ALICE results on vector meson photonuclear production in Pb-Pb collisions

Guillermo Contreras
Czech Technical University

on behalf of the ALICE Collaboration

September 7, 2016
Beams of quasi-real photons at the LHC
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons

Note 1:
There are two potential sources, correspondingly two potential targets.
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons.

Note 1:
There are two potential sources, correspondingly two potential targets.

Note 2:
The photon is coherently emitted by the source and its virtuality is restricted by the radius of the emitting particle:
\[Q^2 \approx \frac{1}{R^2} \]
✓ γ from Pb: \[Q^2 \approx (30 \text{ MeV})^2 \]
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons.

Note 1:
There are two potential sources, correspondingly two potential targets.

Note 2:
The photon is *coherently* emitted by the source and its virtuality is restricted by the radius of the emitting particle:

$$Q^2 \sim 1/R^2$$

✓ γ from Pb: $Q^2 \approx (30 \text{ MeV})^2$

Note 3:
The intensity of the photon beam is proportional to Z^2.

The intensity of the photon beam is proportional to Z^2.

Note 3:

The intensity of the photon beam is proportional to Z^2.

The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons.
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons.

Note 1:
There are two potential sources, correspondingly two potential targets.

Note 2:
The photon is coherently emitted by the source and its virtuality is restricted by the radius of the emitting particle:
\[Q^2 \sim 1/R^2 \]
\[\gamma \text{ from Pb: } Q^2 \approx (30 \text{ MeV})^2 \]

Note 3:
The intensity of the photon beam is proportional to \(Z^2 \)

Note 4:
The max energy of the photons in the lab system is determined by the boost of the emitting particle
\[\checkmark \text{ Run2: larger energies possible} \]
The EM field of protons and ions at the LHC can be viewed as a beam of quasi real photons.

Note 1:
There are two potential sources, correspondingly two potential targets.

Note 2:
The photon is *coherently* emitted by the source and its virtuality is restricted by the radius of the emitting particle:
\[Q^2 \sim 1/R^2 \]
✓ γ from Pb: $Q^2 \approx (30 \text{ MeV})^2$

Note 3:
The intensity of the photon beam is proportional to Z^2.

Note 5:
Interactions at large impact parameters involve photons.

Note 4:
The max energy of the photons in the lab system is determined by the boost of the emitting particle:
✓ Run2: larger energies possible.
Why Pb-ions as source of photons?

The LHC accelerates both protons and Pb nuclei

As mentioned before, the intensity of the photon beam depends on the square of the electric charge of the accelerated particle:

→ The intensity is orders of magnitude larger for Pb w.r.t. proton beams.
Why Pb-ions as source of photons?

The LHC accelerates both protons and Pb nuclei

As mentioned before, the intensity of the photon beam depends on the square of the electric charge of the accelerated particle:

\[\text{The intensity is orders of magnitude larger for Pb w.r.t. proton beams.} \]

It is necessary to separate the collisions of hadrons, for which the LHC and its detectors were optimised, from the collisions involving quasi-real photons.

The strategy is to use the facts that

1. Strong interactions tend to produce particles at all rapidities, while electromagnetic interactions produce large rapidity gaps
2. Pb nuclei are very fragile objects, which break in all hadronic interactions ... and ALICE is able to detect with very high efficiency if a Pb nucleus breaks (by measuring in the very forward direction neutrons from the nuclear fragmentation)

\[\text{Look for processes with large rapidity gaps and (almost) intact outgoing nuclei} \]
Why Pb-ions as source of photons?

The LHC accelerates both protons and Pb nuclei

As mentioned before, the intensity of the photon beam depends on the square of the electric charge of the accelerated particle:

\[\text{The intensity is orders of magnitude larger for Pb w.r.t. proton beams.} \]

It is necessary to separate the collisions of hadrons, for which the LHC and its detectors were optimised, from the collisions involving quasi-real photons.

