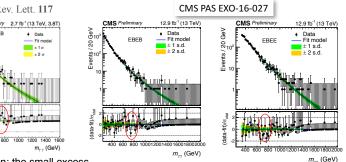
Recent progress in theoretical predictions for LHC physics


Fulvio Piccinini

INFN, Sezione di Pavia

Diffraction 2016, Acireale, 3-8 September, 2016

- bump hunting, if possible new particles are in the investigated energy domain
 - analysis data driven
- if new BSM threshold is higher than the available energy
 - look for deviations from SM predictions in the tails of distributions
 - measure the SM couplings and parameters with the highest possible precision in order to discover internal inconsistencies
 - both above cases require the most possible precision in theoretical predictions

Most exciting New Physics hint disappeared (~350 th-papers)

2016 analysis: straight reload of 2015 analysis

Clarification: the small excess at 750 GeV remained there after reprocessing and final calibration (CMS choice to reprocess prior to publishing).

2015 data

EBEB

600

Events / (20 GeV)

data-fit)/o

10

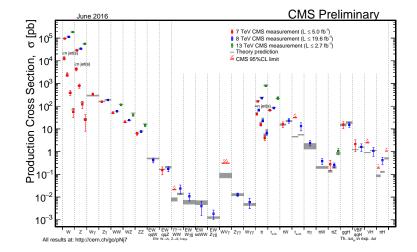
Phys. Rev. Lett. 117 CMS Preliminary 2.7 fb⁻¹ (13 TeV, 3.8T)

Data

Fit model

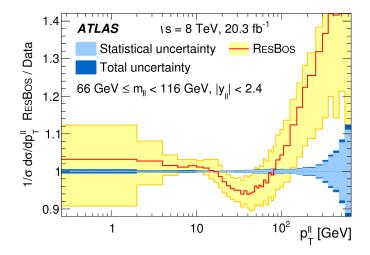
m, ., (GeV)

2016 data: no evidence of strengthening of this bump

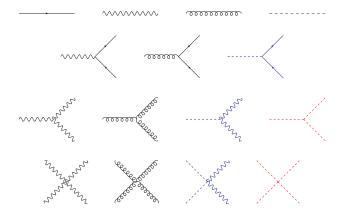

16

Most impressive results of LHC Run 1

measured cross sections in agreement with SM predictions over 6 orders of magnitude

