
Pomeron-Odderon interactions:  
a functional RG flow analysis  

Gian Paolo Vacca
INFN - Bologna

Diffraction 2016 
Acireale - September 5, 2016 

Work in collaboration  with  
C. Contreras and J. Bartels

1



Outline

• Motivations and a Reggeon Field Theory (RFT)

• Functional RG approach 

• Pomeron-Odderon RFT: RG flow equations

• Critical (fixed point) solutions         

• Discussion
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QCD in the Regge limit.
Since early perturbative BFKL analysis of QCD in terms of reggeized gluons 
the Pomeron has been found as a composite state      of 2 reggeized gluons

3

and later the Odderon (C,P odd), as a composite state     of 3 reggeized gluons, 
solution of the BKP equation in the lowest non trivial approximation. 

Simple exchanges of such objects are corrected by interactions in presence 
of more reggeized gluons in the t channel which are necessary to unitarize the theory.

Diagrams with reggeized gluons 
containing PPP and POO vertices: 
interactions are local in rapidity  
but non local in transverse space.

Similar objects are found in other approaches to the Regge limit of QCD: 
CGC, Dipole/Wilson lines.

RFT might appear at high energies (large rapidities) and large transverse distances.

E↵ective Field Theory with Pomerons and

Odderons

April 29, 2016

1 From QCD analysis

Investigations from QCD in the Regge limit in generalized LLA and also
in Dipole/CGC/Wilson line approaches (NLLA to be checked) have shown
that the evolution in the rapidity ⌧ for the C-even (pomeron exchange) am-
plitude N(x,y; ⌧) and the C-odd (odderon exchange) amplitude O(x,y; ⌧)
in the transverse position plane is given in the tree approximation by the
equations [1] (See also [2] but with wrong signs there!).
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where the linear evolution is regulated by the BFKL kernel and the
non linear terms are associated to the triple pomeron, pomeron into two
odderons and the odderon into pomeron-odderon non local in transverse
space vertices. We can write them symbolically in a more compact form

@N
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= KN � VPPPNN + VPOOOO

@O
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= KO � VOPO(NO +ON) (3)

Here, at tree level, one hasN = Re
R
hT  †iX and O = Re

R
hT��†iY where

 and � are the pomeron and odderon fields respectively for suitable X and
Y . Therefore at lowest order N and O correspond to the reggeon propa-
gators integrated with the target impact factor. Note that physically the
Pomeron exchange amplitude receives negative contributions from splitting
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Goals
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• Can QCD in the high energy limit and at large distances be described by 
    an effective theory such as Reggeon Field Theory (RFT), with local fields 
    and local interactions?

• BFKL physics: fundamental gluon (and quarks) organise themselves  
    in composite fields of reggeized gluons giving as leading objects 
    interacting Pomeron and Odderon,  
              BFKL Pomeron (        ), Odderon (        ) and both 

• Here we investigate some features of RFT in 2 transverse dimensions 
    Is the RG flow of this theory able to tell us if RFT can be a useful description?

• Such a transition should involve perturbative physics,  
   

• This should be at the “UV” boundary of RFT, below which 
    (at larger distances) they may be considered approximately local 
    with           and a non zero       and descibed by Regge poles.

• Possible transition from QCD to the RFT regime:

↵0 ' 0J ' 1J > 1

J ' 1 ↵0



Strong interactions and old Regge theory
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About half a century ago V.N. Gribov introduced phenomenologically the RFT.

• The leading pole: even signatured Pomeron with vacuum quantum numbers, 
    trajectory α(t).

• Regge pole description in the complex                    plane

Starting point: Sommerfeld-Watson representation of the elastic scattering amplitudes.

•  Unitarity in the crossed (t-channel): multi pomeron states, branch-point singularities  
     (Regge cuts)
•  Analysis of experimental inclusive cross sections in the triple Regge region  
     showed that a triple Pomeron interaction should be introduced.
•  In the ’70 it was conjectured that another pole with odd quantum numbers (P,C,   ) 
     could exist, the so called Odderon with α(0) close to 1.
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Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)

with ω = J − 1,
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sin πω
= i

e−i π
2 (ω+ 1−τ

2 )

cos
[ π

2

(
ω + 1−τ

2

)]

= i +
[
tan

π
2

(
ω +

1 − τ

2

)]
, (2)

and τ = ±1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)
δ
(
ω −

∑
j ωj

)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
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in γ∗γ∗ scattering
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In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:
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and τ = ±1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):
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where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)
δ
(
ω −

∑
j ωj

)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle

•  In general one may introduce interacting vertices of any order for many reggeons  
     (Pomeron, Odderon and subleading reggeons). 
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of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2
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As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)
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ω −
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)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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as indicated in Fig. 2c, the Regge pole is a bound state
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functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
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idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
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54 J. Bartels et al.: AGK cutting rules and multiple scattering in hadronic collisions

A

B

A

B

NA
n

NB
n

Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
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tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):

disc(n)
ω [F(ω, t)]

= 2πi
∫

dΩn

n!
γ{βj} NA

n ({kj}; ω) NB
n ({kj}; ω)

×δ(ω − Σjβj), (3)

dΩn = (2π)2δ2(q − Σjkj)
n∏

j=1

d2kj

(2π)2
,

where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form

γ{βj} = ℑ
[
− iΠj(iξj)

]

= (−1)n−1
cos
[

π
2
∑

j

(
βj + 1−τj

2

)]

∏
j cos

[
π
2

(
βj + 1−τj

2

)] . (4)

As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)
δ
(
ω −

∑
j ωj

)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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cut), and there is no need for an imaginary coupling. On the other hand, the transition
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Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition
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Pomeron:             (imaginary)        ,  Odderon:                 (real)

coupling when the corresponding operator (which must contain an even
number of odderon fields) can be written as ( † )l(�†�)m for l,m � 0 times
a factor ( n +  †n) or (�2n + �†2n) with odd n (or odd powers of them) or
also a factor

�
 p(�†2)q +  †p(�2)q

�
when p+ q is odd. Otherwise it is real.

Again maybe it is more convenient to introduce new variables as we did for
the pure pomeron case.

The potential is complex in a non trivial way. The potential is real in
the subspace of imaginary pomeron fields, i.e.  = ix and  † = iy and
with odderon fields was square is imaginary an such that �†� is real, i.e.
� = ei⇡/4z, �† = e�i⇡/4w, with real x, y, z, w.

1.1 Signature factors

In the RFT language one is dealing with partial wave amplitudes which are
real valued. For a single reggeon exchange (i.e. the reggeon propagator)

one has a signature factor ⇠(!) = ⌧�e�i⇡!

sin⇡! , with ! = J � 1 the intercept
minus one and ⌧ = ±1 the reggeon signature. Then the signature factor for
an amplitude with multi reggeon exchange (also in loops), i.e. containing
multiple propagators, is given by �i

Q
j(i⇠j). For |⇡!| ⌧ 1 the pomeron

(⌧ = +1) has ⇠ ' i while the odderon (⌧ = �1) has a real ⇠ ' � 2
⇡! . Note

that for any reggeon approximated by a linear trajectory one has ! = �↵0q2.
If one considers a two reggeon correction to the pomeron and the odd-

eron, the signature factors S are given by:
- pomeron with SP = i: two pomeron state has SPP = �i and the two
odderon state has SOO = +i( 2

⇡! )
2.

