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Introduction

LHC Run II: higher energies
and luminosity

e More data & statistics

« Higher precision measurements

Theory has to keep up!

» Higher orders in perturbation
theories

 Faster (numerical) computations




Introduction

Higher order computational issues

Loop level amplitudes

v

[ll-defined integrals, in the UV (high-energy)

P

and in the IR (soft-collinear)

v

Singularities

Many existing methods to deal with that: DREG, FDH... and LTD



The Loop-Tree Duality

How it works

Write the Feynman integral
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Apply Cauchy’s residue theorem
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Compute the residues, and get a sum with N contributions
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Similar to Feynman Tree Theorem, but one gets only 1-cuts (with modified prescriptions)




The Loop-Tree Duality

How it works

(g + p:)° — i0np;
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The Feynman integral becomes a sum over N 1-cuts




The Loop-Tree Duality

A basic example: the scalar three-point function

Three contributions:
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The Loop-Tree Duality

A basic example: the scalar three-point function
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These integrals cannot be computed in d=4 dimensions
(Only possible in d=4-2¢)

> One has to get rid of singularities (IR and UV)




Local cancellation of singularities
Global vs local

41 P
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+ Within DREG: cancellation after integration:

Virtual (%+0(1)) Rl (—%Jr(?(l))

« Within LTD: cancellation locally, before integration, so you can integrate in 4 dimensions




Local cancellation of singularities

Counter-term (UV)

Define suitable integrand level UV counter-terms:

Correct integrated forms (in d dimensions) compared with DREG

Local cancellation of UV singularities

You get the correction terms:

AZs(p1) = —geCr /EGF<Q1)GF(Q3> ((d = 2);1 iz + 4M? (1 - Zi ii) GF(q;),))

AZE3(p1) = ~3Cr [ Grlan) Gl ((d P2y z)
/¢ P1 - P2

10




Local cancellation of singularities

Counter-term (UV)

! 1. Expand the numerators and the propagators around a UV propagator

1
Gr(q) = e e
0 Gy — My + 90

> { 2.  Choose a scheme (MSbar scheme for example) and adjust subleading
terms to subtract only the pole

3. Subtract the counter-term that will locally cancel the singularity, using

\ the dual variables (éyv, vuv)

AZyY = —(d—2)g5Cr / e | a2 Kl _ Beuov(I- 2UUV))
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AZ](\}S’UV = —g?gCF/d[fUV]d[vUv]
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Local cancellation of singularities

Unsubtraction algorithm (IR)

Gl = Soft
Three IR singularities: Sm= it =10 Quasi-Collinear
D= A iy — Quasi-Collinear

> Cancelled by the real contributions:

\\ ‘\ I(
“x « A
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Local cancellation of singularities

Phase-space partition

Before doing anything, you want to isolate each singularity
(Avoid having two soft or two quasi-collinear singularities in the same region)

> Two regions:

* Region 1: Soft + quasi-collinear singularities
— First LTD contribution’s singularities will be canceled

* Region 2: Quasi-collinear singularity
— Second LTD contribution’s singularity will be canceled

But in order to do that, you need to find a mapping so you can add real
and virtual amplitudes at integrand level (with the variables (&, v;))
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T'he real-virtual mapping

Region 1 Region 2

Using QCD factorisation properties, we define the mapping:

Pt =q; P =(1—y)p] + (1 —a2)py — g5
pt =1 —a)py + (1 —n)ps — ¢ Py =P8 + aoph
s’ = a1 pf + ph =
1 B = 1
with p: :ﬂﬁ’f B —5]35 and po :—525/f S5 ﬂﬁg

2 . % 2

Then one has to solve:
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T'he real-virtual mapping

Adding real+virtual

Then we get the real contribution decay rate in each region:

R1(€1,0,v1)T1(€1,0,v1)(1 — &1 0(1 — v1))?
o a2 =g L 2 )
(1) _ (0) 20 Ra(€2,v2)J2(82,v2)(2 + (1 — 2v3)&s — £2,0)
e /d&d o (IT=6 0 (&2 0 F (1" =20)(1' =205 )65 — m?)

)2@

Fg)l = F(O dfl od’Ul

And we can carefully add those to the LTD contributions and obtain
something smoothly integrable in 4 dimensions!
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Some results

For the toy scalar case

 — Analytical (DREG)

g * 4D unsubtracted (LTD)

Good agreement and expected massless limit
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Some results

For physical processes: Higgs and pseudoscalar decay
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Some results

For physical processes: Z and photon decay

Logyo(r V()
S

— Analytical (DREG)
® 4D unsubtracted (LTD)

..................

Very good agreement with DREG!
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Some results

Computation time

Rank Tensor Hexagon Real Part Imaginary Part Time]s]
P20 1 SecDec —1.21585(12) x 10715 36
L'TD —1.21552(354) x 1071 6
P21 3 SecDec 4.46117(37) x 10~ 5498
LTD 4.461369(3) x 10~ 1
P22 1 SecDec 1.01359(23) x 1071 +i 2.68657(26) x 10~ 33
LTD 1()1345(13( ) x 1071 44 2.68633(130) x 10~ 72
P23 2 SecDec 315(24) x 10712 —; 2.06087(20) x 10712 337
LTD 4?273(727) x 10712 i 2.06202(727) x 1012 75
P24 3 SecDec —2.07531(19) x 107 +i 6.97158(56) x 10~7 14280
LTD —2.07526(8) x 10~° +1 6.97192(8) x 10=° 85

B eee——

A

Very etfective numerically!
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Conclusion and outlook

What the LTD can achieve

Local cancellation of both UV and IR singularities
Integration in d=4 dimensions without DREG

Fast numerical computations: real and virtual
corrections implemented simultaneously

Works for an arbitrary number of loops
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Conclusion and outook

And what is next?

Numerical computation of multi-leg processes
at hadron colliders

NN(...)LO
Automatising

All of that together
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Thank you for your attention!



