Measurements of diffractive and exclusive processes with ATLAS

Mateusz Dyndal (DESY)
on behalf of the ATLAS Collaboration

2-8 Sep 2016
Outline

- Exclusive $\gamma \gamma \rightarrow \ell^+\ell^-$ Production at 7 TeV

- Exclusive $\gamma \gamma \rightarrow W^+W^-$ Production and Search for Exclusive Higgs Production at 8 TeV

- Diffractive Dijet Cross Sections at 7 TeV

- Feasibility Studies for Exclusive Jet Production with AFP
The ATLAS sub-detectors

ALFA: elastic protons measurement (see Hasko’s talk)

AFP: diffractive protons measurement. CERN-LHCC-2015-009
Single-arm installed, some diffractive data already taken!
Exclusive photon-induced processes: **Motivation**

- **Exclusive $\gamma\gamma \rightarrow X$ production** can be computed in QED+EWK with relatively small uncertainty (EPA)
 - True if we neglect proton absorptive corrections...

- **Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production**
 - Standard candle for photon-induced physics
 - Non-negligible background to Drell-Yan like reactions
 - Possible to use $pp (\gamma\gamma) \rightarrow pp \ell^+\ell^-$ for luminosity calibration at the LHC?

- **Exclusive W^+W^-**
 - Test of SM $\gamma\gamma WW$ quartic gauge coupling
 - Probe of anomalous quartic gauge couplings (aQGCs)

- **Exclusive (CEP) $gg \rightarrow$ Higgs \rightarrow W^+W^-**
 - Similar final state as in exclusive $\gamma\gamma \rightarrow W^+W^-$ studies
 - Can be used for Higgs properties studies (low systematics due to the clean production environment)
Exclusive $\gamma\gamma \rightarrow l^+l^-$ production at 7 TeV, PLB 749 (2015) 242-261

Run 190644, Event 51422085
Time 2011-10-09, 16:29 CEST
Photon-induced processes: cross-section dominated by so-called single- and double-proton dissociative reactions. Non-negligible background for many analyses (low, high-mass DY, $\phi^*/p_T(Z)$ measurement, ...)

- **Preselection:**
 - $p_T^{\mu}>10$ GeV, $|\eta_{\mu}|<2.4$, $M_{\mu^+\mu^-}>20$ GeV
 - $p_T^e>12$ GeV, $|\eta_e|<2.4$, $M_{e^+e^-}>24$ GeV

- **Exclusive selection:**
 - 3 mm dilepton-vertex longitudinal isolation efficiency = 74%
 - p_T of the dilepton system < 1.5 GeV
- **Signal extraction**: binned maximum-likelihood fit to the measured dilepton acoplanarity distribution

- Corresponding fiducial cross-sections:
 - \(\sigma_{\gamma\gamma \rightarrow e^+e^-}^{excl.} = 0.428 \pm 0.035 \text{(stat.)} \pm 0.018 \text{(syst.)} \) pb
 - \(\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{excl.} = 0.628 \pm 0.032 \text{(stat.)} \pm 0.021 \text{(syst.)} \) pb

- Theory predictions (QED-EPA), with absorptive corrections from [PLB 741 (2015) 66-70](20% effect)
 - \(\sigma_{\gamma\gamma \rightarrow e^+e^-}^{EPA, corr.} = 0.398 \pm 0.007 \text{(theo.)} \) pb
 - \(\sigma_{\gamma\gamma \rightarrow \mu^+\mu^-}^{EPA, corr.} = 0.638 \pm 0.011 \text{(theo.)} \) pb

- Agreement also with similar CMS measurement
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Search for Exclusive H at 8 TeV (arXiv:1607.03745) PRD 94 (2016) 032011

Run: 203432
Event: 53911100
2012-05-15 13:35:15 CEST
- **Event selection**

- $WW \rightarrow e\nu\mu\nu$ final states are considered

- 1 mm dilepton-vertex longitudinal isolation \rightarrow efficiency $= 58 \pm 6\%$

- Full event selection criteria:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Excl W^+W^-</th>
<th>Excl Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{T\text{lep}}^{\ell\mu}$</td>
<td>$> 25, 20 \text{ GeV}$</td>
<td>$> 25, 15 \text{ GeV}$</td>
</tr>
<tr>
<td>$m_{e\mu}$</td>
<td>$> 20 \text{ GeV}$</td>
<td>$> 10 \text{ GeV}$</td>
</tr>
<tr>
<td>$p_{T\ell\mu}^{\ell\mu}$</td>
<td>$> 30 \text{ GeV}$</td>
<td>$> 30 \text{ GeV}$</td>
</tr>
<tr>
<td>Δz_0^{iso}</td>
<td>1mm</td>
<td>1mm</td>
</tr>
<tr>
<td>$p_{T\ell\mu}^{\ell\mu}$ (aQGC)</td>
<td>$> 120 \text{ GeV}$</td>
<td>-</td>
</tr>
<tr>
<td>$m_{e\mu}$</td>
<td>-</td>
<td>$< 55 \text{ GeV}$</td>
</tr>
<tr>
<td>$\Delta \phi_{e\mu}$</td>
<td>-</td>
<td>< 1.8</td>
</tr>
<tr>
<td>m_T</td>
<td>-</td>
<td>$< 140 \text{ GeV}$</td>
</tr>
</tbody>
</table>

