

Ultra-peripheral collisions in heavy ions at the LHC

Daniel Tapia Takaki

Diffraction:

International Workshop on Diffraction in High-Energy Physics Catania, Sicily - 7 September 2016

UPC experimental talks at Diffraction

ALICE:

- J.Adam: two-photon process and VM results in gamma-p
- G. Contreras: VM results in gamma-Pb
- ATLAS:
 - M.Arrieta: two-photon process
- CMS:
 - A. Bylinkin: VM result in gamma-p

Using the LHC as a yy, yPb, yp collider

Why Ultra-Peripheral collisions

Nuovo Cim.,2:143-158,1925 http://arxiv.org/abs/hep-th/0205086

Therefore, we consider that when a charged particle passes near a point, it produces, at that point, a variable electric field. If we decompose this field, via a Fourier transform, into its harmonic components we find that it is equivalent to the electric field at the same point if it were struck by light with an appropriate continuous distribution of frequencies.

High photon flux $\sim Z^2$

→ well described by the
 Weizsäcker-Williams approximation

Enrico FERMI

The electromagnetic field surrounding these protons/ions can be treated as a beam of quasi real photons

Two ions (or protons) pass by each other with impact parameters b > 2R. **Hadronic interactions are strongly suppressed**

LHC: the most energetic photon source ever built

Photon-induced collisions at the Tera-eV scale

UPCs: multiple studies are possible

- Understanding of the initial state produced in high energy nucleus-nucleus collisions
- Understanding gluons and their selfinteractions in nucleons/nuclei
- Glueballs, exotic quarkonia ...
- QED physics, radiative decays, strong fields
- Electro-weak final states
- Beyond the Standard Model

9 UPC studies with heavy ions at the LHC

- Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at sNN=2.76 TeV Phys.Lett. B718
 (2013) 1273-1283
- Charmonium and e+e- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $sNN\sqrt{=2.76}$ TeV Eur.Phys.J. C73 (2013) 11, 2617
- Exclusive J/ψ photoproduction off protons in ultra-peripheral p-Pb collisions at sNN√=5.02 TeV Phys.Rev.Lett. 113 (2014) 23, 232504
- Coherent ρ0 photoproduction in ultra-peripheral Pb-Pb collisions at sNN =2.76 TeV JHEP 1509 (2015) 095
- Coherent ψ(2S) photo-production in ultra-peripheral Pb Pb collisions at sNN = 2.76 TeV Phys.Lett. B751
 (2015) 358-370
- Measurement of an excess in the yield of J/\psi at very low pT in Pb-Pb collisions at sNN = 2.76 TeV Phys. Rev. Lett.116 (2016) 22, 222301
- Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at sNN=2.76 TeV with the CMS detector CMS-PAS-HIN-12-009. Submitted to PLB
- Measurement of exclusive Upsilon in pPb collisions at sNN = 5.02 TeV CMS-PAS-FSQ-13-009
- Measurement of high-mass dimuon pairs from ultraperipheral lead-lead collisions at sNN =5.02 TeV with the ATLAS detector at the LHC ATLAS-CONF-2016-025

The ALICE experiment at LHC

Central rapidity

Inner Tracking (ITS), Time Projection Chamber (TPC), Time-of-Flight, TRD, EMCAL $|\eta| < 0.9$

Forward rapidity

Muon Spectrometer $-4 < \eta < -2.5$

Dedicated triggers for UPC, using VZERO forward detectors for vetoing And MUON, TOF and SPD

ALICE can measure J/ψ mesons down to zero p_{τ}

ZDC at 116 m from IP, to study neutron/proton emitted at the very forward region

Forward detectors at CMS

UPC: The most gentle collisions

Ultra-peripheral Pb-Pb collisions

JHEP 1509 (2015) 095

ALICE
JHEP 1509 (2015) 095

L. Frankfurt et al. Phys.Lett. B752 (2016) 51-58

Both ALICE and STAR find measured cross section ~40% lower than predicted by Glauber,although works fine at fixed-target experiments

Nuclei does not behave like individual nucleons?

