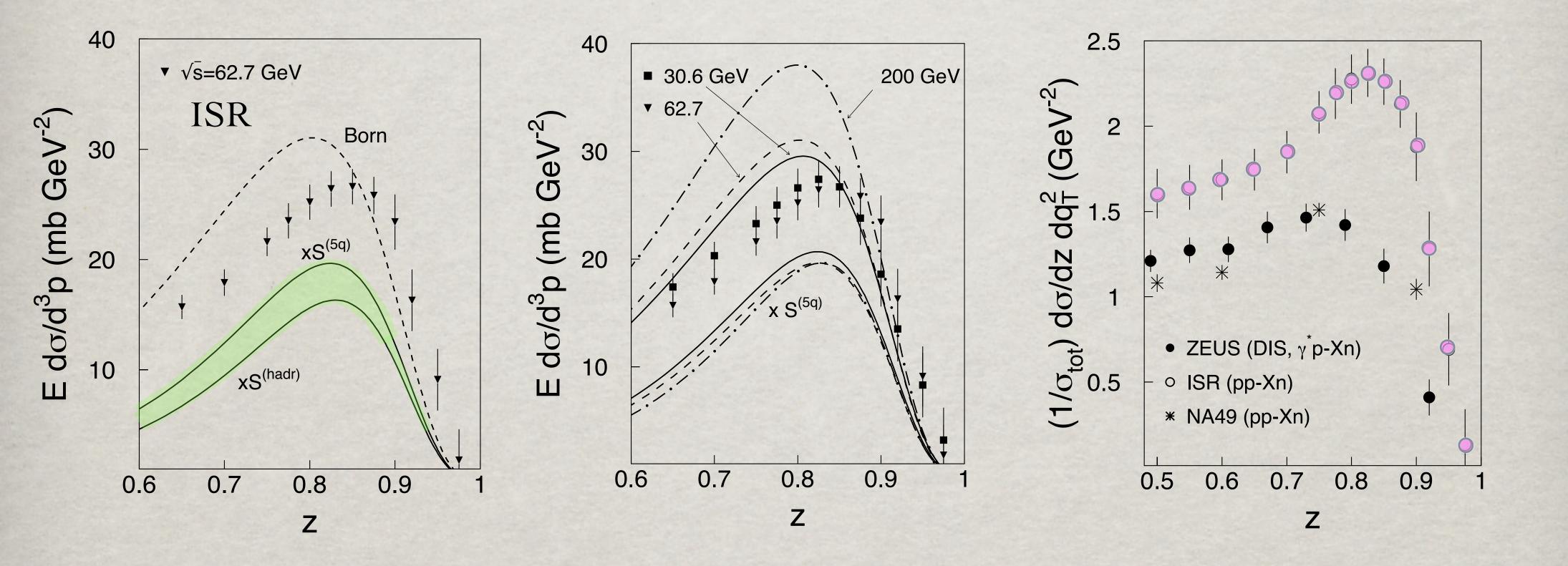
$$\begin{split} q_L &= \frac{1-z}{\sqrt{z}} \, m_N \\ t &= -q_L^2 - q_T^2/z \end{split} \label{eq:qL}$$

 $\mathbf{A}_{\pi^+\mathbf{p}
ightarrow \mathbf{X}}(\mathbf{M}^{\mathbf{2}}_{\mathbf{X}})$

$$(-\mathbf{z})^{\mathbf{1}-\mathbf{2}lpha_{\pi}(\mathbf{t})}\sigma_{\mathbf{tot}}^{\pi^{+}\mathbf{p}}(\mathbf{M_{X}^{2}})$$

Results

I.Potashnikova, I.Schmidt, J.Soffer & B.K. Phys.Rev. D78 (2008)014031

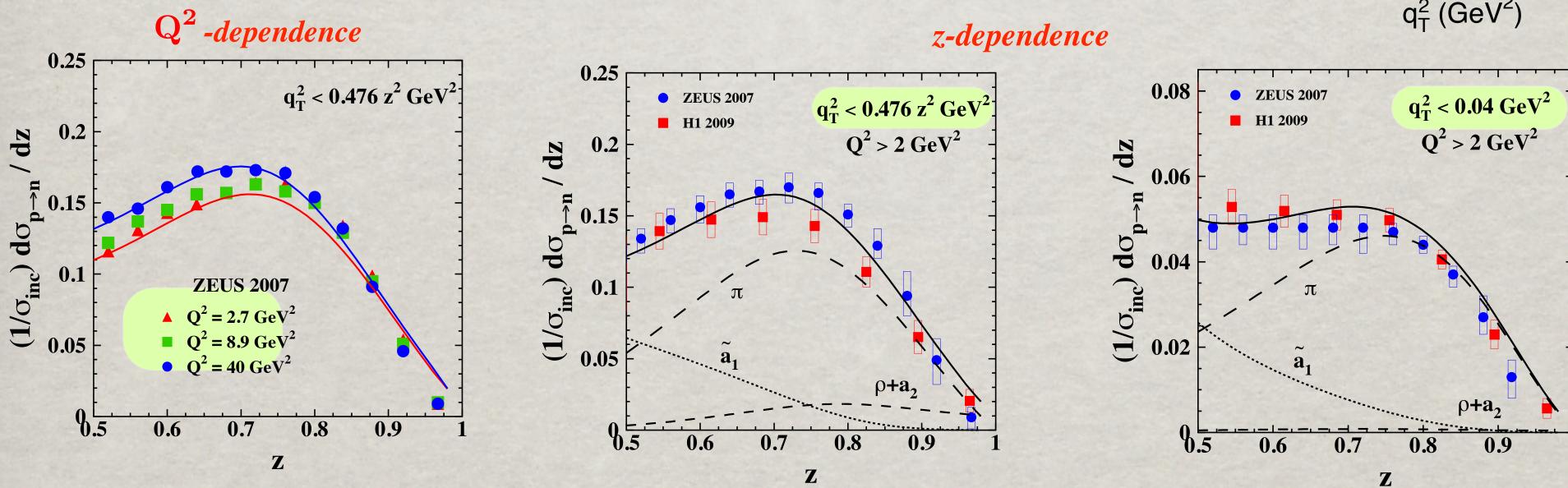


Underestimated theory, or overestimated data?