- odderon with SO = � 2
⇡! : the mixed pomeron-odderon state has SPO =

�(� 2
⇡! ).

This is in agreement with the expected sign of the corrections already dis-
cussed for the evolution given in Eqs. (3).
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Fig. 1. Graphical representation of a multi-Regge poles con-
tribution to the elastic scattering amplitude. The zigzag lines
represent pomerons

rules presented in the original AGK paper for an arbitrary
number of exchanged gluons, and we apply these rules to
single and double inclusive jet production cross sections.
The comparison with the original AGK paper allows us to
include into our analysis also soft rescattering corrections.
As a specific example, we consider the double BFKL cor-
rection to the Mueller–Navelet jet cross section formula
[10].

This paper is organized as follows. In Sect. 2 we briefly
review the logic behind the AGK analysis, and we summa-
rize the results of [6]. This leads us to define a framework
for studying multiple BFKL exchanges in hadron–hadron
scattering. In Sect. 3 we discuss the counting rules for in-
clusive cross sections, and in Sects. 4 and 5 we turn to
single jet and double jet inclusive cross sections. A few
details are put into an appendix.

2 Reggeon unitarity, energy cuts à la AGK,
and particle-pomeron couplings
in γ∗γ∗ scattering

2.1 The non-perturbative AGK rules

In this section we briefly review the AGK strategy and its
application to pQCD. We will conclude that the central
task is the derivation and the study of the coupling of four
(or more) reggeized gluons to virtual photons.

The original AGK paper starts from a multi-Regge
pole contribution to the elastic scattering amplitude
(Fig. 1), written as a Sommerfeld–Watson representation:

TAB(s, t) =
∫

dω

2i
ξ(ω)s1+ωF(ω, t). (1)

with ω = J − 1,

ξ(ω) =
τ − e−iπω

sin πω
= i

e−i π
2 (ω+ 1−τ

2 )

cos
[ π

2

(
ω + 1−τ

2

)]

= i +
[
tan

π
2

(
ω +

1 − τ

2

)]
, (2)

and τ = ±1 being the signature. The (real-valued) par-
tial wave F(ω, t) has singularities in the complex ω-plane,

and the multi-Regge exchange corresponds to a particular
branch cut. There is a general formula for the discontinu-
ity across this cut [11] (Fig. 2a):

disc(n)
ω [F(ω, t)]

= 2πi
∫

dΩn

n!
γ{βj} NA

n ({kj}; ω) NB
n ({kj}; ω)

×δ(ω − Σjβj), (3)

dΩn = (2π)2δ2(q − Σjkj)
n∏

j=1

d2kj

(2π)2
,

where kj (j = 1, ..., n) denotes the transverse momentum
of the jth Regge pole, q is the sum over all transverse
momenta with q2 = −t, and α(−k2

j ) = αj = 1 + βj is
the Regge pole trajectory function. The factor which de-
termines the overall sign has the form

γ{βj} = ℑ
[
− iΠj(iξj)

]

= (−1)n−1
cos
[

π
2
∑

j

(
βj + 1−τj

2

)]

∏
j cos

[
π
2

(
βj + 1−τj

2

)] . (4)

As an example, the contribution of two even-signature
Regge poles (pomerons) with intercept close to unity is
negative compared to the single pole contribution. Equa-
tion (3) is a “reggeon unitarity equation”: it describes
the contribution of the n-reggeon t-channel state to the
discontinuity in angular momentum of the partial wave
F (Fig. 2). In the same way as in a usual unitarity inte-
gral particles in the intermediate state are to be taken on
mass shell, in the reggeon unitarity integral the reggeons
of the intermediate state are on shell in reggeon energy:
as indicated in Fig. 2c, the Regge pole is a bound state
of (at least) two particles, and the complex angular mo-
mentum of the two particles is put equal to the trajectory
function of the Regge pole. The formula (3) contains the
coupling of n Regge poles to the external particles, de-
noted by Nn(kj , ω). In general, they are functions of ω
and contain, for example poles and cuts due to the ex-
change of Regge poles. This includes, in particular, the
possibility that the reggeons i and j form a composite
state. Depending on the structure of the Nn, it may be
necessary to replace, in (3), the ω-dependent δ-function
by
∏n

1
(∫

dωjδ(ωj − βj)
)
δ
(
ω −

∑
j ωj

)
: in this case, the

vertex function Nn may depend not only upon the total
angular momentum ω, but also upon the ωj . An example
will be given further below. For these reasons, the vertex
functions Nn are more general than the impact factors.

For later considerations it will be useful to say a few
more words about the origin of this formula. Following the
idea of Gribov, Pomeranchuk and Ter-Martirosian [12] one
starts, in the simplest case, from the four particle inter-
mediate state in the t-channel unitarity equation in the
physical region of the process A + Ā → B + B̄ (Fig. 2b).
Above the 4-particle state, the 2 → 4 amplitude for the
process A + Ā → 1 + 2 + 3 + 4 appears. This scattering
amplitude (and the corresponding one below the 4-particle
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It is important to note the di↵erences in the structure of the e↵ective potential compared

to the pure Pomeron case. As described in [1], for the pure Pomeron case the couplings are

real-valued for even powers of the Pomeron fields, whereas odd powers require imaginary

couplings. This is a consequence of the even-signature of the Pomeron exchange which

leads to special trigonometric factors in front of multi-pomeron cut contributions in the

t-channel unitarity equations: the n-Pomeron contribution comes with a factor (�1)n�1.

This means, in particular, that the two Pomeron cut contribution to the Pomeron self-

energy has a minus sign which is obtained by requiring the triple Pomeron coupling to be

purely imaginary.

For the Odderon the situation is di↵erent: the Odderon has negative signature. This

has several consequences. First, because of signature conservation, t-channel states with

an odd number of odderons never mix with pure Pomeron channels. Second, the transition

P ! OO is real valued: the two-Odderon cut is positive (in contrast to the two Pomeron

cut), and there is no need for an imaginary coupling. On the other hand, the transition

O ! OP has to be imaginary, since the Odderon-Pomeron cut carries a minus sign. As a

result, all triple couplings are imaginary, except for the real-valued transition P ! OO.

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings ramain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition

of two triple ones. For the quintic part the ’exceptional’ terms are in the second and fourth

lines: in all these terms we either create or annihilate a pair of Odderons.
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for the change of the Odderon number

• States with even and odd Odderon number do not mix.