JHEP 1509 (2015) 095

Both ALICE and STAR find measured cross section ~40% lower than predicted by Quantum Glauber,although works fine at fixed-target experiments

Nuclei does not behave like individual nucleons?

Nuclear effects

Nuclear effects

Nuclear gluon density

UPC studies provide the best information the community will get for the next 10 years before, the EIC turns on

Vector meson photoproduction

$$\frac{d\sigma_{\gamma A \to J/\Psi A}}{dt}\Big|_{t=0} = \xi_{J/\Psi} \left(\frac{16\pi^3 \alpha_s^2 \Gamma_{l^+l^-}}{3\alpha M_{J/\Psi}^5}\right) [xG_A(x,\mu^2)]^2$$

Coherent J/W photoproduction

Essentially Model independent. Parametrization of exclusive J/Ψ data in gamma-proton

i.e. No nuclear effects

Experimental evidence of nuclear gluon effects at low Bjorken-x and low virtuality

ALICE
JHEP 1509 (2015) 095

L. Frankfurt et al. Phys.Lett. B752 (2016) 51-58

Both ALICE and STAR find measured cross section ~40% lower than predicted by Glauber,although works fine at fixed-target experiments

Nuclei does not behave like individual nucleons?

Nuclear gluon density

$$S_A(W_{\gamma p}) = \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = 0.61$$

For $x \sim 10^{-3}$ and Q2 = 3 GeV 2

Nuclear gluon density

$$S_A(W_{\gamma p}) = \frac{G_A(x, \mu^2)}{AG_N(x, \mu^2)} = 0.61$$

For $x \sim 10^{-3}$ and Q2 = 3 GeV2

Recent: CTEQ group is starting to study UPC data for nPDF

See F. Olness, C. Bertulani, et al. http://arxiv.org/abs/arXiv:1603.01919

VM photoproduction data

Exclusive J/psi photoproduction

Phys.Rev.Lett. 113 (2014) 23, 232504

$$\frac{d\sigma_{\gamma \mathrm{Pb} \to J/\psi \mathrm{Pb}}(t=0)}{dt} = \frac{16 \Gamma_{ee} \pi^3}{3\alpha_{em} M_{J/\psi}^5} \left[\alpha_s(Q^2) x G_{\mathrm{Pb}}(x, Q^2) \right]^2$$

UPC VM in pp, p-Pb is a direct tool to measure saturation

Bjorken $x \sim 10^{-2} - 10^{-5}$ accessible at LHC

Exclusive Upsilon photoproduction in **p-Pb** collisions at 5.02 TeV

Martin Hentschinski

Martin Hentschinski (BUAP)

BFKL & the growth of the VM Xsec.

September 4, 2016

23 / 31

t-distribution

t-differential measurements give a gluon tranverse mapping of the hadron/ nucleus.

27

- Catania, Sicily

Exclusive J/psi in p-Pb

Phys.Rev.Lett. 113 (2014) 23, 232504

Data well described by templates

Energy dependence is clearly visible

Low W_{gp} energy point $< W_{gp} > \sim 30 \text{ GeV}$

High
$$W_{gp}$$
 energy point $< W_{gp} > \sim 700 \text{ GeV}$

Energy dependence of dissociative photoproduction: signature of gluon saturation

J. Cepina, G. Contreras and DTT arXiv:1608.07559 [hep-ph]

VM photoproduction in UPC Pb-Pb

$$\frac{d\sigma_{\text{PbPb}}(y)}{dy} = N_{\gamma/\text{Pb}}(y, M)\sigma_{\gamma\text{Pb}}(y) + N_{\gamma/\text{Pb}}(-y, M)\sigma_{\gamma\text{Pb}}(-y)$$

Neutron dependence

$$d\sigma(\text{total})/dy = d\sigma(0\text{n0n})/dy + 2d\sigma(0\text{nXn})/dy + d\sigma(\text{XnXn})/dy$$

Coherent J/psi predictions for Run 2

V. Guzey et al. arXiv:1602.01456 [nucl-th]

The Ridge in small systems

The ridge in UPC collisions?