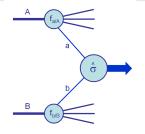

		4 · · · · · · · · · · · · · · · · · · ·		In Lawrence La	b-']	Reference
pp	et = 96.07 (1.0.10 + 0.01 etc.) (minute) COMPLETE INPRIATE (Energy)		4	4 %	0×10 ⁻⁴	arRiv:1607.00805
	27 = 95.35 ± 0.38 ± 8.3 mil (0000) CCOMPLEX (PP1782 (Deary)		•	• •	×10 ⁻⁸	Nucl. Phys. B, 486-548 (20
w	er = 190 1 + 0.2 + 6.4 (0) (4(m)) Dr994(0 + CT11648(0) (heavy))		¢	P 0.	.081	PLB 759-(2014) 601
**	w = 94.51 + 0.194 + 3.725 (0.1009) FEM2-HERAPORT 5.5ML/C (theory)		•		.035	PRD 85, 672804 (2012)
z	er = 58.8 + 0.2 + 1.7 ×0.9600 D1996L0 + CT1496L0 (theory)		0	P 0	.061	PUB 759-(2314) 801
~	er = 27.94 + 0.178 + 1.000 +0.0000 FEW2-INETIAPOPTI STALLO (Invers)		¢	-	.035	PRO 85. 672604 (2012)
tī	vr = 818 8 + 8.0 + 35.0 30 (0em) 800++ Will,O-NU, (0em)	, 9		Q 1	3.2	#70x7506.02609 [hep-ex]
	or = 242.4 + 1.7 + 18.2 (0.1000) https://www.co.noisi.com/	.4		4 2	20.3	EPUC 14, 3109 (2014)
	er = 382.8 + 3.1 + 6.4 pb (8ml) 80++ WeLC-WHLL (theory)	¢			4.6	EPUC 14, 3109 (2014)
t _{t-chan}	σ [*] = 329.0 ± 40.2 (0 total) NLO-NLL (0 total)	0			3.2	ATLAS-CONF-2015-679
	vr = 82.6 + 1.2 + 12.6 (to ident) 88.00-80.0 (theory)	4			20.3	ATLAS-COMP 2014 007
	er = 66.0 + 2.0 + 8.0 go Metal MLO-ML (INSPI)	۰.		-	4.6	PRD 96, 112808 (2014)
	ur = 142.1 + 5.4 + 13.3.06 (teta) NNLO (treor(c	9			3.2	ATLAS-CONF-2016-000
ww	er = 90.2 a 1.2 a 4.4 ptb (Meta) NNLO (Sheary)	۵	Theory		10.3	CERV CP-2016-188
	or = 51.9 x 2.0 x 4.4 pt (deta) NNLO (theory)	0		p ·	4.6	PRD 87, 112801 (2013)
н	$\sigma = 61.5 + 10.5 - 10.0 + 4.3 - 3.2 (0.000)$ LFG+005005 VB4 (0.000)	0	LHC pp $\sqrt{s} = 7 \text{ TeV}$	(1	3.3	ATLAS-COAP-2016-081
	$w = 27.7 \pm 3.5 \pm 2.3 - 3.8 \mathrm{mm} \mathrm{(Intra}) \\ \mathrm{Unit} \mathrm{High} Hi$	4	Data	2	20.3	EPVC 75. 6 (2816)
	er = 22.3 + 6.7 + 5.3 + 3.3 + 2.7 pt (0.00) LHC-HCORC V04. (0.00)	P	513	••••	4.5	EPVG 76. 6 (2016)
Wt	or = 94.0 x 10.0 + 20.0 - 73.0 (0 (560)) NEC-MNLA (Descry)	p	stat syst		3.2	ATLAS-CONF-2016-065
	or = 23.0 + 1.3 + 3.4 - 3.7 (0-(000)) MLD-MLA (00007))	4	LHC pp √s = 8 TeV	0 2	20.3	JHEP-01, 004 (2016)
	w = 26.8 + 2.8 + 3.8 gb stars) MCO-MA, interval	0	Data		2.0	PL8 716, 142 159 (2012)
	er = 90.6 + 2.6 + 2.5 (0) (del0) MAX WH 2002 [2] (deam)	0		0 :	3.2	#70c1606.04017 [http://di
wz	er = 24.3 x 0.4 x 0.9 pb (detail bACTROL (DDLC)) (descript)	4	stat ⊕ syst	4 2	80.3	PRO 83, 080804 (2016)
	et = 19:0 + 1.4 - 1.3 + 1.0 str (dots) MATING (MALC), (Breary)	٥	LHC pp √s = 13 TeV	• •	4.6	EPUG 12, 2113 (2012)
	ur = 25.7 + 2.2 - 2.2 + 1.3 - 1.0 pt (880) MALO Broats)	0	Data		3.2	PHR, 116, 101801 (2016)
ZZ	w = 2.1 + 0.5 - 0.4 + 0.5 p0 (Mill) NRLO Illegram	4	stat stat ⊕ syst	5 2	10.3	ATLAS-CONF-2013-620
	vr = 6.7 ± 0.7 ± 0.5 ± 0.5 pt (5ets) MILO (Belly)	۰	stat o syst	•	4.6	JHEP-10, 128-(2010)
s-chan	σ = 4.8 + 0.8 + 1.6 − 1.3 pt (data) MCCANNE (Percey)	ATLAS	Preliminary	2	80.3	PL8 756, 228-248 (2014)
tīW	σ [*] = 1.30 + 0.09 + 0.07 (0.1093) Madgraph5 + all(CQPA, C (heory)			-	3.2	ATLAS-COAP-2016-000
ttvv	Int = 300.0 + 36.0 - 75.0 + 64.0 to (866) MCFM (86000)	Bun 1.2	√s = 7, 8, 13 TeV		80.3	JHEP 11, 172 (2015)
tīZ			1	-	3.2	ATLAS-CONF-2016-000
	w = 176.0 + 52.0 - 68.0 + 24.0 % (dem)				10.3	JHEP 11, 172 (2015)
	later and a second a second a second a second	al accord accord accord a	M/L	للسلسلسا		
	10^5 10^4 10^3 10^2 10^1	1 10 ¹ 10 ² 10 ³	104 105 106 1011 (0.5 1 1.5 2 2.5		
				data/theory		