1

e��k[�̄] =

Z
D� µk e

�S[�]+
��k
��̄

·(���̄)�Sk[���̄]
(1.1)

Sk[�] =
1
2�·Rk · �

�[ †, ,�†,�] =

Z
dDx d⌧

✓
ZP (

1

2
 †$@⌧ � ↵0

P 
†r2 ) + ZO(

1

2
�†$@⌧�� ↵0

O�
†r2�) + Vk[ , 

†,�,�†]

◆

Rk(p2) > 0 for p2 ⌧ k2

Rk(p2) ! 0 for p2 � k2

Rk(p2) ! 1 for k ! ⇤ (! 1)

@t�k =
1

2
Tr

⇣
�(2)
k +Rk

⌘�1
@tRk

�
� µ̇k

µk

t = ln k/k0

�k[�̃] =

Z
ddx

(
Vk(�) +

1

2
Zk(�)(@�)

2 +
1

2
X1,k(�)(@

2�)2 +
1

4
X2,k(�)(@�)

4 + · · ·
)

˙̃vk(�) = �d ṽk +

✓
d

2
�1

◆
�̃ ṽ0k +

1

(4⇡)d/2�[1+d/2]

1

1 + ṽ00k

Rk(p
2) = (k2�p2)✓(k2�p2) (1.2)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.3)

where we employ the infrared regulator Sk[', ⇠] =
1
2 ⇠ ·Rk(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.4)

2
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We consider the flow of the IR regulated generator of 1PI functions  

The coarse-graining is implemented by a cutoff operator 
defined by

1

e��k[�̄] =

Z
D� µ

k

e
�S[�]+

��k
��̄

·(���̄)�Sk[���̄]
(1.1)

S
k

[�] = 1
2�·Rk

· �
R

k

(p2) > 0 for p2 ⌧ k2

R
k

(p2) ! 0 for p2 � k2

R
k

(p2) ! 1 for k ! ⇤ (! 1)

In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions W
k

[', J ] is a functional of the background field and a source field J
i

coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by

e�Wk[',J ] =

Z
D� µ(�) e�S[�]�Sk[',⇠]�J ·⇠, (1.2)

where we employ the infrared regulator S
k

[', ⇠] = 1
2 ⇠ ·Rk

(') ·⇠ and with a dot we have denoted

integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�
k

[', ⇠̄] = W
k

[', J ]� J ·⇠̄ � S
k

[', ⇠̄], (1.3)

with ⇠̄ = h⇠i, which satisfy the following functional integral-di↵erential equations:

e��k =

Z
D� µ(�) e�S[�]+�k;i(⇠�⇠̄)i�Sk[', ⇠�⇠̄]. (1.4)

Here the semicolon ”;” denotes a derivative with respect to the quantum field ⇠ while the comma

will be used for the derivative with respect to the background field ' and in general whenever

convenient we shall use the deWitt condensed notation.

Taking functional derivatives of this equation with respect to the background fields 'i, we obtain

the modified splitting Ward identities (mspWI) [16–18]:

0 = �
,i

+�;jh⇠j
,i

i� 1
2h
⇥
(⇠�⇠̄)mR

mn

(⇠�⇠̄)n
⇤
,i

i = �
,i

+�;jh⇠j
,i

i� 1
2G

mn(R
nm

),
i

�GnpR
pm

h⇠m,
i

i;n (1.5)

where GmnG
nl

= �m
l

with G
mn

= �(2)
;mn

+ R
mn

and we have left implicit in the regulator R
k

the
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as well as the flow equations for the n-point 1PI functions.
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At lowest order (LPA), choosing                                 , the flow (dimless quantities) 
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point
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In a background field framework for scalar theories, where the field �(', ⇠) is split into a back-

ground ' and a quantum field ⇠, and in the presence of an infrared regulator which controls the

contribution of the fluctuation modes in the path integral, the generator of the connected n-point

functions Wk[', J ] is a functional of the background field and a source field Ji coupled to the

quantum field ⇠i. Its definition in terms of the ultraviolet action S[�] is given by
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where we employ the infrared regulator Sk[', ⇠] =
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integrations as well as internal index contractions.

As usual, on performing a Legendre transform, one defines the IR regulated e↵ective average

action [3, 4], the regulated generator of the 1PI vertices:

�k[', ⇠̄] = Wk[', J ]� J ·⇠̄ � Sk[', ⇠̄], (1.4)
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Functional RG approach

9

Physics requires the solution defined for any value of the fields 
(problem of finding global solutions of non linear PDE, infinitely many couplings) 
Approximation schemes (truncations): expansion in some operator basis 
(e.g. polynomial around some field configuration). Care with radius of convergence!

If the theory admit a UV non trivial fixed point with a finite number 
of relevant directions it may define an asymptotically safe theory.

General strategy: investigate scale invariant solutions (fixed points)
linear deformations (eigenperturbations and eigenvalues)

Universality



RTF: construction of the flow equations
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The momentum integral contained in the trace can be done in the same way as de-

scribed in [1]. The energy integral will be performed by complex integration. Unfortunately

the analytic expression for the full flow of the potential is quite involved and di�cult to

handle. Since we are interested in an analysis based on polynomial expansions of the po-

tential in terms of the Pomeron and Odderon fields, we find it more convenient to derive

directly the flow equations for the polynomial coe�cients (couplings).

In this work we shall limit ourself in analyzing the flow of the potential expanded

around the origin (zero fields), i.e. we shall employ a weak field expansion. We shall

consider more refined analysis in a future investigation. Therefore, for the derivation of

the beta-functions of the couplings we find it convenient to expand the inverse of (3.2) in

the following way:
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The interaction matrix Vint is derived from the e↵ective potential, after removal of the

reggeon masses:
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Here the upper script ’r’ reminds that the reggeon masses have been removed.

Finally we define the regulator matrix consisting of two block matrices. First we define

O± =

 
0 1

±1 0

!
. (3.12)

– 6 –

General strategy used here for a polynomial truncation of the potential.
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The momentum integral contained in the trace can be done in the same way as de-

scribed in [1]. The energy integral will be performed by complex integration. Unfortunately

the analytic expression for the full flow of the potential is quite involved and di�cult to

handle. Since we are interested in an analysis based on polynomial expansions of the po-

tential in terms of the Pomeron and Odderon fields, we find it more convenient to derive

directly the flow equations for the polynomial coe�cients (couplings).

In this work we shall limit ourself in analyzing the flow of the potential expanded

around the origin (zero fields), i.e. we shall employ a weak field expansion. We shall
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With these definitions the classical scaling (canonical) of the potential which would result

by neglecting the quantum fluctuations in the flow equation becomes:
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Dimensionless quantities:

In the sector of quartic couplings, all couplings involving Pomerons only are real-valued.

Once the Odderon is included, again most quartic couplings remain real, but there are two

exceptions: the transitions O ! OOO and P ! P +OO are imaginary. This can be easily

understood considering a contribution to such quartic vertices coming by the composition

of two triple ones. For the quintic part the ’exceptional’ terms are in the second and fourth

lines: in all these terms we either create or annihilate a pair of Odderons.