The main suspect is the normalization of the ISR data.

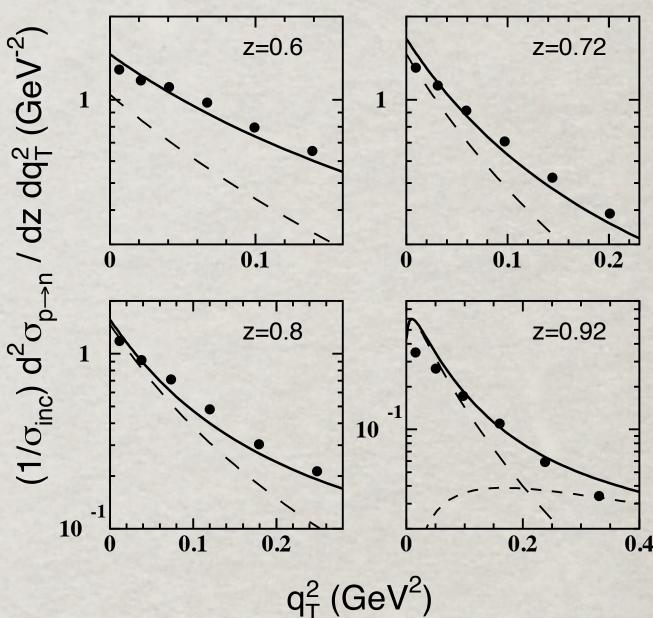
Results

Leading neutrons from DIS on protons $\gamma^* \mathbf{p}
ightarrow \mathbf{nX}$ offer a unique way to measure the pion structure function at small x.



4

qT-dependence



Neutron production off nuclei

At first glance, is sufficient to replace $\sigma_{tot}^{\pi p}$ by $\sigma_{tot}^{\pi A}$

$$\mathbf{z} \frac{\mathbf{d} \sigma_{\mathbf{p}\mathbf{A} \to \mathbf{n}\mathbf{X}}^{\mathbf{B}}}{\mathbf{d} \mathbf{z} \mathbf{d} \mathbf{q}_{\mathbf{T}}^{\mathbf{2}}} = \frac{\mathbf{g}_{\pi^{+}\mathbf{p}\mathbf{n}}^{\mathbf{2}}}{(4\pi)^{\mathbf{2}}} \frac{|\mathbf{t}| \, \mathbf{F}^{\mathbf{2}}(\mathbf{t})}{(\mathbf{m}_{\pi}^{\mathbf{2}} - \mathbf{t})^{\mathbf{2}}}$$

However, absorption is order of magnitude stronger, compared with $\mathrm{pp}
ightarrow \mathrm{nX}$

 $\frac{\sigma(\mathbf{pA} \to \mathbf{nX})}{\mathbf{A}\,\sigma(\mathbf{pp} \to \mathbf{nX})} = \frac{2}{\sigma_{\text{tot}}^{\pi\mathbf{p}}} \int \mathbf{d^2b} \, \left[1 - e^{-\frac{1}{2}\sigma_{\text{tot}}^{\pi\mathbf{N}}\mathbf{T_A}} \right]$

If BBC are fired detecting multiparticle production, one should replace $2 \left| 1 - e^{-\frac{1}{2}\sigma_{\text{tot}}^{\pi N} T_{A}(b)} \right| \Rightarrow 1 -$

If BBC are vetoed, the diffractive channels $\mathbf{p} + \mathbf{A} o \mathbf{n} \pi^+ + \mathbf{A}^*$ dominate, i.e. $\pi A \rightarrow X$ should be replaced by elastic and quasielastic cross sections,

 $2\left[1-e^{-\frac{1}{2}\sigma_{tot}^{\pi N}T_{A}(b)}\right] \implies \left[1-e^{-\frac{1}{2}\sigma_{tot}^{\pi N}T_{A}(b)}\right]^{2} + \sigma_{el}^{\pi N}T_{A}(b) e^{-\sigma_{in}^{\pi N}T_{A}(b)}$ quasielastic πA elastic πA

 $(\mathbf{1} - \mathbf{z})^{\mathbf{1} - \mathbf{2}\alpha_{\pi}(\mathbf{t})} \sigma_{tot}^{\pi \mathbf{A}}(\mathbf{M}_{\mathbf{x}}^{\mathbf{2}})$

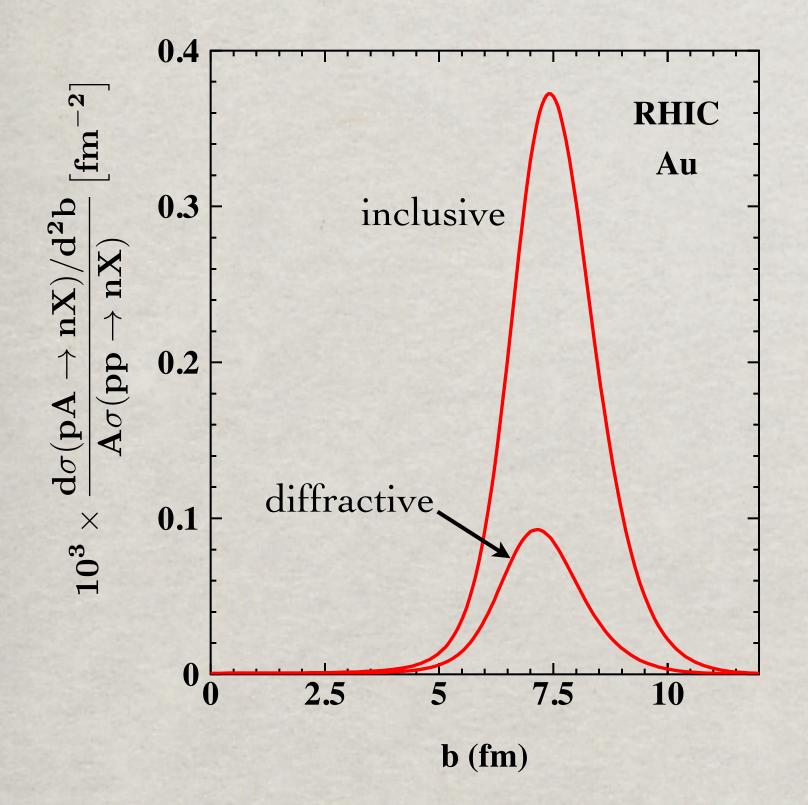
$$(\mathbf{b}) \begin{bmatrix} \mathbf{e}^{-\sigma_{in}^{NN}T_{A}(\mathbf{b})} \\ \mathbf{absorption} \end{bmatrix}$$

