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Introduction

❖ LHC Run II: higher energies 
and luminosity
• More data & statistics

• Higher precision measurements

❖ Theory has to keep up!
• Higher orders in perturbation 

theories

• Faster (numerical) computations
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Motivation



Introduction

Loop level amplitudes 
 
 

Ill-defined integrals, in the UV (high-energy)

and in the IR (soft-collinear)  
 
 

Singularities

4

Many existing methods to deal with that: DREG, FDH… and LTD

Higher order computational issues



The Loop-Tree Duality

❖ Write the Feynman integral 
 

❖ Apply Cauchy’s residue theorem  
 

❖ Compute the residues, and get a sum with N contributions
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How it works

Similar to Feynman Tree Theorem, but one gets only 1-cuts (with modified prescriptions)
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The Loop-Tree Duality
How it works

The Feynman integral becomes a sum over N 1-cuts
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The Loop-Tree Duality
A basic example: the scalar three-point function
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Momenta parametrisation:

Three contributions: L(1)(p1, p2,�p3) =

Z
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The Loop-Tree Duality
A basic example: the scalar three-point function

I1 =
4

s12

Z
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1� (1� 2v1)2�2
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These  integrals cannot be computed in d=4 dimensions
(Only possible in d=4-2  )
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One has to get rid of singularities (IR and UV)

d[⇠i] =
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Local cancellation of singularities
Global vs local

+

❖ Within DREG: cancellation after integration:

Virtual + Real
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❖ Within LTD: cancellation locally, before integration, so you can integrate in 4 dimensions



Local cancellation of singularities
Counter-term (UV)

Define suitable integrand level UV counter-terms:

• Correct integrated forms (in d dimensions) compared with DREG

• Local cancellation of UV singularities
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You get the correction terms:



Local cancellation of singularities
Counter-term (UV)

1. Expand the numerators and the propagators around a UV propagator  
 
 

2. Choose a scheme (MSbar scheme for example) and adjust subleading 
terms to subtract only the pole

3. Subtract the counter-term that will locally cancel the singularity, using 
the dual variables 

{
(⇠UV , vUV )
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Local cancellation of singularities
Unsubtraction algorithm (IR)
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Three IR singularities:
⇠1,0 = 0

⇠1,0 < 1 v1 = 0

⇠2,0 < 1 v2 = 1

Soft
Quasi-Collinear
Quasi-Collinear

Cancelled by the real contributions:



Local cancellation of singularities
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Phase-space partition
Before doing anything, you want to isolate each singularity
(Avoid having two soft or two quasi-collinear singularities in the same region)

Two regions:
• Region 1: Soft + quasi-collinear singularities  

                 First LTD contribution’s singularities will be canceled  

• Region 2: Quasi-collinear singularity  
                 Second LTD contribution’s singularity will be canceled

But in order to do that, you need to find a mapping so you can add real 
and virtual amplitudes at integrand level (with the variables           )(⇠i, vi)



The real-virtual mapping
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Region 2

p0µr =(1� �2)p̂
µ
1 + (1� ↵2)p̂

µ
2 � qµ2
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Then one has to solve:

Using QCD factorisation properties, we define the mapping:
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The real-virtual mapping
Adding real+virtual
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Then we get the real contribution decay rate in each region:

And we can carefully add those to the LTD contributions and obtain 
something smoothly integrable in 4 dimensions! 
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Some results
For the toy scalar case

Good agreement and expected massless limit
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Some results
For physical processes: Higgs and pseudoscalar decay
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Some results
For physical processes: Z and photon decay

Very good agreement with DREG!
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Some results
Computation time

Very effective numerically!
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Conclusion and outlook

• Local cancellation of both UV and IR singularities

• Integration in d=4 dimensions without DREG

• Fast numerical computations: real and virtual 
corrections implemented simultaneously

• Works for an arbitrary number of loops

What the LTD can achieve
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Conclusion and outlook

• Numerical computation of multi-leg processes 
at hadron colliders

• NN(…)LO

• Automatising

• All of that together

And what is next?
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Thank you for your attention!