the same from CMS


 for several final states the theory uncertainty is (and will be even further) the limiting factor

precision also on distributions: e.g. $\mathbf{p}_{\mathbf{T}}^{l+l^{-}}$

• exp uncertainty at the % level over a wide range of p_T values


 $\mathcal{L}_{matter} + \mathcal{L}_{gauge} + \mathcal{L}_{Higgs} + \mathcal{L}_{gauge-int.} + \mathcal{L}_{Yukawa-inter.} + \mathcal{L}_{Higgs self-int.}$

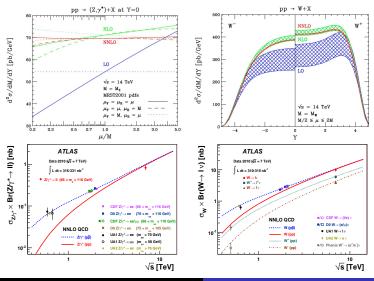
From SM Lagrangian to collider phenomenology

$$\sigma^{\text{exp}} \equiv \frac{1}{\int \mathcal{L} dt} \frac{N^{obs}}{A \ \epsilon} = \sigma^{\text{theory}}$$

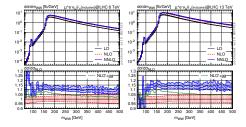
$$\begin{split} \sigma^{\text{theory}} &\equiv \sum_{a,b} \int_0^1 dx_1 dx_2 f_{a,H_1}(x_1,\mu_F^2,\mu_R^2) f_{b,H_2}(x_2,\mu_F^2,\mu_R^2) \times \\ & \times \int_{\Phi} d\hat{\sigma}_{a,b}(x_1,x_2,Q^2/\mu_F^2,Q^2/\mu_R^2) + \mathcal{O}\left(\frac{\Lambda_{QCD}^n}{Q^n}\right) \end{split}$$

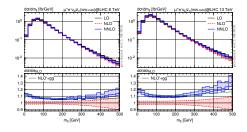
Campbell, Huston, Stirling, hep-ph/0611148

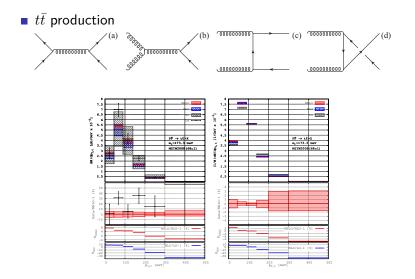
- PDF's fitted from data
- *^ˆ* calculated
 perturbatively

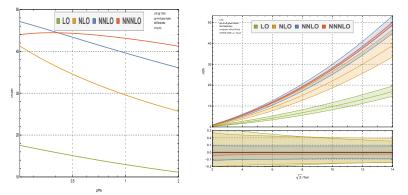

$$\begin{aligned} \sigma &= \sigma_0 (1 + \alpha_s \delta_1^{\text{QCD}} \\ &+ \alpha_s^2 \delta_2^{\text{QCD}} \\ &+ \alpha \delta_1^{\text{EWK}} + \ldots) \end{aligned}$$