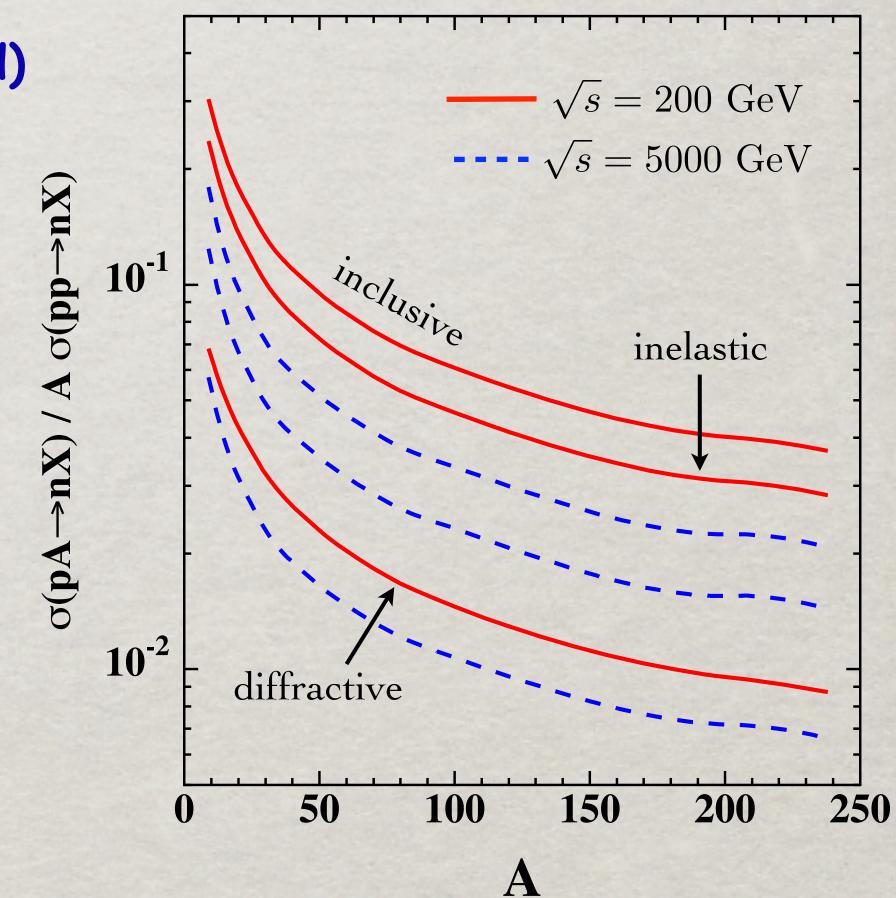
 $(\mathbf{T}_{\mathbf{A}}(\mathbf{b}) = \int \mathbf{d}\mathbf{z} \,\rho_{\mathbf{A}}(\mathbf{b}, \mathbf{z}))$

$$-\mathbf{e}^{-\sigma_{\mathbf{in}}^{\pi\mathbf{N}}\mathbf{T}_{\mathbf{A}}(\mathbf{b})}$$

Cross sections

Three different channels of neutron production: (i) inclusive neutrons; (ii) multi-particle production (BBC fired); (iii) rapidity gap diffractive events (BBC vetoed)



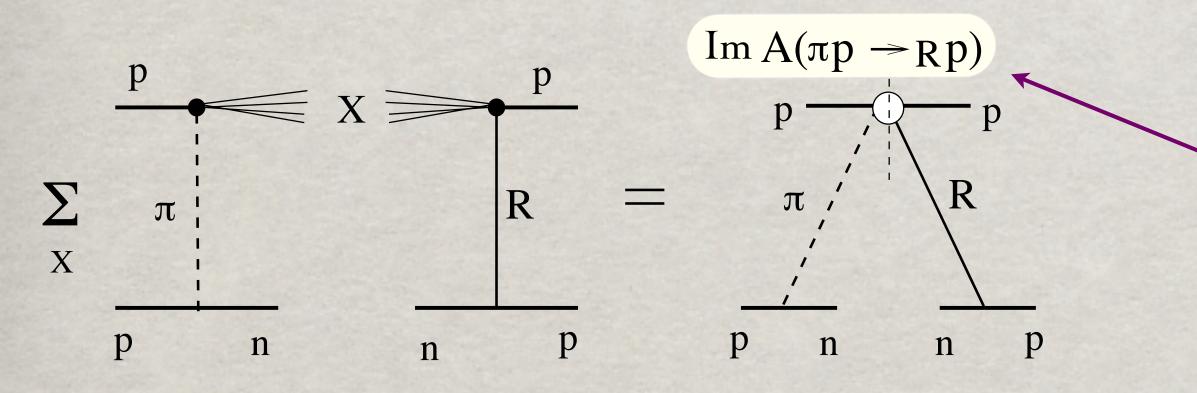


Single-spin asymmetry

The amplitude includes both non-flip and spin-flip terms $\mathbf{A}_{\mathbf{p}\to\mathbf{n}}^{\mathbf{B}}(\mathbf{\tilde{q}},\mathbf{z}) = \bar{\xi}_{\mathbf{n}} \left[\boldsymbol{\sigma_{3} \mathbf{q}_{L}} + \frac{1}{\sqrt{z}} \right]$

Both amplitudes have the same phase No single-spin asymmetry is possible

Interference with other Reggeons



$$\left[\tilde{\boldsymbol{\sigma}} \cdot \tilde{\mathbf{q}}_{\mathbf{T}} \right] \boldsymbol{\xi}_{\mathbf{p}} \boldsymbol{\phi}^{\mathbf{B}}(\mathbf{q}_{\mathbf{T}}, \mathbf{z})$$

$$\eta_{\pi}(\mathbf{t}) = \mathbf{i} - \mathbf{ctg} \left[\frac{\pi \alpha_{\pi}(\mathbf{t})}{2} \right]$$

