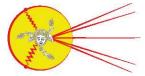
Fitting the Discrete BFKL Pomeron to Low-x HERA Data

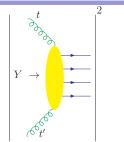
D.A. Ross, H. Kowalski, O. Schulz (based on work with L.N. Lipatov)

Southampton, DESY, MPI

Acireale, 3 September, 2016



Fitting the Discrete BFKL Pomeron to Low-x HERA Data



 $t = \ln(k_T^2/\Lambda^2)$ $t' = \ln(k_T'^2/\Lambda^2)$ $Y = \ln(s/k_Tk_T')$

$$\mathcal{A}(Y,t,t') = \int_{\mathcal{C}} d\omega e^{\omega Y} f_{\omega}(t) f_{\omega}^{*}(t'), \quad \int dt' \mathcal{K}(\boldsymbol{\alpha}_{s},t,t') f_{\omega}(t') = \omega f_{\omega}(t)$$

For fixed coupling

$$f_{\omega}(t) \sim e^{i \nu_{\omega} t}$$

with \mathbf{v}_{ω} fixed for fixed ω . For running coupling \mathbf{v}_{ω} becomes *t* dependent, decreasing as *t* increases to t_c .

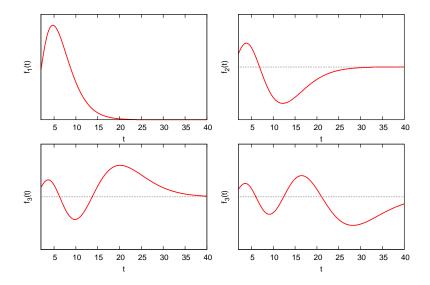
For $t > t_c$, v_{ω} is imaginary \longrightarrow evanescence $(f_{\omega}(t) \rightarrow 0 \text{ as } t \rightarrow \infty)$.

Assume that the IR (non-perturbative) properties of QCD determine the phase, η , of oscillations at some small $t = t_0$) (Lipatov 1986) This leads to a discrete set of eigenfunctions

$$\mathcal{A}(Y,t,t') = \sum_{n} e^{\omega_{n} Y} f_{\omega}(t) f_{\omega}^{*}(t')$$

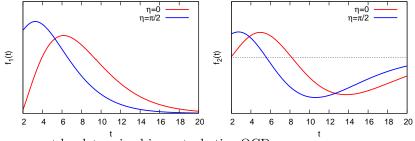
[Regge Poles]

First 4 Eigenfunctions



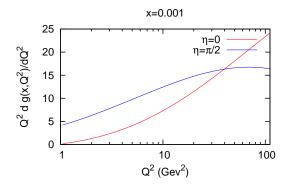
Fitting the Discrete BFKL Pomeron to Low-x HERA Data

Sensitivity to Infrared phase, η

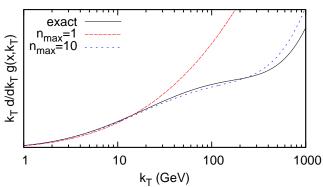


 η cannot be determined in perturbative QCD. Phases must be treated as free parameters in a fit to data.

Infrared Phase Sensitivity of Unintegrated Gluon Density

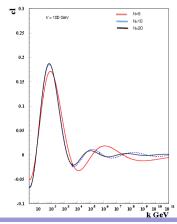


Very good convergence for the un-integrated gluon density after 10 eigenfunctions.

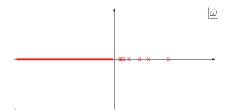


Completeness of Eigenfunctions

$$\sum_{n} f_{\boldsymbol{\omega}_{n}}(t) f_{\boldsymbol{\omega}_{n}}^{*}(t') = \delta(t - t')$$



Fitting the Discrete BFKL Pomeron to Low-x HERA Data

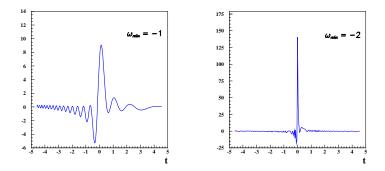


As well as a set of discrete poles for positive $\boldsymbol{\omega}$ there is a cut along negative real axis.

The contribution from this cut is needed in order to reproduce the required completeness relation.