Higher order SM corrections


- a powerful per cent level comparison between theoretical predictions and measurements requires the inclusion of perturbative higher order corrections
- in particular, for observables inclusive on additional radiation, fixed order calculations are reliable
- for $2 \rightarrow 1$ and $2 \rightarrow 2$ scattering processes the QCD NNLO corrections have been recently calculated, with the help of new subtraction schemes
 - for colourless final states
 - Higgs production
 - C.C. and N.C. Drell Yan
 - $\blacksquare pp \to HW, pp \to HZ$
 - $pp \rightarrow VV', \ V, V' = Z, W, \gamma$
 - for final states involving coloured particles
 - $pp \rightarrow t\bar{t}$, single-top production
 - \blacksquare Wj, Zj and Hj production
 - $pp \rightarrow Hjj$ in VBF


fully differential NNLO QCD corrections to DY


NNLO QCD corr's to $pp \rightarrow W^+W^- \rightarrow 4$ leptons


M. Grazzini et al., arXiv:1605.02716

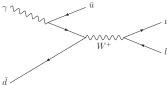
$t\bar{t}$ @NNLO QCD

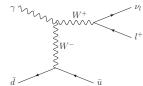
M. Czakon, P. Fiedler D. Heymes and A. Mitov, arXiv:1601.05375

N3LO predictions for inclusive Higgs cross section

C. Anastasiou et al., arXiv:1503.06056; arXiv:1602.00695

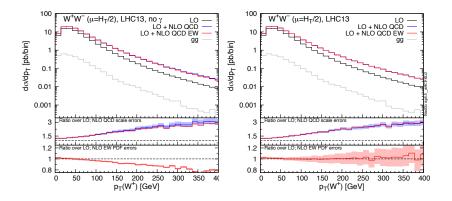
- reduced scale dependence
- \blacksquare N3LO correction $\sim 2\%$ w.r.t NNLO


also electroweak corrections enter the game, in two ways


• ($\alpha_{e.m.} \sim \alpha_s^2 \Longrightarrow$ NLO EWK ~ NNLO QCD)

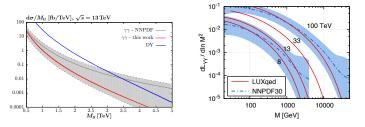
- usually largest effects from QED radiation from external legs $\sim \alpha \log \left(\frac{Q^2}{m^2}\right)$
- EWK effects particularly relevant for observables (partially) insensitive to QCD corrections, e.g.
 - Higgs decays to four leptons
 - transverse mass in the charged DY process
- on the NLO side, EW radiative corrections to $2 \rightarrow 2$, $2 \rightarrow 3$ and few $2 \rightarrow 4$ processes are already known
- LHC run2 is exploring (with enough statistics) regions of phase space with scales $Q^2 >> M_W^2 \Longrightarrow$ dominance of Sudakov logarithms $\alpha \log^2 \left(\frac{|Q^2|}{M^2}\right)$

Photon induced processes


 at the same perturbative order of real NLO EW (QED) corrections contribute diagrams with γ in the initial state

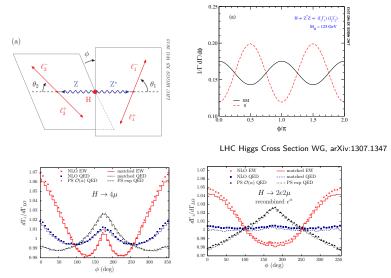
- for neutral systems of charged F.S. particles also contributions at tree level (e.g. $\gamma\gamma \rightarrow \mu^+\mu^-$ or $\gamma\gamma \rightarrow W^+W^-$)
- typically they become relevant for large invariant mass of the system and forward kinematics, when t-channel enhancements are possible
- \blacksquare Necessary PDF sets which provide the γ PDF
- existing sets
 - MRST2004QED
 - NNPDF2.3QED, NNPDF3.0QED
 - CT14QED

Large uncertainties due to photon PDF's

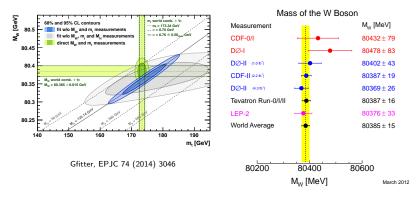


D. Pagani, talk at MBI2015, DESY Hamburg, 3 September 2015

The problem of the γ PDF uncertainty

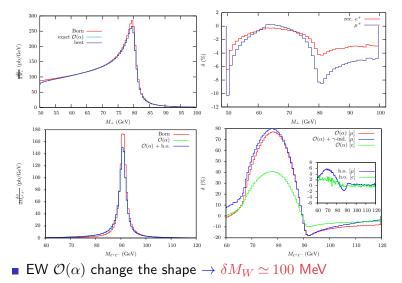

- Very recently it has been realized that the available parameterizations do not include the information from coherent emission $p \rightarrow p\gamma$ at low Q^2 , which is well measured experimentally through the electric and magnetic proton form factors
 - the coherent emission is crucial for the input PDF at low $Q^2\,$ scale