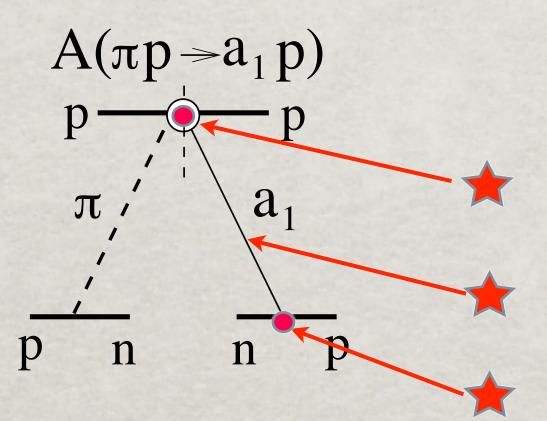
Only unnatural parity states can be produced diffractively

 $\mathbf{A}(\pi \mathbf{p} \rightarrow \mathbf{\tilde{a}_1 p}) \approx \mathbf{const}$

 $\tilde{\mathbf{a}}_1 = \mathbf{a}_1, \ \rho \pi, \ \dots$

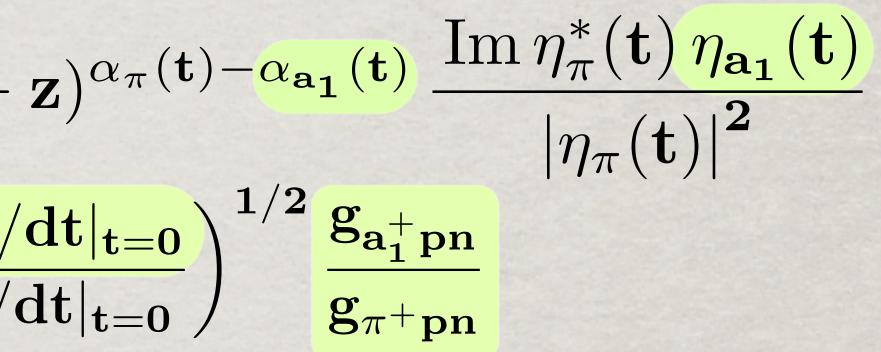
π-a, interference

$$egin{aligned} \mathbf{A_N^{(\pi-a_1)}}(\mathbf{q_T},\mathbf{z}) &= \mathbf{q_T} \, rac{4\mathbf{m_N} \, \mathbf{q_L}}{|\mathbf{t}|^{3/2}} \, (1-\mathbf{x}) \ & imes \left(rac{\mathbf{d}\sigma_{\pi\mathbf{p}
ightarrow \mathbf{a_1p}}(\mathbf{M_X^2})}{\mathbf{d}\sigma_{\pi\mathbf{p}
ightarrow \pi\mathbf{p}}(\mathbf{M_X^2})}
ight) \end{aligned}$$



I.Potashnikova, I.Schmidt, J.Soffer & B.K. Phys.Rev. D84(2011)114012

Three inputs:

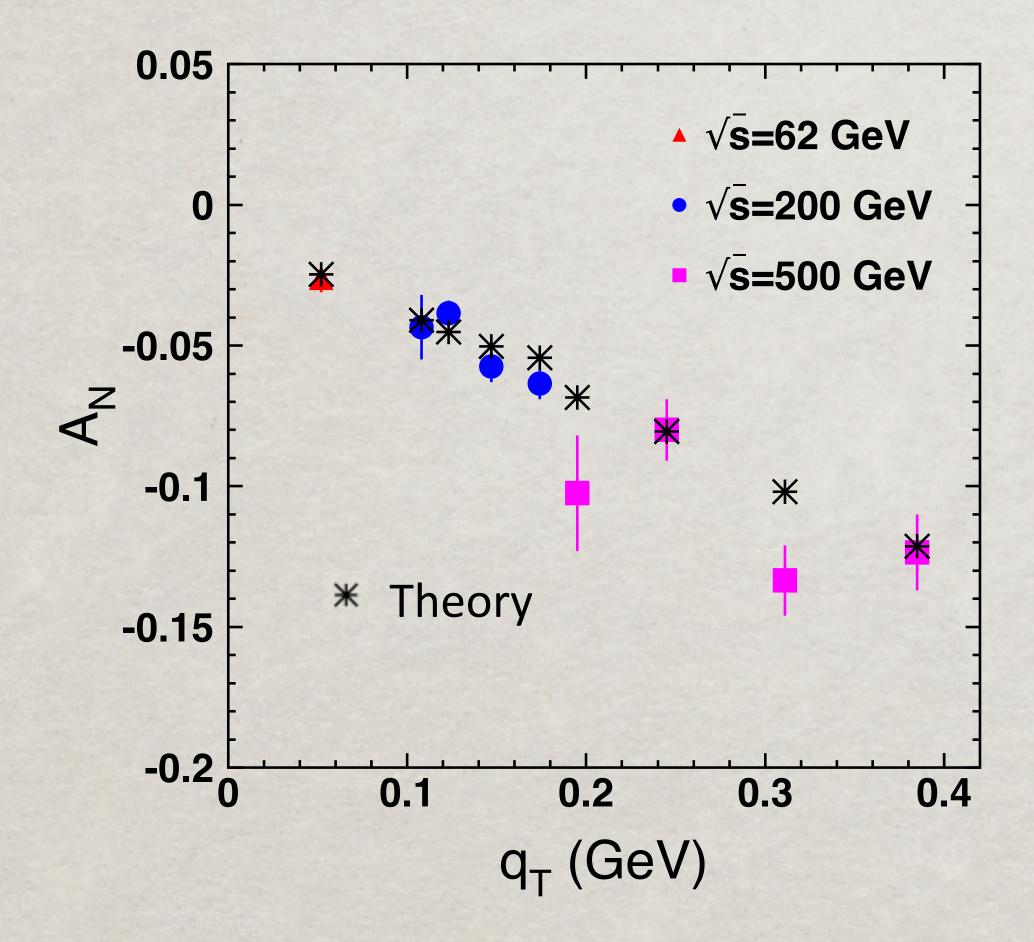


From pion diffractive data Regge-cut trajectory $\alpha_{\tilde{\mathbf{a}}_1}(\mathbf{t})$

