Quark angular and transverse momentum in covariant approach #### Petr Zavada Institute of Physics AS CR, Prague, Czech Rep. (based on collaboration and discussions with A.Efremov, P.Schweitzer and O.Teryaev) 2-8 September 2016 Santa Tecla Palace Hotel, Acireale (Catania, Sicily) # **Outline** - Introduction - Covariant approach: - TMDs: calculation, predictions, QCD evolution... - spin & OAM, role of gluons - Summary # Introduction # Intrinsic motion in composite systems is required by QM: electrons in atom non-relativistic motion, OAM & spin are decoupled $$d \approx 10^{-10} m$$, $p \approx 10^{-3} MeV$, $m_e \approx 0.5 MeV$, $\beta \approx 0.002$ #### nucleons in nucleus Fermi motion $$d \approx 10^{-15} m$$, $p \approx 10^2 MeV$, $m_N \approx 940 MeV$, $\beta \approx 0.1$ quarks in nucleon relativistic motion, OAM & spin cannot be decoupled $$d \approx 10^{-15} m$$, $p \approx 10^2 MeV$, $m_e \approx 5 MeV$, $\beta \approx 1$ # **Covariant approach** #### Main results: - Sum rules: Wanzura-Wilczek (WW), Burhardt-Cottinngham (BC) and Efremov-Leader-Teryaev (ELT) - Relations between TMDs, PDFs and TMDs (giving predictions for TMDs - Study and prediction of the role of OAM - [1] P.Zavada, Phys. Lett. B 751, 525 (2015). [2] A. V. Efremov, O. V. Teryaev and P. Zavada, J.Phys.Conf.Ser. 678 (2016) no.1, 012001, arXiv:1511.01164 [hep-ph]. [3] P. Zavada, Phys. Rev. D 89, 014012 (2014). [4] P. Zavada, Phys. Rev. D 85, 037501 (2012). [5] P. Zavada, Phys. Rev. D 83, 014022 (2011). [6] P. Zavada, Eur. Phys. J. C 52, 121 (2007). [7] P. Zavada, Phys. Rev. D 67, 014019 (2003). [8] P. Zavada, Phys. Rev. D 65, 054040 (2002). [9] P. Zavada, Phys. Rev. D 55, 4290 (1997). [10] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, PoS DIS2010, 253 (2010). [11] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 83, 054025 (2011). [12] A. V. Efremov, P. Schweitzer, O. V. Teryaev and P. Zavada, Phys. Rev. D 80, 014021 (2009). [13] A. V. Efremov, O. V. Teryaev and P. Zavada, Phys. Rev. D 70, 054018 (2004). ## Paradigm of covariant approach ☐ Large Q²: In the rest frame we have $$|\mathbf{q}_R|^2 = Q^2 + \nu^2 = Q^2 \left(1 + \frac{Q^2}{(2Mx)^2}\right)$$ $|\mathbf{q}_R| \gtrsim \nu = \frac{Q^2}{2Mx} \ge \frac{Q^2}{2M}$ ■ Effect of asymptotic freedom: Limited extend of this domain prevent the quark from an interaction with the rest of nucleon during the lepton-quark interaction - in any reference frame. In fact we assume characteristic time of QCD process accompanying γ absorption much greater than absorption time itself: Since Lorentz time dilation is universal, the first relation holds in any reference frame. This is essence of our covariant leading order approach. #### **Remarks:** - \square p_L and p_T are equally important... - We do not aim to describe complete nucleon dynamic structure, but only a picture of short time interval corresponding to DIS. - We assume Q^2 -dependence of this Lorentz-invariant "effective" picture: $n_a(pP/M,Q^2)$. $$\Delta \tau \ll \Delta \tau_{QCD}$$ $$\Delta T(\beta) = \frac{\Delta T_0}{\sqrt{1 - \beta^2}}$$ ## **Structure functions** #### **General framework:** $$\Delta \sigma(x, Q^2) \sim |A|^2 = L_{\alpha\beta} W^{\alpha\beta}$$ The quarks are represented by the quasifree fermions, which are in the proton rest frame described by the set of distribution functions with spheric symmetry $$G_q^{\pm}(p_0)d^3p; \qquad p_0 = \sqrt{m^2 + \mathbf{p}^2},$$ which are expected to depend effectively on Q^2 . These distributions measure the probability to find a quark in the state $$u(p,\lambda\mathbf{n}) = \frac{1}{\sqrt{N}} \begin{pmatrix} \phi_{\lambda\mathbf{n}} \\ \frac{\mathbf{p}\sigma}{p_0+m}\phi_{\lambda\mathbf{n}} \end{pmatrix}; \qquad \frac{1}{2}\mathbf{n}\sigma\phi_{\lambda\mathbf{n}} = \lambda\phi_{\lambda\mathbf{n}},$$ where m and p are the quark mass and momentum, $\lambda = \pm 1/2$ and $\bf n$ coincides with the direction of target polarization $\bf J$. $$W^{\alpha\beta} \Rightarrow$$ $$F_{1}(x, Q^{2})$$ $$F_{2}(x, Q^{2})$$ $$g_{1}(x, Q^{2})$$ $$g_{2}(x, Q^{2})$$ Rotational symmetry (rest frame) & Lorentz invariance ## **Rest frame representation** If one assumes $$Q^2 \gg 4M^2x^2$$, then: $$F_2(x) = Mx^2 \int G(p_0) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0}$$ $$g_1(x) = \frac{1}{2} \int \Delta G(p_0) \left(m + p_1 + \frac{p_1^2}{p_0 + m}\right) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0},$$ $$g_2(x) = -\frac{1}{2} \int \Delta G(p_0) \left(p_1 + \frac{p_1^2 - p_T^2/2}{p_0 + m}\right) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0}$$ - ☐ integrals can be inverted - study and prediction OAM ... or in terms of conventional distributions: $$f_1^a(x) = Mx \int G^a(p_0) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0},$$ $$g_1^a(x) = \int \Delta G^a(p_0) \left(m + p_1 + \frac{p_1^2}{p_0 + m}\right) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0},$$ $$g_2^a(x) = -\int \Delta G^a(p_0) \left(p_1 + \frac{p_1^2 - p_T^2/2}{p_0 + m}\right) \delta\left(\frac{p_0 + p_1}{M} - x\right) \frac{d^3p}{p_0},$$ - □ $G, \Delta G$ are not known, but integrals imply relations between distributions: WW relation, sum rules WW, BC, ELT; helicity \leftrightarrow transversity, transversity \leftrightarrow pretzelosity; unpolarized+SU(6) \rightarrow polarized - \square partial integration (only over p_I) defines p_T dependent distributions: $f(x) \to f(x, p_T)$ - □ relations between TMDs, but also TMDs↔PDFs Relations are generated by LI & RS! ## **PDF-TMD relations** #### 1. UNPOLARIZED $$f_1^a(x, \mathbf{p}_T) = -\frac{1}{\pi M^2} \frac{d}{dy} \left[\frac{f_1^a(y)}{y} \right]_{y=\xi(x, \mathbf{p}_T^2)}$$ $$\xi(x, \mathbf{p}_T^2) = x \left(1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$ #### For details see: P.Z. Phys.Rev.D **83**, 014022 (2011), **arXiv:0908.2316 [hep-ph]**A.Efremov, P.Schweitzer, O.Teryaev and P.Z. Phys.Rev.D **83**, 054025(2011) arXiv:0912.3380 [hep-ph], arXiv:1012.5296 [hep-ph] The same relation was shortly afterwards obtained independently: U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D **81**, 036010 (2010), arXiv:0909.5650 [hep-ph] we assume $m\rightarrow 0$ (if not stated otherwise) ## **PDF-TMD relations** #### 2. POLARIZED $$g_1^a(x, \mathbf{p}_T) = \frac{2x - \xi}{2} K^a(x, \mathbf{p}_T) ,$$ $$h_1^a(x, \mathbf{p}_T) = \frac{x}{2} K^a(x, \mathbf{p}_T) ,$$ $$g_{1T}^{\perp a}(x, \mathbf{p}_T) = K^a(x, \mathbf{p}_T) ,$$ $$h_{1L}^{\perp a}(x, \mathbf{p}_T) = -K^a(x, \mathbf{p}_T) ,$$ $$h_{1T}^{\perp a}(x, \mathbf{p}_T) = -\frac{1}{x} K^a(x, \mathbf{p}_T) .$$ Known $f_1(x)$, $g_1(x)$ allow us to predict some unknown TMDs $$K^{a}(x, \mathbf{p}_{T}) = \frac{2}{\pi \xi^{3} M^{2}} \left(2 \int_{\xi}^{1} \frac{dy}{y} g_{1}^{a}(y) + 3 g_{1}^{a}(\xi) - x \frac{dg_{1}^{a}(\xi)}{d\xi} \right)$$ $$\xi(x, \mathbf{p}_T^2) = x \left(1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$ # Numerical results: (unpolarized) Another model approaches to TMDs give compatible results: - 1. U. D'Alesio, E. Leader and F. Murgia, Phys.Rev. D 81, 036010 (2010) - 2. C.Bourrely, F.Buccellla, J.Soffer, Phys.Rev. D 83, 074008 (2011); Int.J.Mod.Phys. A28 (2013) 1350026 