The strategy is to use the facts that

1. Strong interactions tend to produce particles at all rapidities, while electromagnetic interactions produce large rapidity gaps
2. Pb nuclei are very fragile objects, which break in all hadronic interactions ... and ALICE is able to detect with very high efficiency if a Pb nucleus breaks (by measuring in the very forward direction neutrons from the nuclear fragmentation)

\[\text{Look for processes with large rapidity gaps and (almost) intact outgoing nuclei} \]

These are called Ultra-Peripheral Collisions (UPC)
Exclusive photoproduction of vector mesons and ALICE
Shine light in a target and measure the scattered ‘light’, in this case a vector meson...
Shine light in a target and measure the scattered ‘light’, in this case a vector meson.

Kinematics completely determined:

- Rapidity measures energy of the photon-target interaction
- The square of the transverse momentum of the vector meson is related to \(\Delta \) the momentum transferred in the target vertex.
Exclusive vector meson production

- Shine light in a target and measure the scattered ‘light’, in this case a vector meson ..

- Kinematics completely determined:
 - Rapidity measures energy of the photon-target interaction
 - The square of the transverse momentum of the vector meson is related to Δ the momentum transferred in the target vertex

- The production of the vector meson does not break the target

- The transverse momentum transferred, Δ, is very small, being bounded by the size of the target. It is smaller for Pb targets, than for p targets.
Shine light in a target and measure the scattered ‘light’, in this case a vector meson...

Kinematics completely determined:
- Rapidity measures energy of the photon-target interaction
- The square of the transverse momentum of the vector meson is related to Δ the momentum transferred in the target vertex

The production of the vector meson does not break the target

The transverse momentum transferred, Δ, is very small, being bounded by the size of the target. It is smaller for Pb targets, than for p targets.

The only particles reaching the detector are the decay products of the vector meson (and may be some other very forward particles)
Exclusive vector meson production

- Shine light in a target and measure the scattered ‘light’, in this case a vector meson...
- Kinematics completely determined:
 - Rapidity measures energy of the photon-target interaction
 - The square of the transverse momentum of the vector meson is related to Δ the momentum transferred in the target vertex
- The production of the vector meson does not break the target
- The transverse momentum transferred, Δ, is very small, being bounded by the size of the target. It is smaller for Pb targets, than for p targets.
- The only particles reaching the detector are the decay products of the vector meson (and may be some other very forward particles)

Very clean signature
This interaction probes the QCD structure of the target.

In the colour dipole picture the photon fluctuates into a q-qbar pair, which interacts with the target and produces a vector meson.
The QCD structure of the target

- Measurement of the polar angle of produced vector meson \(\rightarrow\) energy evolution of the QCD structure of target
- Measurement of transverse momentum of produced vector meson \(\rightarrow\) transverse distribution of QCD structure in the target
- Different vector meson masses, in the perturbative regime \(\rightarrow\) different scales for QCD evolution

- This interaction probes the QCD structure of the target
- In the colour dipole picture the photon fluctuates into a q-qbar pair, which interacts with the target and produces a vector meson.

In the colour dipole picture the photon fluctuates into a q-qbar pair, which interacts with the target and produces a vector meson.
The QCD structure of the target

- Measurement of the polar angle of produced vector meson \rightarrow energy evolution of the QCD structure of target
- Measurement of transverse momentum of produced vector meson \rightarrow transverse distribution of QCD structure in the target
- Different vector meson masses, in the perturbative regime \rightarrow different scales for QCD evolution

This interaction probes the QCD structure of the target

In the colour dipole picture the photon fluctuates into a q-\bar{q} pair, which interacts with the target and produces a vector meson.

Key words are,
- p-Pb (p target): saturation
- Pb-Pb (Pb target): shadowing
The QCD structure of the target

- Measurement of the polar angle of produced vector meson \(\rightarrow \) energy evolution of the QCD structure of target
- Measurement of transverse momentum of produced vector meson \(\rightarrow \) transverse distribution of QCD structure in the target
- Different vector meson masses, in the perturbative regime \(\rightarrow \) different scales for QCD evolution

- This interaction probes the QCD structure of the target
- In the colour dipole picture the photon fluctuates into a q-qbar pair, which interacts with the target and produces a vector meson.