 a_1 -nucleon coupling g_{a_1np}

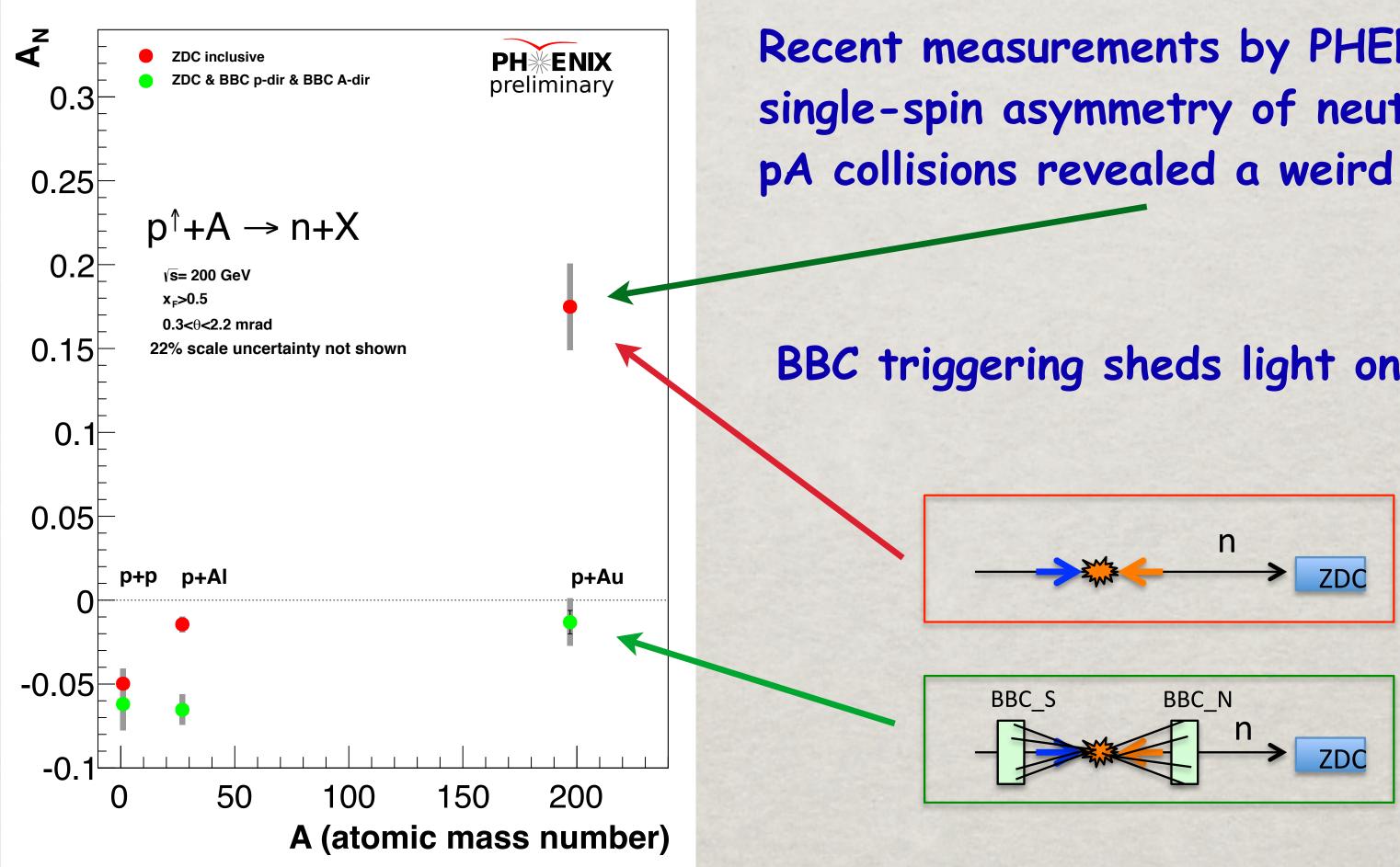
PCAC and the 2d Weinberg sum rule: ${g_{a_1NN}\over g_{\pi NN}}={m_{a_1}^2\,f_\pi\over 2m_N\,f_
ho}pprox 0.5$

Results



The parameter-free calculations agree with the PHENIX data.

Astonishing spin effects in pA->nX



Recent measurements by PHENIX of the single-spin asymmetry of neutrons from polarized pA collisions revealed a weird A-dependence

BBC triggering sheds light on this mistery

inelastic events

$\mathbf{A_{N}^{pA \to nX}}(\mathbf{q_{T}}, \mathbf{z}) = \mathbf{q_{T}} \ \frac{4m_{N} \, q_{L}}{|\mathbf{t}|^{3/2}} \left(1 - \mathbf{z}\right)^{\alpha_{\pi}(\mathbf{t}) - \alpha_{\mathbf{\tilde{a}_{1}}}(\mathbf{t})} \ \frac{\mathrm{Im} \, \eta_{\pi}^{*}(\mathbf{t}) \, \eta_{\mathbf{\tilde{a}_{1}}}(\mathbf{t})}{|\eta_{\pi}(\mathbf{t})|^{2}}$

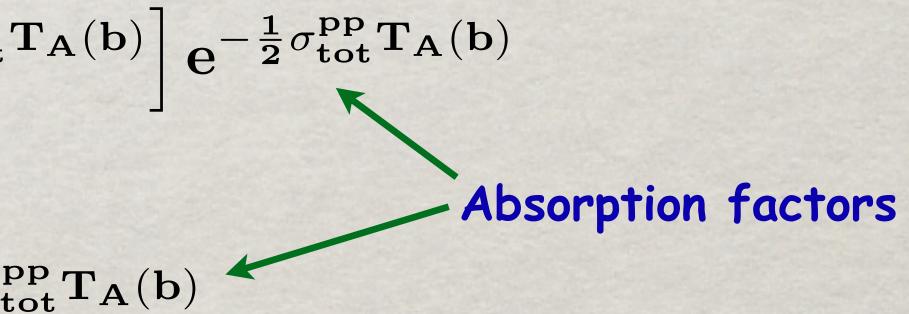
The only difference with pp->nX $\times \left(\frac{d\sigma_{\pi A \to \tilde{a}_1 A}(M_X^2)/dt|_{t=0}}{d\sigma_{\pi A \to \pi A}(M_Y^2)/dt|_{t=0}}\right)^{1/2} \frac{g_{\tilde{a}_1^+ pn}}{g_{\pi^+ pn}}$