The signature-conservation rule, together with the appearance of these ’exceptional’

cases suggests the following transition rules:

(i) states with even and odd numbers of Odderon never mix.

(ii) states will be labelled by the number of Odderon pairs, n. We assign a quantum

number On. Signature rules imply that transitions changing n by odd numbers come with

’exceptional’ couplings (e.g the transitions P ! OO, O ! OOO, or P ! P+OO), whereas

transitions changing n by even numbers are ’normal’ and have the same structure as pure

Pomeron couplings (e.g., the transition: Pomeron to four Odderons is imaginary).

This suggests to decompose the e↵ective potential into a sum terms V (n):

V = V �n=0 +�V |�n|=1 +�V |�n|=2 + ... (2.5)

where the first term conserves n, the number of odderon pairs, the second one changes n

by one etc.

In the perturbative region, the transition P ! OO has been computed [21, 22] and

found to be nonzero. As one of our results we shall see that the dynamics allows for a critical

theory (as a fixed point of the flow in the local potential approximation (LPA), eventually

including anomalous dimensions (LPA’) ) at which n is conserved, i.e. all couplings which

change On go to zero:

�V |�n|=1 ! 0, �V |�n|=2 ! 0, .... (2.6)

This applies, in particular, the coupling of the P ! OO transition.

Next we introduce dimensionless variables. The field variables are rescaled as follows:
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O will be written as

↵0
O = r ↵0

P . (2.10)

Finally, using Eq. (2.7) and (2.8), the couplings are rescaled in the following way:

µ̃P =
µP

ZP↵0
Pk

2
, µ̃O =

µO

ZO↵0
Pk

2
,

�̃ =
�

Z
3/2
P ↵0

Pk
2
kD/2, �̃2,3 =

�2,3

ZOZ
1/2
P ↵0

Pk
2
kD/2. (2.11)
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Classical scaling:

With these definitions the classical scaling (canonical) of the potential which would result

by neglecting the quantum fluctuations in the flow equation becomes:

(�(D + 2) + ⇣P ) Ṽ +

✓
D

2
+
⌘P
2

◆ 
 ̃
@Ṽ

@ ̃
+  ̃† @Ṽ

@ ̃†

!
+

✓
D

2
+
⌘O
2

◆ 
�̃
@Ṽ

@�̃
+ �̃† @Ṽ

@�̃†

!
.

(2.12)

The scale k dependent regulator functions are chosen as follows:

RP (q
2) = ZP↵

0
P (k

2 � q2)⇥(k2 � q2),

RO(q
2) = ZO↵

0
O(k

2 � q2)⇥(k2 � q2) = rZO↵
0
P (k

2 � q2)⇥(k2 � q2). (2.13)

This optimized regulator [26] allows for a simple analytic integration in a closed form.

Moreover we define the anomalous dimensions:

⌘P = � 1

ZP
@tZP , ⌘O = � 1

ZO
@tZO (2.14)

and

⇣P = � 1

↵0
P

@t↵
0
P , ⇣O = � 1

↵0
O

@t↵
0
O. (2.15)

3 RG flow

3.1 Flow equations

In order to find the flow equation of the potential (which included Pomeron and Odderon

intercepts (masses) as well as all possible interactions) we need to compute the rhs of

the dimensionful flow equations which result from scale k controlled contributions from

quantum fluctuations:

@t� =
1

2
Tr[�(2) + R]�1@tR. (3.1)

The trace on the rhs extends over a 4x4 matrix. The propagator matrix can be written

the following form:

�(2) + R =

 
�(2)
P �PO

�OP �(2)
O

!
, (3.2)

where the 2x2 block matrices are:

�(2)
P =

 
V  ZP (�i! + ↵0

P q
2) +RP + V  †

ZP (i! + ↵0
P q

2) +RP + V † V † †

!
, (3.3)

�(2)
O =

 
V�� ZO(�i! + ↵0

Oq
2) +RO + V��†

ZO(i! + ↵0
Oq

2) +RO + V�†� V�†�†

!
, (3.4)

�PO =

 
V � V �†

V †� V †�†

!
, (3.5)
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3.2 � functions

We begin with the lowest (cubic) truncation. For this approximation of the e↵ective po-

tential, we keep on the rhs of (3.18) the terms with two and three V’s. The z-integral is

done by complex integration. We report here the result for the region r � µO > 0 which

can be verified ”a posteriori” to be the physical relevant region. The beta functions in

the complementary region r � µO < 0 can be computed in a similar way but we shall not

discuss them further. Including also the canonical part on the rhs of the flow equations we

find:

µ̇P = (�2 + ⌘P + ⇣P )µP + 2AP
�2

(1� µP )2
� 2AOr

�2
3

(r � µO)2

µ̇O = (�2 + ⌘O + ⇣P )µO + 2(AP +AOr)
�2
2

(1 + r � µP � µO)2

�̇ = (�2 +D/2 + ⇣P +
3

2
⌘P )�+ 8AP

�3

(1� µP )3
� 4AOr

�2�
2
3

(r � µO)3

�̇2 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�2

+
2��2

2(6AP + 5AOr) + 4�3
2(AP +AOr)� 4�2�

2
3(AP + 2AOr)

(1 + r � µP � µO)3

+
2AP��

2
2(r � µO)2

(1� µP )2(1 + r � µP � µO)3
� 4AOr�2�

2
3(1� µP )2

(1� µO)2(1 + r � µP � µO)3

+
2��2

2(3AP +AOr)(r � µO)

(1� µP )(1 + r � µP � µO)3
� 4�2�

2
3(AP + 3AOr)(1� µP )

(r � µO)(1 + r � µP � µO)3

�̇3 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�3

+
2�2

2�3(AP + 2AOr)

(r � µO)(1 + r � µP � µO)2
+

4��2�3(2AP +AOr)

(1� µP )(1 + r � µP � µO)2

+
2�2

2�3AOr(1� µP )

(r � µO)2(1 + r � µP � µO)2
+

4��2�3AP (r � µO)

(1� µP )2(1 + r � µP � µO)2
. (3.21)

Here we have defined

AP = NDAD(⌘P , ⇣P ), AO = NDAD(⌘O, ⇣O). (3.22)

For the next truncation, the quartic approximation, we have to retain also the next term

on the rhs of (3.18) (containing four factors of Vint). The results for the beta functions are

already lengthy and will not be listed here. For the truncations of fourth order and beyond

we have used symbolic computational tools (Mathematica).