Higgs selection: lower p_T / mass requirement (one W is off-shell)
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Search for Exclusive H at 8 TeV (arXiv:1607.03745)

- $\gamma\gamma \rightarrow \ell^+\ell^-$ validation

- Ratio of observed elastic $\gamma\gamma \rightarrow \ell^+\ell^-$ to bare EPA prediction:

$$f_{EL} = 0.76 \pm 0.04 \text{ (stat.)} \pm 0.10 \text{ (sys.)}$$

-> Suppression is stronger due to larger invariant mass being probed

- No simulation available for SD and DD $\gamma\gamma \rightarrow W^+W^-$ (and EL+SD+DD are mixed due to W decays):

 a correction factor is applied using $\gamma\gamma \rightarrow \ell^+\ell^-$ for $m_{\ell^+\ell^-} > 160$ GeV:

$$f_{\gamma} = \frac{N_{\text{Data}} - N_{\text{PowHEG Background}}}{N_{\text{HERWIG++ Elastic}}} \bigg|_{m_{\mu\mu}>160 \text{ GeV}}$$

$$= 3.30 \pm 0.22 \text{ (stat.)} \pm 0.06 \text{ (sys.)}$$
Results ($\gamma\gamma \rightarrow W^+W^-$ and aQGCs)

- **Exclusive W^+W^- event yields:** Data = 23, Background = 8.3 ± 2.6, Signal = 9.3 ± 1.2
 -> Measurement significance of 3σ

- **aQGC event yields** [$p_T(\mu) > 120$ GeV]:
 Data = 1, Background = 0.37 ± 0.13
 SM Signal = 0.37 ± 0.04
 -> new aQGC limits are set
Results (exclusive Higgs)

- Exclusive and inclusive W^+W^- are the dominant background

- Exclusive Higgs event yields: Data=6, Background = 3.0 ± 0.8, Signal = 0.023 ± 0.003

- Observed and expected limits:
 - $\sigma < 1.2 \text{ pb} @ 95\% \text{ CL (Observed)}$
 - $\sigma < 0.7 \text{ pb} @ 95\% \text{ CL (Expected)}$

- Upper limit = $400 \times$ predicted σ
 (predictions include just the elastic process)
Motivation

- Diffractive DIS at HERA: Diffractive parton densities dominated by gluon
- pp(pbar) collisions: Failure in comparison of Tevatron proton-tagged diffractive dijets with HERA DPDFs
 -> ’rapidity gap survival probability’ due to rescattering (absorptive corrections) breaks factorisation
- Kinematics and selection

- Low pile-up data sample from 2010 with $\sqrt{s}=7$ TeV and integrated luminosity of 6.8 nb
- Jets with anti-kT algorithm, $p_T > 20$ GeV, $|\eta| < 4.4$, R=0.4, 0.6
- Gaps characterised using $\Delta \eta_F$, based on tracks ($|\eta| < 2.5$, $p_T > 200$ MeV) and calocells ($|\eta| < 4.8$) that are >5σ out of noise distribution
Event characteristics

- Diffractive proton energy loss (ξ) is extracted from energy deposits:

$$\xi \approx \frac{M_X^2}{s} = \sum p_T e^{\pm \eta} / \sqrt{s}$$

- Experimental resolution on $\log(\xi)$ is approximately 10%
Diffractive Dijet Production at 7 TeV, PLB 754 (2016) 214-234

Results

- Diffractive component is required for more complete description of data
- Pythia8 gives a good description of shape and normalization
- Rapidity gap survival factor is extracted in the context of POMWIG (and H1 2006 Fit B DPDFs):

\[S^2 = 0.16 \pm 0.04 \text{ (stat.)} \pm 0.08 \text{ (exp. syst.)} \]
Feasibility Studies for Exclusive Jet Production with AFP, ATL-PHYS-PUB-2015-003
- **AFP detector status** (see Marek’s talk)

- Single-arm with 3 3D pixel detector layers (near station) and 4 layers (far station) fully integrated with ATLAS

- 300 b fill #4906 (10th of May 2016), AFP readout (20σ from the beam) but triggered by ATLAS ($\mu \approx 26, 2:16$ hrs)

- Low-μ run with dedicated AFP-based triggers is also recently recorded ($\approx 0.04 \, \text{pb}^{-1}$)
Motivation and feasibility results

- Constrains other exclusive productions (e.g. Higgs)
- Cross section measurement is possible, even with single-tag configuration:
 - $S/B = 10^4$ after applying all the selection requirements
 - ~400 events expected with 1pb$^{-1}$ of data
 - See also EPJC 75 (2015) 320
Summary

- **Exclusive (photon-induced) processes**
 - Cross sections of the exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production have been measured
 - Observation is consistent with the suppression (20%) expected due to proton absorption contributions
 - Evidence of SM exclusive $\gamma\gamma \rightarrow W^+W^-$ production (significance of 3σ)
 - No evidence for an excess in the kinematic region targeting aQGC
 - Limits on exclusive Higgs production cross section are also set

- **Diffractive Dijets**
 - Evidence for diffractive contribution in 7 TeV data
 - Detailed understanding heavily limited by poorly known non-diffractive contribution
 - Future prospects with dedicated proton spectrometers (AFP) are very promising