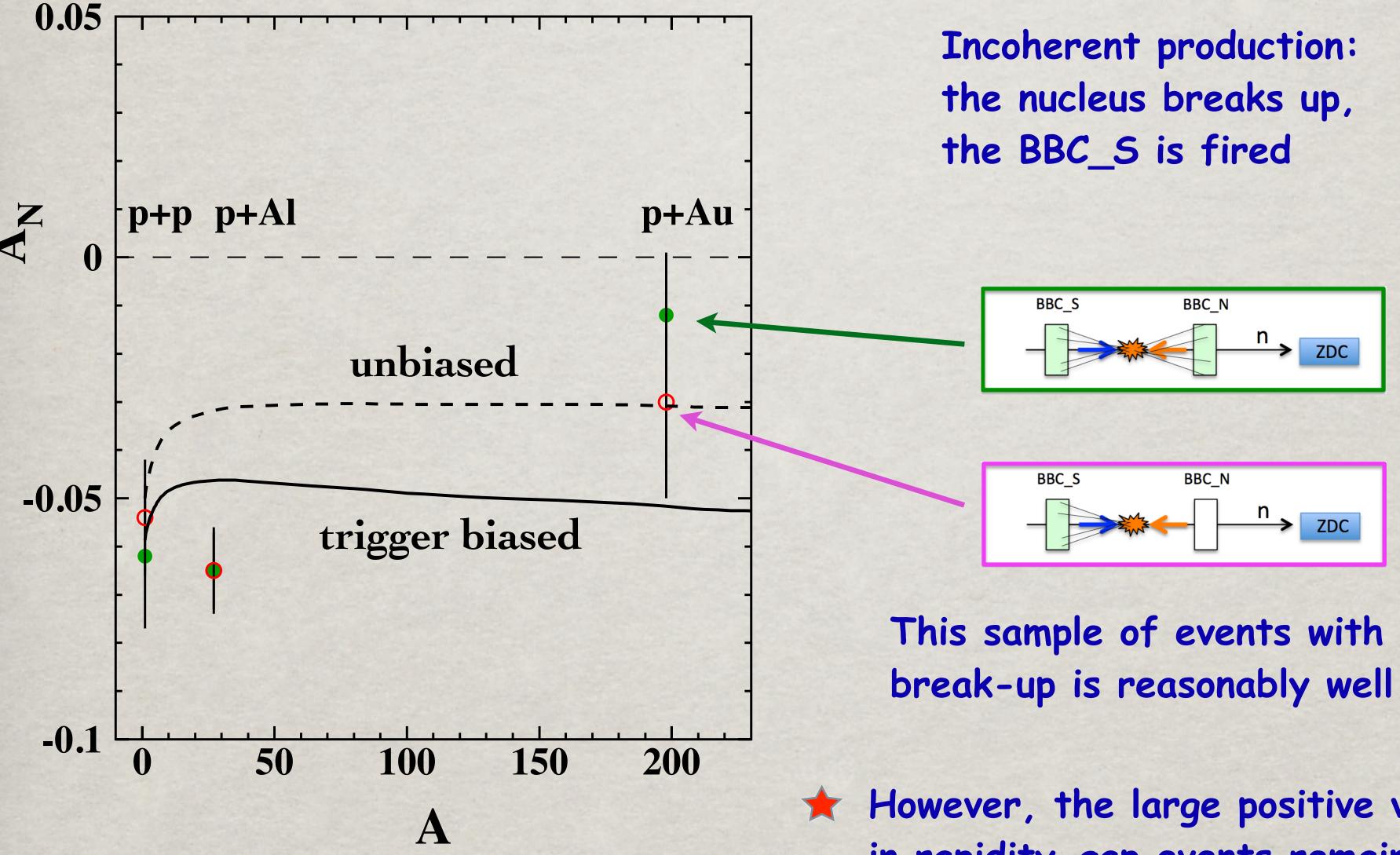
Nuclear effects for coherent $\pi + A - > \pi \rho + A$ $\mathbf{R}_{1} = \frac{1}{\sigma^{\rho \mathbf{p}}} \int \mathbf{d}^{2} \mathbf{b} \, \mathbf{e}^{-\frac{1}{2}\sigma^{\pi \mathbf{p}}_{\text{tot}} \mathbf{T}_{\mathbf{A}}(\mathbf{b})} \left[1 - \mathbf{e}^{-\frac{1}{2}\sigma^{\rho \mathbf{p}}_{\text{tot}} \mathbf{T}_{\mathbf{A}}(\mathbf{b})} \right] \mathbf{e}^{-\frac{1}{2}\sigma^{\mathbf{p} \mathbf{p}}_{\text{tot}} \mathbf{T}_{\mathbf{A}}(\mathbf{b})}$

Nuclear effects for the denominator $\pi A \rightarrow \pi A$ $\mathbf{R_2} = \frac{2}{\sigma_{\mathrm{tot}}^{\pi \mathrm{p}}} \int \mathrm{d}^2 \mathrm{b} \left[1 - \mathrm{e}^{-\frac{1}{2}\sigma_{\mathrm{tot}}^{\pi \mathrm{p}} \mathrm{T}_{\mathrm{A}}(\mathrm{b})} \right] \mathrm{e}^{-\frac{1}{2}\sigma_{\mathrm{tot}}^{\mathrm{pp}} \mathrm{T}_{\mathrm{A}}(\mathrm{b})}$

Triggering on nuclear breaks-up $\mathbf{R_3} = \frac{\sigma_{\mathbf{tot}}^{\pi \mathbf{A}}}{\sigma_{\mathbf{in}}^{\pi \mathbf{A}}}$