3.3 Anomalous dimensions

Having derived the beta function we need to mention a novel feature which was not present

for the pure Pomeron case: all beta functions will depend upon the parameter r defined

in (2.10), the ratio of the Odderon and Pomeron slopes. This dimensionless quantity by

itself depends upon the cuto↵ parameter k and therefore has its own beta function. The
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Performing the traces, the beta functions for dimensionless quantities are:

Cubic truncation: beta functions

Similarly, one can find the anomalous dimensions (from the flow of 2-point functions):

The anomalous dimensions are then given by:

�⌘P =
1

ZP
lim

!!0,q!0

@

@(i!)
I
(1,1)
P (!, q) (3.34)

�⌘O =
1

ZO
lim

!!0,q!0

@

@(i!)
I
(1,1)
O (!, q) (3.35)

and

�⌘P � ⇣P =
1

ZP↵0
P

lim
!!0,q!0

@

@q2
I
(1,1)
P (!, q) (3.36)

�⌘O � ⇣O =
1

ZO↵0
O

lim
!!0,q!0

@

@q2
I
(1,1)
O (!, q). (3.37)

The calculation of the derivatives with respect to z and q2 has been described in [1].

For the z-derivative we obtain after the momentum integral:

1

ZP↵0
P

dI
(11)
P

dz
= 2ND

Z
dz0

2⇡i
· (3.38)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

� † G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

� 
G(z0)

#

1

ZO↵0
P

dI
(11)
O

dz
= 2ND

Z
dz0

2⇡i
· (3.39)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

��† G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

��
G(z0)

#
.

Similarly, for the q2 derivative we find:

1

ZP↵0
P

dI
(11)
P

dq2
=

ND

D

Z
dz0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

� † G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

� 
G(z0)

#

(3.40)

1

ZO↵0
O

dI
(11)
O

dq2
=

ND

rD

Z
dz0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

��† G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

��
G(z0)

#
.

(3.41)

We quote the results for the expansion around zero fields (in this case, the results do

not depend upon the truncation since only cubic couplings are involved):

⌘P = � 2AP�
2

(1� µP )3
+

2AOr�
2
3

(r � µO)3
(3.42)

⌘O = � 4(AP +AO r)�22
(1 + r � µP � µO)3

(3.43)

and

⌘P + ⇣P = � ND�
2

D(1� µP )3
+

NDr
2�23

D(r � µO)3
(3.44)

⌘O + ⇣O = � 4ND�
2
2

D(1 + r � µP � µO)3
. (3.45)
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The anomalous dimensions are then given by:

�⌘P =
1

ZP
lim

!!0,q!0

@

@(i!)
I
(1,1)
P (!, q) (3.34)

�⌘O =
1

ZO
lim

!!0,q!0

@

@(i!)
I
(1,1)
O (!, q) (3.35)

and

�⌘P � ⇣P =
1

ZP↵0
P

lim
!!0,q!0

@

@q2
I
(1,1)
P (!, q) (3.36)

�⌘O � ⇣O =
1

ZO↵0
O

lim
!!0,q!0

@

@q2
I
(1,1)
O (!, q). (3.37)

The calculation of the derivatives with respect to z and q2 has been described in [1].

For the z-derivative we obtain after the momentum integral:

1

ZP↵0
P

dI
(11)
P

dz
= 2ND

Z
dz0

2⇡i
· (3.38)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

� † G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

� 
G(z0)

#

1

ZO↵0
P

dI
(11)
O

dz
= 2ND

Z
dz0

2⇡i
· (3.39)

·Tr
" 

AD(⌘P , ⇣P )O+ 0

0 rAD(⌘O, ⇣O)O+

!
G(z0)

�Vint

��† G(z0)

 
O� 0

0 O�

!
G(z0)

�Vint

��
G(z0)

#
.

Similarly, for the q2 derivative we find:

1

ZP↵0
P

dI
(11)
P

dq2
=

ND

D

Z
dz0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

� † G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

� 
G(z0)

#

(3.40)

1

ZO↵0
O

dI
(11)
O

dq2
=

ND

rD

Z
dz0

2⇡i
T r

" 
O+ 0

0 rO+

!
G(z0)

�Vint

��† G(z0)

 
O+ 0

0 rO+

!
G(z0)

�Vint

��
G(z0)

#
.

(3.41)

We quote the results for the expansion around zero fields (in this case, the results do

not depend upon the truncation since only cubic couplings are involved):

⌘P = � 2AP�
2

(1� µP )3
+

2AOr�
2
3

(r � µO)3
(3.42)

⌘O = � 4(AP +AO r)�22
(1 + r � µP � µO)3

(3.43)

and

⌘P + ⇣P = � ND�
2

D(1� µP )3
+

NDr
2�23

D(r � µO)3
(3.44)

⌘O + ⇣O = � 4ND�
2
2

D(1 + r � µP � µO)3
. (3.45)
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critical theory satisfies the fixed point condition ṙ = 0. We therefore need not only the

beta functions for the parameters of the e↵ective potential (coupling constants) but also

the anomalous dimensions. With the anomalous dimensions defined in (2.14), the evolution

equation for r then becomes:

ṙ = r (�⇣O + ⇣P ) , (3.23)

which tells that at criticality the Pomeron and Odderon transverse space scaling laws do

coincide.

In order to obtain the anomalous dimensions we first define the two-point vertex func-

tions:

�(1,1)
P (!, q) =

�2�

� (!, q)� †(!, q)
| = †=�=�†=0 (3.24)

and

�(1,1)
O (!, q) =

�2�

��(!, q)��†(!, q)
| = †=�=�†=0. (3.25)

From the flow equations we obtain:

�̇(1,1)
P (!, q) = ↵0

P

Z
dz0dDq0

(2⇡)D+1
Tr


ṘG(z0, q0)

�Vint

� † G(z + z0, q + q0)
�Vint

� 
G(z0, q0)

�
|O + ...

(3.26)

�̇(1,1)
O (!, q) = ↵0

P

Z
dz0dDq0

(2⇡)D+1
Tr


ṘG(z0, q0)

�Vint

��† G(z + z0, q + q0)
�Vint

��
G(z0, q0)

�
|O + ...

(3.27)

where the subscript ’O’ indicates that, after di↵erentiation, we have set all field variables

inside the trace equal to zero:  =  † = � = �† = 0, and the dots indicate that there are

more terms containing second derivatives of Vint with respect to the field variables which

will not contribute when taking derivatives in z0 or q02. We have already taken into account

that, from the derivatives with respect to  , † (or �,�†) we have two identical contribu-

tions which compensate the overall factor 1
2 . The anomalous dimensions are obtained by

taking derivatives with respect to energy and momentum:

ZP = lim
!!0,q!0

@

@(i!)
�(1,1)
P (!, q) (3.28)

ZO = lim
!!0,q!0

@

@(i!)
�(1,1)
O (!, q) (3.29)

and

ZP↵
0
P = lim

!!0,q!0

@

@q2
�(1,1)
P (!, q) (3.30)

ZO↵
0
O = lim

!!0,q!0

@

@q2
�(1,1)
O (!, q). (3.31)

We introduce

�̇(1,1)
P = I

(1,1)
P (!, q) (3.32)

�̇(1,1)
O = I

(1,1)
O (!, q). (3.33)
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3.2 � functions