Inclusive v. diffractive two-particle production

Diffractive dijet photoproduction:

Back-to-back correlation gets enhanced due to the saturation scale.

Balance between: $p_{1T}, p_{2T}, \vec{\Delta}, Q_s$

Inclusive dijet:

Back-to-back correlation gets suppressed due to the saturation scale.

Balance between: p_{1T}, p_{2T}, Q_s

Amir Rezaeian (UTFSM, Valparaiso

Sep 3, 2016

14 / 20

Exclusive Dijet in pp: CMS+TOTEM

CMS: $|\eta| < 5$ T2: 5.3 < $|\eta| < 6.5$ FSC: 6 < $|\eta| < 8$ TOTEM RP

very large rapidity coverage!

QED physics, radiative decays, strong fields:

....Two-photon production of lepton pairs

2010: Low luminosity, but trigger allows to cover the low mass region

2011: High luminosity, measurement to higher masses possible

ALICE & ATLAS RESULTS

STARLIGHT = Breit-Wheeler cross section is convoluted with the photon spectra from the two nuclei

Different beam energies, but confirms expectations over >2 orders of magnitude in M_{ll}

No hits of strong field effects

18

Beyond the Standard Model

UPCs and Axion-like particles

UPCs and Axion-like particles

S. Knapen, et al. arXiv:1607.06083 Jul 2016

LHC schedule

CERN Yellow Report: CERN-PH-LPCC-2015-001

At the very least, UPC physics at the LHC is a good testbed of EIC physics

Summary and outlook

- Studying QCD with high energy photon-photon, photonproton and photon-nuclear interactions at the LHC
 - Searching for saturation effects in the proton
 - Nuclear effects at both low and high Bjorken-x
- So far, most analyses have been carried out for exclusive VM photoproduction but new studies possible for other final states (dijets, double VM, diphoton, etc)
- Inclusive photo-nuclear and photon-proton reactions also possible

Summary

It is now time to

.....discuss and prepare for future LHC runs

...discuss/work on theoretical challenges

...discuss applications for future experimental facilities such as the EIC

Additional slides

Coherent and incoherent J/W photoproduction

Event-by-event fluctuations:

Coherent diffraction: target remains intact

$$\frac{\mathrm{d}\sigma^{\gamma^*A\to VA}}{\mathrm{d}t}\sim |\langle \mathcal{A}(x,Q^2,t)\rangle|^2$$

Incoherent, target breaks up: variance

$$\frac{\mathrm{d}\sigma^{\gamma^*A\to VA^*}}{\mathrm{d}t} \sim \langle |\mathcal{A}(x,Q^2,t)|^2 \rangle - \left| \langle \mathcal{A}(x,Q^2,t) \rangle \right|^2$$

 $\langle \rangle = \mathsf{Target} \; \mathsf{average}.$

Constraining proton fluctuations in $\gamma + p \rightarrow J/\Psi + p^*$

H.M., B. Schenke, arXiv:1603.04349

Incoherent data requires large fluctuations

Heikki Mäntysaari (BNL) DIS2016, 12.4.2016 6 / 13 Fluctuations

Data and theoretical predictions

Coherent J/\psi

Incoherent J/ ψ

Direct evidence of nuclear gluon shadowing

At mid-rapidity, Bjorken- $x \sim 10^{-3}$

ALICE shows that the distribution in $x \approx 10^{-2} - 10^{-3}$ range is consistent with the EPS09 parameterization

Two UPC publications by ALICE

Phys.Lett. B718 (2013) 1273-1283

Eur. J. Phys. C73, 2617 (2013)

Color fluctuation effects in UPCs

Color fluctuations are much larger than in the case of the proton interactions resulting in a large enhancement of the nuclear shadowing

L. Frankfurt et al. Phys.Lett. B752 (2016) 51-58

Prospects for Run 2

Coherent J/Ψ photoproduction

Do nuclear effects affect differently 1S and 2S states?
Need more precise data!

Ψ(2s) photonuclear

Ψ(2s)/J/Ψ enhancement in gamma+Pb collisions

A transverse slice through CMS

Forward detectors at CMS