 A_N in $pA \rightarrow nX$

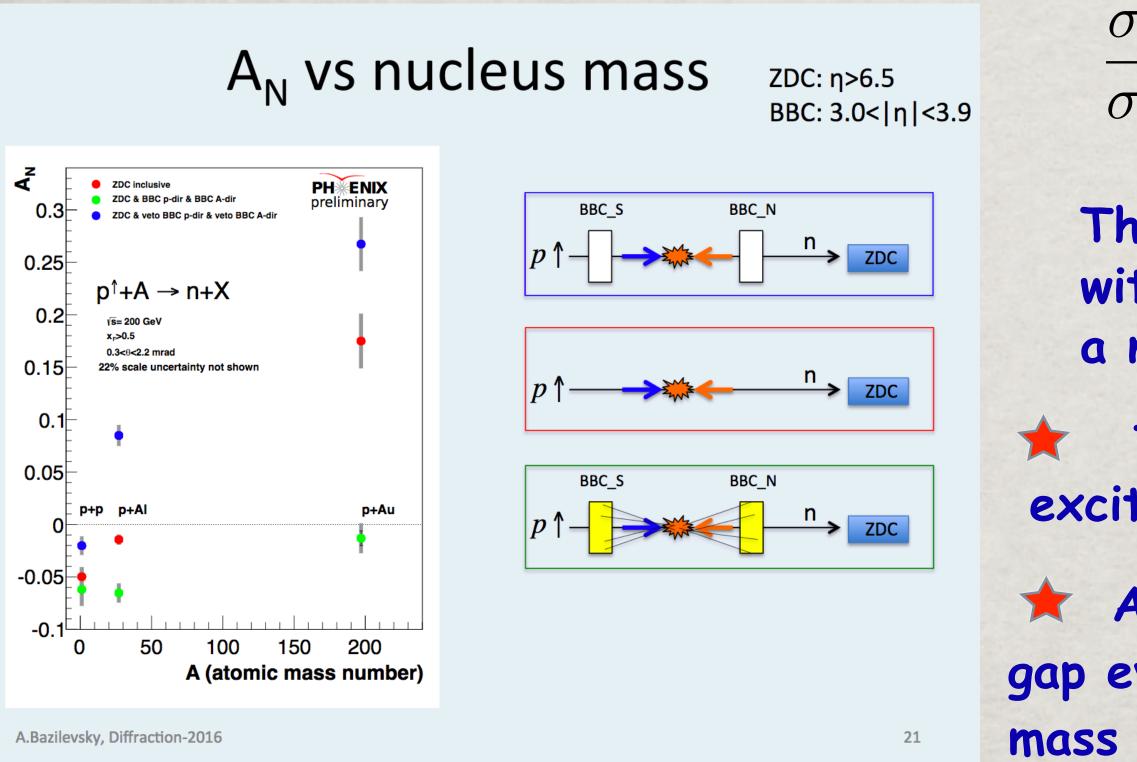




This sample of events with nuclear break-up is reasonably well explained.

★ However, the large positive values of A_N in rapidity-gap events remain unexplained.

Rapidity gap vs inclusive channels



The overall momentum transfer in coherent production $p_T^2 \sim 1/R_A^2 = 0.0008 \,\mathrm{GeV}^2$ is small compared with the measured neutron $\langle q_T^2 \rangle = 0.013 \,\mathrm{GeV}^2$, and is even much less in Coulomb excitation. Neglecting qT, and fixing z=0.75, the invariant mass is very small,

$$\mathbf{M^2} = \frac{m_n^2}{z} + \frac{m_\pi^2}{1-z} + \frac{q_T^2}{z(1-z)} = (\frac{1.15\,\mathrm{GeV}})^2$$

$\sigma_{diff}(\mathbf{pA} \rightarrow \mathbf{nX})$	0.25	pp
	0.34	pAl
$\sigma_{incl}(pA \rightarrow nX)$	0.66	pAu

The fraction of rapidity-gap events rises with A, while hadronic mechanisms lead to a nearly A-independent fraction of 0.25.

 \bigstar This might indicate at an UPC Coulomb excitation mechanism, which has factor Z^2

Another peculiar feature of the rapidity gap events is the extremely small invariant mass M of the diffractive excitation $p - > n\pi$.

> Too small to relate to the polarized Primakoff effect.

Summary

While the cross section of leading neutron production agree well with the single pion model, the spin effects are more involved and require contribution of other mechanisms, e.g. $\pi - \tilde{a}_1$ interference.

First calculations of leading neutron production off nuclei are done for coherent, diffractive, and incoherent events. The fraction of rapidity-gap events is found to be 25%, nearly independent of A.

• The nuclear effects for ${f A}_N$ of leading neutrons due to $\pi-{f {f a}}_1$ interference are calculated in good agreement with data for incoherent neutron production, associated with a nuclear break-up.

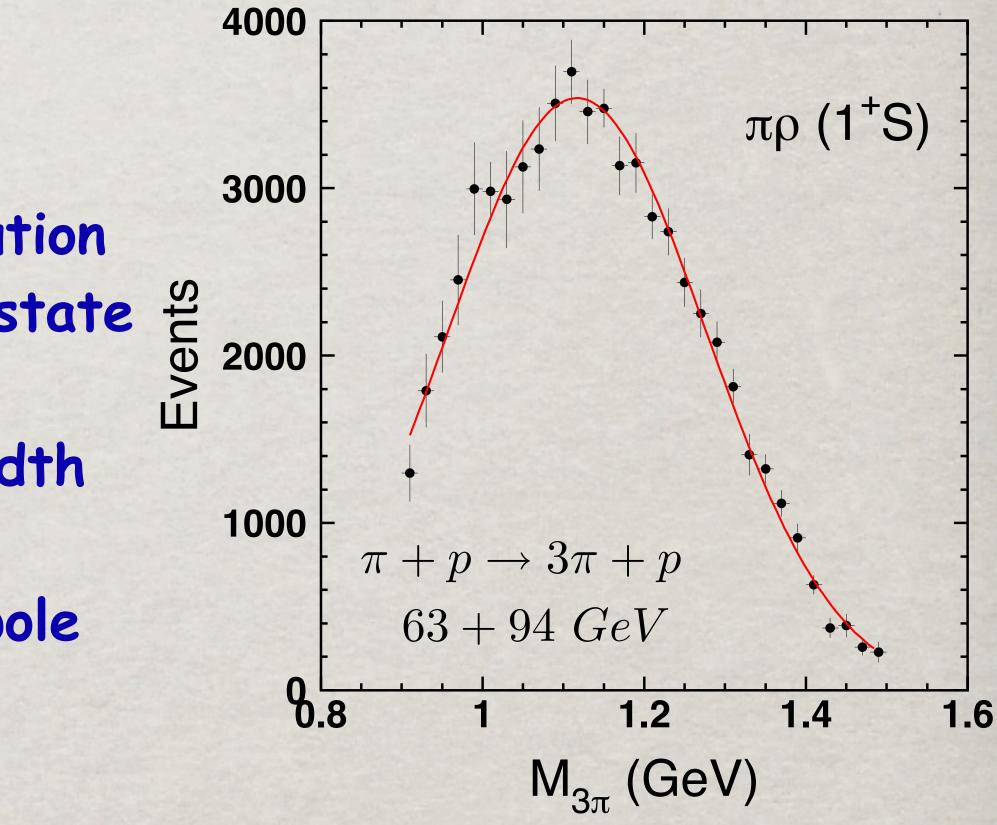
Large values of A_N in diffractive/Coulomb dissociation p->n π remain unexplained so far.