We begin with the lowest (cubic) truncation. For this approximation of the e↵ective po-

tential, we keep on the rhs of (3.18) the terms with two and three V’s. The z-integral is

done by complex integration. We report here the result for the region r � µO > 0 which

can be verified ”a posteriori” to be the physical relevant region. The beta functions in

the complementary region r � µO < 0 can be computed in a similar way but we shall not

discuss them further. Including also the canonical part on the rhs of the flow equations we

find:

µ̇P = (�2 + ⌘P + ⇣P )µP + 2AP
�2

(1� µP )2
� 2AOr

�2
3

(r � µO)2

µ̇O = (�2 + ⌘O + ⇣P )µO + 2(AP +AOr)
�2
2

(1 + r � µP � µO)2

�̇ = (�2 +D/2 + ⇣P +
3

2
⌘P )�+ 8AP

�3

(1� µP )3
� 4AOr

�2�
2
3

(r � µO)3

�̇2 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�2

+
2��2

2(6AP + 5AOr) + 4�3
2(AP +AOr)� 4�2�

2
3(AP + 2AOr)

(1 + r � µP � µO)3

+
2AP��

2
2(r � µO)2

(1� µP )2(1 + r � µP � µO)3
� 4AOr�2�

2
3(1� µP )2

(1� µO)2(1 + r � µP � µO)3

+
2��2

2(3AP +AOr)(r � µO)

(1� µP )(1 + r � µP � µO)3
� 4�2�

2
3(AP + 3AOr)(1� µP )

(r � µO)(1 + r � µP � µO)3

�̇3 = (�2 +D/2 + ⇣P +
1

2
⌘P + ⌘O)�3

+
2�2

2�3(AP + 2AOr)

(r � µO)(1 + r � µP � µO)2
+

4��2�3(2AP +AOr)

(1� µP )(1 + r � µP � µO)2

+
2�2

2�3AOr(1� µP )

(r � µO)2(1 + r � µP � µO)2
+

4��2�3AP (r � µO)

(1� µP )2(1 + r � µP � µO)2
. (3.21)

Here we have defined

AP = NDAD(⌘P , ⇣P ), AO = NDAD(⌘O, ⇣O). (3.22)

For the next truncation, the quartic approximation, we have to retain also the next term

on the rhs of (3.18) (containing four factors of Vint). The results for the beta functions are

already lengthy and will not be listed here. For the truncations of fourth order and beyond

we have used symbolic computational tools (Mathematica).

3.3 Anomalous dimensions

Having derived the beta function we need to mention a novel feature which was not present

for the pure Pomeron case: all beta functions will depend upon the parameter r defined

in (2.10), the ratio of the Odderon and Pomeron slopes. This dimensionless quantity by

itself depends upon the cuto↵ parameter k and therefore has its own beta function. The
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Finally, we specify our regulator. Clearly there is freedom in choosing a regulator; general

requirements have been discussed, e.g. in [20]. In this first study we make the simple choice

of the optimized flat regulator [23], leaving other regulator schemes for future investigations:

R
k

(q) = Z
k

↵0
k

(k2 � q2)⇥(k2 � q2) (2.24)

with

Ṙ = @
t

R
k

(q) = �Z
k

↵0
k

(k2 � q2)⇥(k2 � q2)[⌘
k

+ ⇣
k

] + 2k2Z
k

↵0
k

⇥(k2 � q2)

= 2k2Z
k

↵0
k

✓(k2 � q2)

✓
1� ⌘

k

+ ⇣
k

2
(1� q2

k2
)

◆
. (2.25)

Defining

h
k

(q) = Z
k

↵0
k

(q2 +R
k

) = Z
k

↵0
k

(✓(k2 � q2)k2 + ✓(q2 � k2)q2) (2.26)

and

G
k

(!, q) =
⇣
�(2)

k

+ R
⌘�1

= (2.27)

1

V
k  

V
k 

†
 

† � �Z2

k

!2 + (h
k

+ V
k  

†)2
�
 

V
k 

†
 

† iZ
k

! � h
k

� V
k  

†

�iZ
k

! � h
k

� V
k 

†
 

V
k  

!
,

and using of (2.25) we find

V̇
k

= 2Z
k

↵0
k

k2
Z

d!dDq

(2⇡)D+1

✓(k2 � q2)

�
Z
k

↵0
k

k2 + V
k 

†
 

� ⇣
1� ⌘

k

+⇣

k

2

(1� q

2

k

2 )
⌘

Z2

k

!2 + (h
k

+ V
k  

†)2 � V
k  

V
k 

†
 

†
. (2.28)

Using Z
dDq

(2⇡)D
r2p✓(k2 � q2) =

kD+2p

D + 2p
N

D

(2.29)

with

N
D

=
2p

4⇡
D

�(D/2)
(2.30)

and doing the ! integration by closing the contour in the complex plane we arrive at:

V̇
k

= N
D

A
D

(⌘
k

, ⇣
k

)↵0
k

k2+D

⇣
1 +

V

k 

†
 

Z

k

↵

0
k

k

2

⌘

r
1 + 2

V

k  

†
Z

k

↵

0
k

k

2 +
V

2
k  

†�V

k  

V

k 

†
 

†

(Z

k

↵

0
k

k

2
)

2

, (2.31)

where we have introduced the notation

A
D

(⌘
k

, ⇣
k

) =
1

D
� ⌘

k

+ ⇣
k

D(D + 2)
. (2.32)

It s convenient to turn to the dimensionless potential Ṽ
k

introduced in (2.22):

V̇
k

= N
D

A
D

(⌘
k

, ⇣
k

)↵0
k

k2+D

1 + Ṽ
k

˜

 

˜

 

†
q
1 + 2Ṽ

k

˜

 

˜

 

† + Ṽ 2

k

˜

 

˜

 

† � Ṽ
k

˜

 

˜

 

Ṽ
k

˜

 

† ˜

 

†

. (2.33)

– 8 –

Finally, we specify our regulator. Clearly there is freedom in choosing a regulator; general

requirements have been discussed, e.g. in [20]. In this first study we make the simple choice

of the optimized flat regulator [23], leaving other regulator schemes for future investigations:

R
k

(q) = Z
k

↵0
k

(k2 � q2)⇥(k2 � q2) (2.24)

with

Ṙ = @
t

R
k

(q) = �Z
k

↵0
k
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+ ⇣
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k
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k
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k
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◆
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Defining

h
k

(q) = Z
k
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k

(q2 +R
k

) = Z
k
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k

(✓(k2 � q2)k2 + ✓(q2 � k2)q2) (2.26)

and

G
k

(!, q) =
⇣
�(2)

k

+ R
⌘�1

= (2.27)

1

V
k  

V
k 

†
 

† � �Z2

k

!2 + (h
k

+ V
k  

†)2
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V
k 

†
 

† iZ
k

! � h
k

� V
k  
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k

˜

 

˜

 