Key words are,
- p-Pb (p target): saturation
- Pb-Pb (Pb target): shadowing

See next talk by Jarda Adam!
ALICE
Magnetic field of 0.5 T in the central region
Magnetic field of 0.5 T in the central region

Trigger: V0 veto, SPD and TOF signals (with topology)
Magnetic field of 0.5 T in the central region

Trigger: V0 veto, SPD and TOF signals (with topology)

Trigger: V0A veto, muons in MUON (+signal in V0C)
Particle identification using dE/dx

The measurement of dE/dx performed by the TPC allows a clear separation of electrons and muons/pions.
What do we need?

1. To measure the decay products of a vector meson with very low transverse momentum:
 - ρ to $\pi^+ + \pi^-$
 - J/ψ to $\mu^+ + \mu^-$ or to $e^+ + e^-$
 - $\psi(2S)$ to $\mu^+ + \mu^-$, $e^+ + e^-$ or $J/\psi + \pi^+ + \pi^-$

2. To make sure there is nothing else in the detector:
 Large rapidity coverage to veto particles

3. To make sure that the source/target do not break:
 neutron Zero Degree Calorimeters (ZDC)
\(\gamma\text{-Pb: Results from Pb-Pb collisions in Run1} \)
γ-Pb: Results from Pb-Pb collisions in Run1

Four topics:
① Coherent ρ production
② Coherent and incoherent J/ψ production
③ Coherent ψ(2S) production
④ A surprise!
Coherent ρ production

- **Coherent**: photon couples to full nuclei: VM has **very** low transverse momentum
- **Incoherent**: photon couples to one nucleon: VM has low transverse momentum

- 2010 data
- Decay into $\pi^+\pi^-$

Distribution of transverse momentum for coherent ρ is wider in STARLIGHT than in data
To be studied in Run2

Transverse momentum less than 150 MeV/c to reject **incoherent** contribution
Coherent ρ production: cross section

$\text{d}N/\text{d}y$ (mb)

$\text{A}+\text{A} \rightarrow \text{A}+\text{A}+\rho^0$

$\sqrt{s_{NN}} = 2.76$ TeV Pb+Pb \rightarrow Pb+Pb+ρ^0

ALICE, JHEP 1509 (2015) 095
Coherent ρ production: cross section

Coherent ρ production: cross section

✓ Agreement with STARLIGHT
✓ Disagreement with GDL model may be explained by inelastic nuclear shadowing

ALICE, JHEP 1509 (2015) 095
Coherent and incoherent J/ψ production: cross sections

Coherent and incoherent J/ψ production: cross sections

$\frac{d\sigma}{dy} (\text{mb})$

$\text{Pb+Pb} \rightarrow \text{Pb+Pb+J/}\psi \quad |s_{NN} = 2.76 \text{ TeV}$

- ALICE Coherent J/ψ
- Reflected

$d\sigma/dy (\text{mb})$

$\text{Pb+Pb} \rightarrow \text{Pb+Pb+J/}\psi \quad |s_{NN} = 2.76 \text{ TeV}$

- ALICE Incoherent J/ψ

$x \approx 10^{-2}$

$x \approx 10^{-3}$
Coherent and incoherent J/ψ production: cross sections

Coherent and incoherent \(J/\psi \) production: cross sections

\[
\frac{d\sigma}{dy} \left(m_b \right) = 2.76 \text{ TeV} \quad (a) \quad \text{ALICE Coherent } J/\psi \quad \bullet \text{Reflected}
\]

\[
\frac{d\sigma}{dy} \left(m_b \right) = 2.76 \text{ TeV} \quad (b) \quad \text{ALICE Incoherent } J/\psi \quad \bullet \text{ALICE}
\]

\[x \approx 10^{-2} \quad x \approx 10^{-3} \]

Direct observation of (moderate) gluon shadowing

\[y = 4 - 2 \cdot 0 \]
Under some assumptions, ALICE measurements can be translated into LO pQCD constraints for gluon shadowing at small x.
Under some assumptions, ALICE measurements can be translated into LO pQCD constraints for gluon shadowing at small x.
Under some assumptions, ALICE measurements can be translated into LO pQCD constraints for gluon shadowing at small x.
Under some assumptions, ALICE measurements can be translated into LO pQCD constraints for gluon shadowing at small x.