BACKUPS a1 production cross section

The a_1 is a weak pole: no axial-vector dominance for the axial current.

Nevertheless, the invariant mass distribution of diffractively produced $\pi - \rho$ in 1^+S state forms a peak, dominated by the Deck mechanism, with a similar position and width as a_1 . This singularity in the dispersion relation can be treated as an effective pole "a" with mass $m_{\rm a}=1.1\,GeV$.

The cross section of $\pi + \mathbf{p} \rightarrow (\pi \rho)_{\mathbf{1}+\mathbf{S}} + \mathbf{p}$ was measured up to 94 GeV. $\frac{d\sigma_{\pi\mathbf{p}\to\mathbf{ap}}(\mathbf{E_{lab}}=\mathbf{94\,GeV})}{dq_{T}^{2}}\Big|_{\mathbf{q_{T}}=\mathbf{0}}=\mathbf{0.8\pm0.08}\frac{\mathrm{mb}}{\mathrm{GeV}^{2}}$



Extrapolated to the RHIC energy range correcting for absorption.

BACKUPS ann coupling

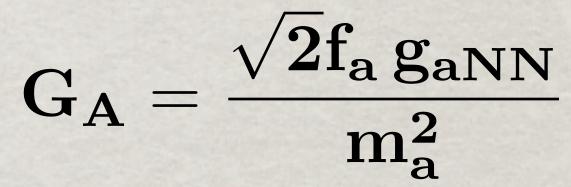
PCAC miraculously relates the pion-nucleon coupling with the axial constant

GA represents the contribution to the dispersion relation of all axial-vector states heavier than pion. Assuming dominance of the 1^+S a-peak, we get

The dispersion integrals for vector and axial currents are related by the 2d Weinberg sum rule

	g aNN	$- \frac{\mathbf{m_a^2 f_\pi}}{\mathbf{m_a^2 f_\pi}}$
Thus,	$\mathbf{g}_{\pi \mathbf{N} \mathbf{N}}$ –	$2 m_{ m N} { m f}_{ ho}$ (

$g_{\pi NN} = \frac{\sqrt{2m_N G_A}}{f}$ **Goldberger-Treiman relation**



 ${f f_a}={f f}_
ho=rac{\sqrt{2m_
ho^2}}{\gamma_
ho}$

pprox 0.5

BACKUPS Regge trajectories

Assuming the universal slope of Regge trajectories $\alpha'_{{\bf a}_1}={\bf 0}.9\,{\bf GeV}^{-2}$

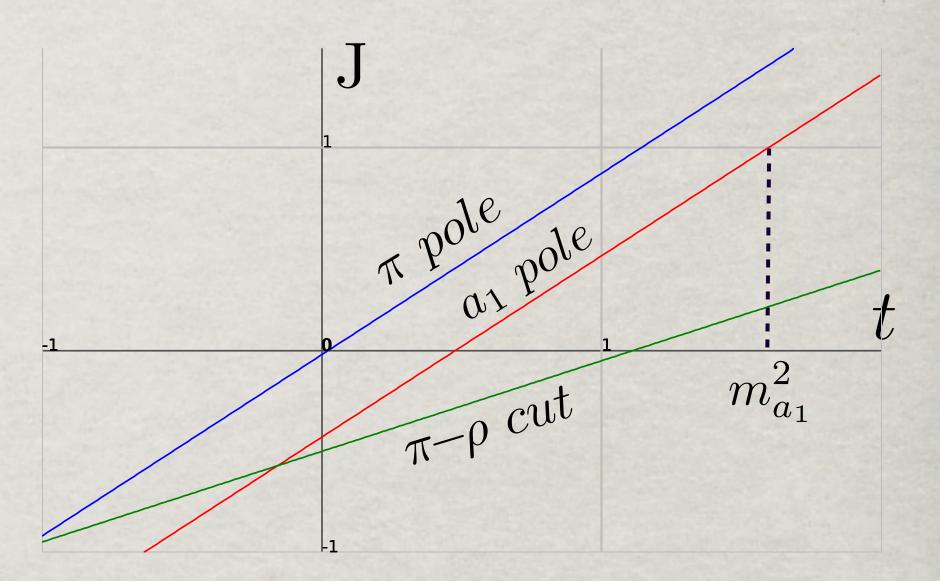
$$\alpha_{a_1}(t) = -0.43 + 0.9 t$$

The $\pi - \rho$ cut state is more important, it has trajectory

$$\alpha_{\pi-\rho}(\mathbf{t}) = \alpha_{\pi}(\mathbf{0}) + \alpha_{\rho}(\mathbf{0}) - \mathbf{1} + \alpha'_{\mathbf{R}} \mathbf{t}/\mathbf{2}$$

The signature factor of the effective 1^+S state $\eta_{\mathbf{a}}(\mathbf{t}) = -\mathbf{i} - \mathbf{tg} \left[\pi \alpha_{\mathbf{a}}(\mathbf{t})/2\right]$

The phase shift relative the pion pole is large $\phi_{\mathbf{a}}(\mathbf{t}) - \phi_{\pi}(\mathbf{t}) \approx rac{\pi}{2} \left[\mathbf{1.5} + \mathbf{0.45 t} \right]$



Fective 1^+ S state $\alpha_a(t)/2$] on pole is large 0.45 t]