Manohar, Nason, Salam, Zanderighi, arXiv:1607.04266; Harland-Lang, Khoze and Ryskin, arXiv:1607.04635



 uncertainty already well below 10% and central value close to the minimum predicted by NNPDF

not always dominance of QED. Example: $H \rightarrow 4l$


S. Boselli et al, arXiv:1503.07394

TeVatron EWWG, arXiv:1204.0042

• A precise ($\delta M_W < 10$ MeV) M_W measurement at LHC Run2 and beyond will be an important goal of the LHC precision physics pogramme

Effects of EW corrections: W and Z production

Carloni Calame et al., PRD 69 (2004) 037301, JHEP 0710 (2007) 109

mixed QCD - EW corrections

Perturbatively the QCD - EW interference is a two-loop effect

$$d\sigma = d\sigma_0 + d\sigma_{\alpha_s} + d\sigma_{\alpha} + d\sigma_{\alpha_s^2} + d\sigma_{\alpha\alpha_s} + d\sigma_{\alpha^2} + \dots$$

• the $\mathcal{O}(\alpha \alpha_s)$ calculation involves as building blocks

- NNLO virtual corrections at $\mathcal{O}(\alpha \alpha_s)$ (not yet available)
 - necessary two-loop master integrals

(with m = 0 external particles and $M_W = M_Z$) just appeared R. Bonciani et al., arXiv:1604.08581

- NLO EW corrections to $l\bar{l}^{(')}$ + jet
- NLO QCD corrections to $l\bar{l}^{(')} + \gamma$
- double real contributions $l\bar{l}^{(')} + \gamma + jet$
- PDF's with NNLO accuracy at $\mathcal{O}(\alpha \alpha_s)$

(not yet available)

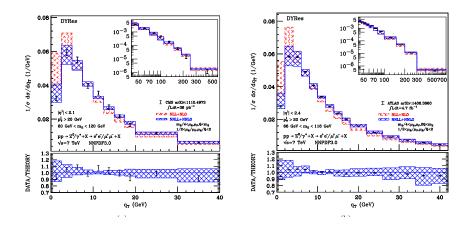
recently calculated:

• dominant $\mathcal{O}(\alpha_s \alpha)$ corrections to DY in pole approximation Dittmaier, Huss, Schwinn, NPB 885 (2014) 318, NPB 904 (2016) 216

	bare	muons	dressed leptons		
	$M_{\rm W}^{\rm fit} \; [{ m GeV}]$	$\Delta M_{\rm W}$	$M_{\rm W}^{\rm fit} \; [{ m GeV}]$	$\Delta M_{\rm W}$	
LO	80.385	$\bigg\} \ -90 \ {\rm MeV}$	80.385	$\left. \right\} - 40 \text{ MeV}$	
$\rm NLO_{ew}$	80.295		80.345		
$\rm NLO_{s\oplus ew}$	80.374	$\bigg\} - 14 \ {\rm MeV}$	80.417) A MeV	
NNLO	80.360		80.413	$\bigg\} \ -4 \ {\rm MeV}$	

Dittmaier, Huss, Schwinn, NPB 904 (2016) 216

- in regions of phase space where large scale differences appear, e.g.
 - $p_T \ll M_V$ in DY
 - \blacksquare small $x,\,Q^2/s \ll 1$
 - in regions of phase space where the radiation is tightly constrained, e.g.
 - $\blacksquare \text{ large } x \text{, } Q^2/s \rightarrow 1$


large logs appear which spoil perturbation theory

- solution: resummation, $\alpha_s^n \log^{2n}$ (LL), $\alpha_s^n \log^{2n-1}$ (NLL), ...
- an alternative approach is given by SCET formalism
 - also EWK Sudakov Logs can be automatically resummed in the SCET formalism

Bauer, Becher, Manohar, ...