†
q

1 + 2Ṽ
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Critical theory (fixed point): perturbative one loop results:

-expansion:✏ D=4�✏

3.4 Analysis near D = 4: ✏-expansion

From a quick look at the beta functions given in Eq. (3.21) of the couplings �, �2 and �3

of the cubic truncation one sees that they do not scale when D ! 4, which is the critical

dimension of the system. In this section we show the results of an analysis of the theory

close to the critical dimension (D = 4 � ✏) at one loop, restricted to the cubic truncation

only. Such an analysis can help to identify a possible critical behavior of the system which

may survive, at a qualitative level, down to D = 2. In the next Section, after a numerical
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2,�

2
3, µP , µO = O(✏). We find that, apart from the pure Pomeron

scaling solution, in the presence of the Odderon field only other fixed point is allowed:

µP =
✏

12
, �2 =

8⇡2

3
✏, ⌘P = � ✏

6
, ⇣P = ⇣O =

✏

12
, (3.46)

µO =
95+17

p
33

2304
✏, �2 =

23
p
6+11

p
22

48
✏, �3 = 0, ⌘O = �7+

p
33

72
✏, r =

3

16
(
p
33�1).

Moreover the spectral analysis of the stability matrix is able to show the other universal

quantities of the system, apart from the anomalous dimensions. In particular we find two

negative eigenvalues, associated to two relevant directions, and the corresponding critical

exponents:

�1 = �2 +
✏

4
! ⌫P =

1

2
+

✏

16

�2 = �2 +
✏

12
! ⌫O =

1

2
+

✏

48
. (3.47)

We note that the most negative eigenvalue (strongest relevat operator) is associated to

the Odderon sector. We have not found other solutions with all real couplings and �3 6= 0.

We also note that the values of the couplings and the critical exponents and anomalous

dimensions in the Pomeron sector are exactly the same as in the pure pomeron case [1].

This seems to favour, at least in the vicinity of the critical dimensionD = 4, the existence of

just two non trivial fixed points, one with the pure pomeron content, and another one with

both interacting fields, where the interaction responsible for creating the odderon fields is

turned o↵. That is the scaling solution of Eq. (3.46) is a theory conserving the Odderon

number, and the direction in parameter space which contains the operator breaking such

conservation is irrelevant.

4 Numerical results

4.1 Search for fixed points

In a first step of searching critical theories (scaling solutions)1 for the physical D = 2

transverse dimension we set the anomalous dimensions equal to zero and search for fixed
1
We stress that such solutions for the fixed point of the flow cannot be related to a CFT in the whole

2+1 dimensional space because they are characterized by anisotropic scaling between the rapidity direction

and the transverse space.
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Critical exponents: two relevant directions
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Explicit analysis at order 3,4,5 of the fixed points seems to show that the interactions 
changing the Odderon number are absent in the critical theory.

Non perturbative analysis in

We perform the analysis of the fixed point up to order 9, 
neglecting (apart in r) the anomalous dimensions.

D=2

μP
μO

4 5 6 7 8 9
n

0.25

0.30

0.35

0.40

0.45

0.50

λ

λ2

λ41

λ42

λ43

λ46

λ47

r3 4 5 6 7 8 9
n

-8

-6

-4

-2

2

Figure 1: Values of the parameters of the fixed point solution of the LPA truncations for

di↵erent orders n of the polynomial (3  n  9). The masses (which equal intercept minus

one) µP (red curve) and µO (blue dotted curve) for the Pomeron and Odderon fields are

in the left panel. The first non zero couplings �,�2,�41,�42,�43,�46,�47, r are reported on

the right panel.

r = 0.88018). The stability properties are the same as in the cubic case: three negative

eigenvalues (�1.8159, �1.6751 and �0.20957). The Pomeron and Odderon sectors are de-

coupled, since the three exceptional couplings �3,�44,�45 vanish. The Pomeron parameters

are the same as in the pure Pomeron case at the corresponding order. There exist three

eigenvectors which span the subspace of the three ’exceptional ’ couplings �3,�44,�45. They

have positive eigenvalues, i.e. this subspace is part of the 10-dimensional critical subspace.

Inside this subspace they are orthogonal to all other 7 eigenvectors with positive eigenval-

ues. Concerning the three eigenvectors with negative eigenvalues (which define the relevant

directions), they are also orthogonal to three eigenvectors in the exceptional’ directions.

All this leads to the conclusion that near this fixed point the ’exceptional’ couplings

define a subspace inside the critical subspace which is orthogonal both to the remaining

part of the critical subspace and to the three relevant directions. This subspace decouples

from the other part.

We observe that this special fixed point solution is associated to a critical theory

conserving the Odderon number. We do not find any other physical critical solution with

all couplings being nonzero.

We then push the analysis for this special fixed point solution up to order 9 in the

polynomial expansion. We collect the results found in two figures in order to show the

convergence with respect to the order of the truncation. In Fig. 1 we show on the left

side the values for µP and µO while on the right side we give the values of the non zero

couplings which characterize the truncation up to order fourth, for all the orders n between

3 and 9. We note that µP > µO in all truncations. We see how at order 9 a good stability

is reached. We stress that all the quantities reported in this figure are not universal.

In the subsequent Fig. 2 we show the critical exponents ⌫P and ⌫O (left plot) and the

third negative eigenvalue (right plot) found at di↵erent orders of the polynomial expansion.

Also here we see that at order 9 also the critical exponents have reached values which are

almost independent of the order of the polynomial.
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Couplings: fixed point values 
are stable at order 9.

We find three relevant directions. 
Critical exponents:

νO

νP

3 4 5 6 7 8 9
n

0.5

0.6

0.7

0.8

3 4 5 6 7 8 9
n

-0.25

-0.20

-0.15

-0.10

-0.05

λ3

Figure 2: Values of the critical exponents of the fixed point solution of the LPA truncations

for di↵erent orders n of the polynomial (3  n  9). The two negative leading eigenvalues

define the two critical exponents ⌫P (red curve) and ⌫O (blue dotted curve) for the Pomeron

and Odderon fields (left panel). We report also the value of a third negative eigenvalue

found in our approximation (right panel).

4.2 The fixed point solution in continuous dimensions.

In this last part we restrict ourselves to the lowest cubic truncation, use the expansion

around the origin, include the anomalous dimension and vary the transverse dimension

D continuously between 0 and 4. We already have the experience for the pure Pomeron

sector that the cubic expansion is less reliable in estimating the critical exponent ⌫P than

an expansion around a non trivial configuration field configuration (in [1] we used an

expansion around the stationary point on the axes of the ( , †) plane). Since the fixed

point of the interacting Pomeron-Odderon system found above leaves the Pomeron sector

unchanged, we expect a similar situation in the present case. But even if we cannot expect

the critical exponents ⌫P and ⌫O (see Fig. 2) to be well described, it interesting to see how

they connect with the result of the ✏-expansion analysis near D = 4.