Note: \(R_{\text{Pb}}(x, \mu^2) = \frac{g_{\text{Pb}}(x, \mu^2)}{(A_{\text{Pb}}g_p(x, \mu^2))} \)
Coherent $\psi(2S)$ production
Coherent $\psi(2S)$ production

✓ Measured decay channels:
$\psi(2S) \rightarrow l^+l^-$ and $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
Coherent \(\psi(2S) \) production

✓ Measured decay channels:
\(\psi(2S) \rightarrow \ell^+\ell^- \) and \(\psi(2S) \rightarrow J/\psi\pi^+\pi^- \)

![Graph showing the distribution of counts in MeV/c^2](image)

\(\text{Pb+Pb} \rightarrow \text{Pb+Pb+}\psi(2S) \quad \sqrt{s_{NN}} = 2.76 \text{ TeV} \)

\(|y| < 0.9 \)

Counts/30 MeV/c^2

✓ Few signal events with almost no background

To be alongside: ALICE, PLB 751 (2015) 358

\(N_{\psi(2S)} = 17 \pm 4.1 \)
The wave function of excited states present so-called nodes (Nemchik et al., ZPC75 (1997) 71).

These nodes have a negative contribution for large dipole sizes, where saturation effects are expected.

Measure J/ψ and $\psi(2S)$ in the same kinematic region and compare them.
Coherent $\psi(2S)$ production: cross section

$\text{Pb} + \text{Pb} \rightarrow \text{Pb} + \text{Pb} + \psi(2S)$ \quad s_{NN} = 2.76 \text{ TeV}
Coherent $\psi(2S)$ production: cross section

$\text{Pb+Pb} \rightarrow \text{Pb+Pb+}\psi(2S) \quad s_{NN} = 2.76 \text{ TeV}$

Both impulse approximations should be equal ...
Coherent $\psi(2S)$ production: cross section

$\text{Pb}+\text{Pb} \rightarrow \text{Pb}+\text{Pb}+\psi(2S) \quad s_{NN} = 2.76 \text{ TeV}$

- Both impulse approximations should be equal...
- Strong shadowing is disfavoured...

ALICE, PLB 751 (2015) 358
Both impulse approximations should be equal …

Strong shadowing is disfavoured …

Do nuclear effects affect differently 1S and 2S states? Need more precise data!
Pb-Pb collisions for $b<2^*R_A$
Pb-Pb collisions for $b < 2*R_A$

For collisions at impact parameters smaller than the sum of radii of the interacting particles, the nuclei interact **hadronically** and they **break**
Coherent J/ψ production in peripheral collisions

- ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
- $2.5 < y < 4$
- $2.8 < m_{\mu^+\mu^-} < 3.4$ GeV/c^2
- 70-90%

![Graph showing the distribution of raw counts per 0.1 GeV/c vs. p_T (GeV/c)]
Coherent J/ψ production in peripheral collisions

Clear excess in the yield at low p_T for peripheral collisions

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
$2.5 < y < 4$
$2.8 < m_{\mu^+\mu^-} < 3.4$ GeV/c^2
70-90%

Coherent J/ψ production in peripheral collisions

Clear excess in the yield at low p_T for peripheral collisions

And the excess is clearly from J/ψ
Coherent J/ψ production in peripheral collisions

R_{AA}

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV
2.5 $< y < 4$

- $0 \leq p_T < 0.3$ GeV/c, global syst = \pm 15.7 %
- $0.3 \leq p_T < 1$ GeV/c, global syst = \pm 15.1 %
- $1 \leq p_T < 8$ GeV/c, global syst = \pm 11.5 %

Common global syst = \pm 6.8 %
Coherent J/ψ production in peripheral collisions

If the excess were from hadronic production, the R_{AA} would reach up to 7!
(Standard expectation is $R_{AA} \sim O(1)$)
If the excess were from hadronic production, the R_{AA} would reach up to 7!
(Standard expectation is $R_{AA} \sim O(1)$)