This cut contribution generates a small but non-negligible contribution to unintegrated gluon density for low-x (despite $x^{-|\omega|}$ suppression).

$$\sum_{n} f_{\omega_n}(t) f_{\omega_n}^*(t') + \int_{\omega_{min}}^0 d\omega f_{-|\omega|}(t) f_{-|\omega|}^*(t') = \delta(t-t')$$



Fitting the Discrete BFKL Pomeron to Low-x HERA Data

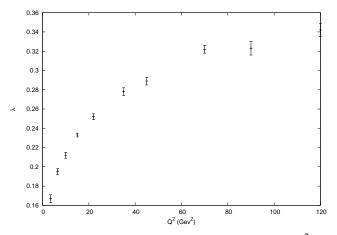
A popular parameterization of structure functions:

$$F_2(x,Q^2) = A(Q^2)x^{-\lambda(Q^2)}$$

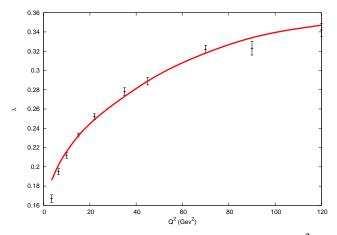
Not motivated by either a BFKL or DGLAP analysis, but nevertheless seems to work very well (Caldwell, 2015) To match the discrete BFKL pomeron we need to find a fit such that

$$A(Q^2)x^{-\lambda(Q^2)} \approx \sum_n C_n f_{\omega_n}(Q^2)x^{-\omega_n}$$

Since $f_{\omega}(t)$ decreases for sufficiently large t, we expect that for sufficiently large Q^2 , $\lambda(Q^2)$ is a decreasing function of Q^2 .



Experimental data for low-x structure functions refer to Q^2 below the critical value where the leading eigenfunctions start to decay. A fit is possible by suitable choice of the infrared phases.



Experimental data for low-x structure functions refer to Q^2 below the critical value where the leading eigenfunctions start to decay. A fit is possible by suitable choice of the infrared phases.

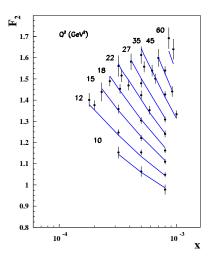
Paramterizing the Infrared Phases

3 parameter fit

$$\omega_n = \frac{A}{n+B} + C$$

(C=0 in Lipatov '86) Best fit A = 0.489, B = 1.39, C = 0.0014Invert to obtain n as a function of $\boldsymbol{\omega}$ Phase, $\boldsymbol{\eta}(\boldsymbol{\omega})$ at $t = t_0$ is then given by

$$\eta(\boldsymbol{\omega}) = \int_{t_0}^{t_c} \mathbf{v}_{\boldsymbol{\omega}}(t') dt' + \frac{\pi}{4} - n(\boldsymbol{\omega}), \quad (\mathbf{v}_{\boldsymbol{\omega}}(t_c) = 0)$$



A global fit is only possible for data with $x \le 10^{-3}$ Select $Q^2 > 5 \text{ Gev}^2$ to avoid saturation problems. (37 data points from HERA) $\chi^2/\text{DOF} = 0.48$ Too Good !!!! Over-parameterized or experimental errors are correlated. It may only be possible to get a good fit for $x \le \sim 10^{-3}$. BFKL is an expansion in $1/\ln |x|$. Corrections to NLO BFKL expected to be $\sim 1/|\ln(x)|^2$. $\sim 2\%$ for $x = 10^{-3}$ (comparable with experimental accuracy) $\sim 5\%$ for $x = 10^{-2}$

Application of BFKL mechanism to DIS assumes that (valence) quark contribution is negligible. This may not be good to current experimental accuracy for $x > 10^{-3}$.

There are very large corrections to the photon impact factor at NLO (Chirilli & Balitsky; Bartels & Chachamis) - these need some sort of collinear resummation analogous to the NLO characteristic function (Salam, 1999)

Summary

- ▶ Eigenfunctions of discrete BFKL Pomeron are very sensitive to infrared phases.
- Rapid convergence of sum of eigenfunctions to generate unintegrated gluon density. - 10 eigenfunctions sufficient for good accuracy
- Continuum from cut along negative real axis in Mellin transform variable, ω , is needed for completeness makes a small but significiant contribution to unintegrated gluon density.
- ► For $F_2 \sim x^{-\lambda(Q^2)}$ we expect $\lambda(Q^2)$ decrease at large Q^2 reflecting dacay of leading eigenfunctions. Data so far only gives a hint of this perhaps this could be confirmed at LHeC !!
- ► Fit with $\chi^2/DOF = 0.5$ has been found for HERA DIS data with $x \le \sim 10^{-3}$ (and $Q^2 > 5 \,\text{GeV}^2$)