We collect some results in Fig. 3 where, on the left panel we show the results of a

numerical analysis for ⌫P (D) for the Pomeron sector only in the two di↵erent expansions

around the origin (continuous red line) and around a non trivial stationary point on the

axes (dashed green line), while on the right panel we compare the results of the expansion

around the origin ⌫P and ⌫O.

From our previous analysis of the pure Pomeron sector we could observe that, contrary

to the critical exponent ⌫, an expansion around the origin within the cubic truncation was

able to give not too bad numerical predictions for the anomalous dimensions atD = 2. This

was not true anymore for higher order truncations. The expansion around a non trivial

configuration on the axes was behaving much better at a generic order of the polynomial,

even if the simple cubic truncation around the origin was giving better values. This is

shown on the left panel of Fig. (4), noting that the Monte Carlo results for a Directed

Percolation model in D = 2 which lies in the same universality class of the Pomeron RFT

are pointing to a value for the anomalous dimension ⌘P ' �0.4. In the center and right

plots of Fig. (4) we show ⌘P,O(D) and ⇣P,O(D) respectively. They are in agreement with
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Anomalous dimensions (cubic truncation estimate, close to   -expansion result):

directions. In particular, summarizing our results reported in Section 4, we have the fol-

lowing estimates: for the critical exponents ⌫P ' 0.73, ⌫O ' 0.6, and in our approximation

we find also a third negative eigenvalue �3 ' �0.26 (relevant direction); for the anomalous

dimensions we find ⌘P ' �0.33, ⌘O ' �0.35 and ⇣P = ⇣O ' +0.17. More corrected values

for the anomalous dimensions can be 20% larger in magnitude according to what we ob-

serve from Monte Carlo analysis in the pure Pomeron sector. This generalizes the previous

results obtained for the pure Pomeron case, where we have found a fixed point with on

relevant direction. For such a fixed point, at first sight, the situation looks as follows:

starting at k 6= 0 at a generic value in the parameter space of the e↵ective potential (not

too far from the fixed point) the flow will eventually be attracted by the relevant direction

and move away from the fixed point. The relevant directions define an orthogonal subspace

which we name ’critical subspace’: if one starts within this subspace one ends up at the

infrared stable fixed point. Like the Pomeron RFT, this extended RFT model may be re-

lated to a generalized multicomponent directed percolating system, characterized by some

special symmetries. For the latter we have found slightly di↵erent critical exponents which

suggest the existence of a new universality class. This is certainly true in the vicinity of

D = 4, from the ✏-expansion analysis. Nevertheless more refined analysis employing larger

truncations should be done for the case of two transverse dimensions.

A closer look, however, leads to a somewhat di↵erent picture. Our fixed point analysis

was done in the space of dimensionless parameters (cf. section 2), and the flow of the

physical (i.e. dimensionful) parameters can be quite di↵erent. In particular, when k ! 0,

the nonvanishing fixed point values values of the (dimensionless) Pomeron and Odderon

masses lead to vanishing physical masses. Also, a flow outside the critical surfaces may

very well lead to finite values of µO or µP . Whereas for the pure Pomeron case we have

performed numerical studies of the flow of the dimensionless and dimensionful parameters,

for the Pomeron-Odderon system such a study remains a task for future studies. In any

case, for trajectories starting inside the critical surface the situation appears to be quite

clear: in the infrared limit both the Pomeron and the Odderon intercepts approach one, and

the fixed point value for the parameter r fixes the ratio of the Odderon and the Pomeron

slopes. Phenomenologically, not much is known about the Odderon slope [27, 28], and our

result might be seen as an asymptotic prediction.

There is another interesting feature of the fixed point which we have found. Namely, a

particular set of Pomeron-Odderon couplings, although allowed by signature conservation,

vanishes at the fixed point. We interpret this result as a particular conservation law which

holds in high energy scattering provided the theory lies on the critical surface and in the

deep infrared limit ends at the critical point: the t-channel states formed by Pomeron and

Odderons conserve the number of Odderon pairs and there are no transitions from pure

Pomeron states to states containing Odderons. In other words, the Pomeron exchanges

never mix with Odderon states - the Pomeron does not feel the existence of the Odderon,

whereas the Odderon feels strong absorption through interactions with the Pomeron.

In this scenario the possibility that in the deep IR region the POO vertex is sup-

pressed may have phenomenological consequences. Processes involving a simple Odderon

exchange, like hadron scattering pp - pp̄ or meson photo-production [29] would be allowed
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Pomeron states to states containing Odderons. In other words, the Pomeron exchanges

never mix with Odderon states - the Pomeron does not feel the existence of the Odderon,

whereas the Odderon feels strong absorption through interactions with the Pomeron.

In this scenario the possibility that in the deep IR region the POO vertex is sup-

pressed may have phenomenological consequences. Processes involving a simple Odderon

exchange, like hadron scattering pp - pp̄ or meson photo-production [29] would be allowed
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Discussion
• RFT with Pomeron and Odderon fields show special critical properties 
       New universality class? (Relation to novel Directed Percolating systems?) 
       The critical theory found is such that the Pomeron does not feel the Odderon while the Pomeron 
       interactions renormalise the Odderon. 

• Assuming RFT to be related to the QCD in its “IR” Regge limit, we do not know where QCD 
       would places the “UV” initial conditions of the RFT flow towards its “IR”. 
       It could be on the critical surface (fine tuning of relevant parameters induced by QCD dynamics) 
       or out of it, in which case such parameters can be measured in the “IR”.
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• The RG flow from the RFT “UV” region should be studied and we expect similar results to what  
       has been already observed in the pure pomeron theory. Our expectations (dimensionful quantities): 
       - critical theory: intercept -1 and cubic interactions —> 0 in the IR. Theory interacting (quartic couplings) 
       - non critical theory: small dimensionful couplings in the “IR”, “special couplings” (irrelevant) —> ~0 
                                         intercept -1 slightly non zero. 
                                       
• At phenomenological level we thus expect, assuming (to be verified) the existence of this fixed point only, 
       in the deep “IR” a suppression of high mass diffractive processes involving the POO vertex, 
       which could appear in the more perturbative intermediate “IR” region.  
       Pure Odderon exchange processes would be instead non suppressed in the deep “iR”.



Conclusions
• We have just started to study the RFT with Pomeron and Odderon  
     fields. Interesting results which should be confirmed/extended in future work.

• If RFT is really connected to QCD, we can expect 
     phenomenological implications in the deep “IR” limit, 
     induced by the nature of the reggeon interactions.

• The main question is how to connect RFT to QCD smoothly. 
     We hope to investigate partially this with functional RG tools:  
     the “IR” perturbative QCD region should start to overlap with  
     the “UV” RFT region,  with a transmutation (mainly non perturbative) 
     of the dominant degrees of freedom.
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• Clearly in our “IR” limit, QCD should belong, in terms of some observable, 
     to the same universality class which we are unveiling for the RFT.
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Thank you!