If photoproduction is assumed as the underlying interaction we obtain

<table>
<thead>
<tr>
<th>Centrality class</th>
<th>Cross section (μb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td><318</td>
</tr>
<tr>
<td>10-30%</td>
<td><290</td>
</tr>
<tr>
<td>30-50%</td>
<td>73\pm44$^{+26}_{-27}$</td>
</tr>
<tr>
<td>50-70%</td>
<td>58\pm16$^{+8}_{-10}$</td>
</tr>
<tr>
<td>70-90%</td>
<td>59\pm11$^{+7}_{-10}$</td>
</tr>
</tbody>
</table>

No theoretical calculations available for coherent photoproduction in peripheral collisions

(A first try is in PRC93 (2016) 044912)
Some comments on Run 2 plans
New for Run2: The AD detector

- Modules of plastic scintillator read out with PMTs
- Time resolution 300 (500) ps in C (A) side, allows one to reject out of time background
- Enlarges ALICE geometric rapidity coverage to
 - $-6.9 < \eta < -4.9$
 - $4.9 < \eta < 6.3$
- It increases ALICE capability to impose a veto on extra activity for exclusive processes in UPC
Run2 expectations for Pb-Pb UPC

- Factor of two increase on the Pb-Pb centre-of-mass energy
 - Increase in the cross section, mainly due to an increase in the photon flux
 - Increase in the kinematic reach: a factor of two lower values of Bjorken x will be accessible

- Improved detector and trigger capabilities
 - Cleaner samples, smaller systematic error
 - Access to other vector mesons, e.g. ϕ?
 - Better use of detector acceptance

- Increase in the luminosity available for UPC
 - Depending on accelerator and detector conditions we expect a large increase in luminosity

- CMS and ATLAS are joining the party!
ALICE has taken Pb-Pb data in the 2015 period, and the expectations are fulfilled
Central sample $\sim 6x$ larger than in Run1, and
Forward sample $\sim 50x$ larger wrt Run 1!

- Analysis on going
- We will get more data for the Pb-Pb run planned for 2018
The $L\gamma HC$ (and $L\gamma\gamma C$) are delivering very interesting physics

Exciting times are ahead of us, so stay tuned!
References
Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV
http://inspirehep.net/record/1185785?ln=en

Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV
http://inspirehep.net/record/1232206?ln=en

Exclusive $\mathrm{J/\psi}$ photoproduction off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{NN}} =$ 5.02 TeV
Phys.Rev.Lett. 113 (2014) no.23, 232504
http://inspirehep.net/record/1303903?ln=en

Coherent $\psi(2S)$ photo-production in ultra-peripheral Pb Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV
http://inspirehep.net/record/1388730?ln=en

Coherent ρ^0 photoproduction in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV
JHEP 1509 (2015) 095
http://inspirehep.net/record/1357206?ln=en

Measurement of an excess in the yield of J/ψ at very low p_T in Pb-Pb collisions at $\sqrt{s_{NN}} =$ 2.76 TeV
Accepted by PRL
http://inspirehep.net/record/1395296?ln=en
[1] L. Frankfurt, M. Strikman, M. Zhalov,
Coherent rho and J/psi photoproduction in ultraperipheral processes with electromagnetic dissociation of heavy ions at RHIC and LHC,
http://inspirehep.net/record/926274?ln=en

Vector Meson Production in Coherent Hadronic Interactions: An update on predictions for RHIC and LHC
http://inspirehep.net/record/913697?ln=en

Exclusive vector meson production in relativistic heavy ion collisions
http://inspirehep.net/record/495018?ln=en

J/Psi production in ultraperipheral Pb+Pb and p+Pb collisions at energies available at the CERN Large Hadron Collider
http://inspirehep.net/record/1211391?ln=en

[5] Cisek, Szczurek, Schäfer
Exclusive coherent production of heavy vector mesons in nucleus-nucleus collisions at LHC
http://inspirehep.net/record/1112170?ln=en
[6] Adeluyi and Bertulani
 Constraining Gluon Shadowing Using Photoproduction in Ultraperipheral pA and AA Collisions
 http://inspirehep.net/record/1083333?ln=en

 Probes of the small x gluon via exclusive J/Psi and Upsilon production at HERA and the LHC
 JHEP 1311 (2013) 085
 http://inspirehep.net/record/1244687?ln=en

 Exclusive diffractive processes at HERA within the dipole picture
 http://inspirehep.net/record/720153?ln=en