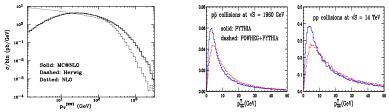
q_T resummation with DYRES, comparison with LHC data

NNLL resummation with NNLO normalization

Catani, De Florian, Ferrera, Grazzini, arXiv:1507.06937

positive features

- complementarity with fixed order calculations
- soft/collinear regions are automatically treated with Leading Log resummation
- they include a model for the description of the underlying event, MPI and the hadronization
- completely exclusive event generation, very useful for interface to detector simulation software and extrapolation


problems

- the cross section prediction is pure LO (due to the unitarity of the algorithm)
- improvement: matching between fixed order NLO calculation and parton shower event generators

requirements to the matching

- avoid double counting
 - showering the Born events generate events with one additional parton from the shower. Such events are already accounted for in the NLO real radiation contribution
- ensure smooth distributions in the phase space
- since a decade two working algorithm have been developed:
 - 1 MC@NLO (S. Frixione and B. Webber (2002))
 - 2 POWHEG (P. Nason (2004))
- comparison MC@NLO POWHEG
 - both ensure total cross section at NLO accuracy
 - MC@NLO exponentiates only the singular part of the real radiation amplitude
 - POWHEG modifies the Sudakov form factor by exponentiating the complete real radiation amplitude
 - differences between the two codes are beyond NLO accuracy
 this can be used as an handle to guess the theoretical uncertainty due to missing higher orders

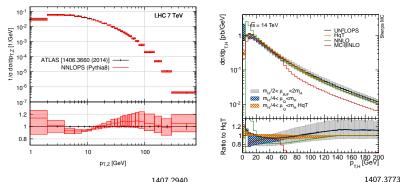
examples and the path to automation

S. Frixione and B. Webber, hep-ph/0204244

P. Nason and G. Ridolfi, hep-ph/0606275

- the recent automation on NLO multileg calculations triggered also the development of interfaces between automatic NLO matrix elements and parton showers, according to the MC@NLO or POWHEG methods. E.g.:
 - MadGraph5_aMC@NLO
 - MUNICH + Sherpa + OpenLoops
 - Herwig++Matchbox + OpenLoops/Gosam
 - Madgraph + POWHEG
- QCD@NLOPS acc. in principle automatized for every process
- QCD⊕/⊗EWK@NLOPS acc. under development, available for few selected processes

matching Parton Shower with higher orders


recent developments on Higgs production, Drell-Yan and HW up to NNLO accuracy

Hamilton, Nason, Oleari, Zanderighi, arXiv:1212.4504, Hamilton, Nason, Re, Zanderighi, arXiv:1309.0017

Hamilton, Nason, Zanderighi, arXiv:1501.4637, Karlberg, Re, Zanderighi, arXiv:1407.2940

Höche, Li, Prestel, arXiv:1407.3773, Höche, Li, Prestel, arXiv:1405.3607

Astill, Bizon, Re and Zanderighi, arXiv:1603.01620

Summary and outlook

- run2 of LHC and beyond demand continuous progress in the precision of theoretical calculations/generators
- last few years witnessed very important advancements in
 - fixed order corrections @NNLO QCD accuracy and mixed $\mathcal{O}(\alpha_s \alpha)$ NNLO contributions in a completely differential way
 - automation of NLO QCD/EWK calculations for every parton multiplicity in the final states
 - standardisation of event generators @NLOPS accuracy
 - development of QCD⊕/⊗EWK @NLOPS accuracy, applied to selected processes
 - first studies at NNLOPS QCD accuracy
 - (not discussed here) advancements in the development of the SMEFT, where operators with dim > 4 are included in the Lagrangian for a (almost) model-independent bottom-up approach to the deviations from the SM predictions