Input for $f_I(x)$ MRST LO at 4 GeV² FIG. 1. The TMDs $f_1^a(x, \mathbf{p}_T)$ for u, d (upper part) and \bar{u} , \bar{d} -quarks (lower part). Left panel: $f_1^a(x, \mathbf{p}_T)$ as a function of x for $p_T/M = 0.10$ (dashed line), 0.13 (dotted line), 0.20 (dash-dotted line). The solid line corresponds to the input distribution $f_1^a(x)$. Right panel: $f_1^a(x, \mathbf{p}_T)$ as a function of p_T/M for x = 0.15 (solid line), 0.18 (dashed line), 0.22 (dotted), 0.30 (dash-dotted line). FIG. 2. $f_1^a(x, \mathbf{p}_T)$ as a function of $(p_T/M)^2$ for x = 0.15 (solid), 0.18 (dashed), 0.22 (dotted), 0.30 (dash-dotted line). - Gaussian shape is supported by phenomenology - \bigcirc < p_{7}^{2} > depends on x, is smaller for sea quarks ## **Numerical results:** (polarized) Input for g_1 : LSS LO at 4 GeV² FIG. 3. $g_1^q(x, \mathbf{p_T})$ for *u*- (*upper panel*) and *d*-quarks (*lower panel*). *Left panel*: $g_1^q(x, \mathbf{p_T})$ as a function of x for $p_T/M = 0.10$ (dashed line), 0.13 (dotted line), 0.20 (dash-dotted line). The solid line corresponds to the input distribution $g_1^q(x)$. *Right panel*: $g_1^q(x, \mathbf{p_T})$ as a function of p_T/M for x = 0.15 (solid line), 0.18 (dashed line), 0.22 (dotted line), 0.30 (dash-dotted line). ... can be compared to $g_2(x)$: In both cases the sign is correlated with the sign of p_L in the rest frame P.Z. Phys.Rev.D **67**, 014019 (2003) ## QCD evolution of TMDs LI & RS generate the relations TMDs↔PDFs: $$f_1^a(x, \mathbf{p}_T) = -\frac{1}{\pi M^2} \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{q(y)}{y} \right]_{y=\xi}; \qquad \xi = x \left(1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$ The most direct way to introduce evolution is via $q(x, Q^2)$: $$f_1^a(x, \mathbf{p}_T, Q^2) = -\frac{1}{\pi M^2} \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{q(y, Q^2)}{y} \right]_{y=\xi}; \qquad \xi = x \left(1 + \frac{\mathbf{p}_T^2}{x^2 M^2} \right)$$ for details see A. Efremov, O. Teryaev and P.Z., J.Phys.Conf.Ser. 678 (2016), no.1, 012001, arXiv:1511.01164 [hep-ph]. (in progress) ## **TMDs - numerical results:** FIG. 3: TMD at different scales: $Q^2 = 4,40,400 GeV$ (solid, dashed, dotted curves) for u and d quarks. Sets of curves in left panels (from top) correspond to fixed $p_T/M = 0.1, 0.13, 0.20$. The curves in left panels (from top) correspond to fixed x = 0.18, 0.22, 0.30. #### PHYSICAL REVIEW D 83, 114042 (2011) ## Transverse momentum dependent parton distribution and fragmentation functions with QCD evolution S. Mert Aybat^{1,2,*} and Ted C. Rogers^{2,†} Why the results of the calculations differ so much? ## Comparison: - □ pQCD evolution: p_T can exceed ≈1 GeV correct dynamics (QCD) + reduced kinematic (no covariance, no rest frame sphericity...) - Covariant approach: p_T ≈ 0.1 GeV simplistic model + correct 3D kinematics (constrained by LI & RS) - Correct answer: may come from JLab experiments # Spin & OAM ## **Eigenstates of angular momentum** Usual plane-wave spinors are replaced by spinor spherical harmonics (both in momentum representation): $$u(\mathbf{p}, \lambda \mathbf{n}) = \frac{1}{\sqrt{N}} \begin{pmatrix} \phi_{\lambda \mathbf{n}} \\ \frac{\mathbf{p}\sigma}{p_0 + m} \phi_{\lambda \mathbf{n}} \end{pmatrix}$$ $$\frac{1}{2} \mathbf{n}\sigma\phi_{\lambda \mathbf{n}} = \lambda\phi_{\lambda \mathbf{n}}, \qquad N = \frac{2p_0}{p_0 + m}$$ $$\Omega_{jl_p j_z}(\omega) = \begin{pmatrix} \sqrt{\frac{j+j_z}{2j}} Y_{l_p, j_z - 1/2}(\omega) \\ \sqrt{\frac{j-j_z}{2j}} Y_{l_p, j_z + 1/2}(\omega) \end{pmatrix}; \quad l_p = j - \frac{1}{2},$$ $$\Omega_{jl_p j_z}(\omega) = \begin{pmatrix} \sqrt{\frac{j+j_z}{2j}} Y_{l_p, j_z - 1/2}(\omega) \\ \sqrt{\frac{j-j_z}{2j}} Y_{l_p, j_z + 1/2}(\omega) \end{pmatrix}; \quad l_p = j + \frac{1}{2}$$ where ω represents the polar and azimuthal angles (θ, φ) of the momentum p with respect to the quantization axis, $l_p = j \pm 1/2$ and $\lambda_p = 2j - l_p$ (l_p defines parity). New representation is convenient for general discussion about role of OAM. The rest frame of the composite system is a starting reference frame. P. Z. Phys. Rev. D 89, 014012 (2014) ## Spinor spherical harmonics $|j_i j_z\rangle$ □ SSH represent solutions of the free Dirac equation, which reflects the known QM rule: In relativistic case spin and OAM are not decoupled (separately conserved), but only sums j and $j_z = s_z + l_z$ are conserved. ☐ However, one can always calculate the mean values of corresponding operators: $$s_z = \frac{1}{2} \begin{pmatrix} \sigma_z & 0 \\ 0 & \sigma_z \end{pmatrix}, \qquad l_z = -i \left(p_x \frac{\partial}{\partial p_y} - p_y \frac{\partial}{\partial p_x} \right)$$ result: $$\langle s_z \rangle_{j,j_z} = \frac{1 + (2j+1) \,\mu}{4j \,(j+1)} j_z, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1 + (2j+1) \,\mu}{4j \,(j+1)}\right) j_z,$$ where $\mu = m/\epsilon$. #### Non-relativistic limit ($\mu=1$): $$\langle s_z \rangle_{j,j_z} = \frac{j_z}{2j}, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1}{2j}\right)j_z$$ ### *j*≥1/2 $$I_p = j-1/2$$ #### Relativistic case $(\mu \rightarrow 0)$: $$\langle s_z \rangle_{j,j_z} = \frac{j_z}{4j(j+1)}, \qquad \langle l_z \rangle_{j,j_z} = \left(1 - \frac{1}{4j(j+1)}\right)j_z$$ $$\left| \langle s_z \rangle_{j,j_z} \right| \le \frac{1}{4(j+1)} \le \frac{1}{6}, \qquad \frac{\left| \langle s_z \rangle_{j,j_z} \right|}{\left| \langle l_z \rangle_{j,j_z} \right|} \le \frac{1}{4j^2 + 4j - 1} \le \frac{1}{2}$$ ### ... and for j=1/2: $$\left| \langle s_z \rangle_{j,j_z} \right| = \frac{1}{6}$$ $\frac{\langle s_z \rangle_{j,j_z}}{\langle l_z \rangle_{j,j_z}} = \frac{1}{2}$ #### **Remark:** The ratio $\mu=m/\varepsilon$ plays a crucial role, since it controls a "contraction" of the spin component which is compensated by the OAM. It is an QM effect of relativistic kinematics. In other words, lower component can play an important role! <u>cf. Bo-Qiang Ma,</u> DSPIN2015 talk ## Many-fermion states Composition of one-particle states (SSH) representing composed particle with spin $J=J_z=1/2$: $$|(j_1, j_2, \dots j_n)_c J, J_z\rangle = \sum_{j_{z_1} = -j_1}^{j_1} \sum_{j_{z_2} = -j_2}^{j_2} \dots \sum_{j_{z_n} = -j_n}^{j_n} c_j |j_1, j_{z_1}\rangle |j_2, j_{z_2}\rangle \dots |j_n, j_{z_n}\rangle$$ ### where c_i 's consist of Clebsch-Gordan coefficients: $$c_{j} = \langle j_{1}, j_{z1}, j_{2}, j_{z2} | J_{3}, J_{3z} \rangle \langle J_{3}, J_{z3}, j_{3}, j_{z3} | J_{4}, J_{z4} \rangle \dots \langle J_{n}, J_{zn}, j_{n}, j_{zn} | J, J_{z} \rangle$$ $$\langle \mathbb{S}_z \rangle_{c,1/2,1/2} = \langle s_{z1} + s_{z2} + \dots + s_{zn} \rangle_c, \qquad \langle \mathbb{L}_z \rangle_{c,1/2,1/2} = \langle l_{z1} + l_{z2} + \dots + l_{zn} \rangle_c$$ $$\langle \mathbb{S}_z \rangle_{c,1/2,1/2} + \langle \mathbb{L}_z \rangle_{c,1/2,1/2} = \frac{1}{2},$$ $$|\langle \mathbb{S}_z \rangle| \le \frac{1}{6},$$ $$\frac{|\langle \mathbb{S}_z \rangle|}{|\langle \mathbb{L}_z \rangle|} \le \frac{1}{2}$$ $$\frac{|\langle \mathbb{S}_z \rangle|}{|\langle \mathbb{L}_z \rangle|} \le \frac{1}{2} \qquad J_z = \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2}$$ for $$\mu \rightarrow 0$$ ### Spin structure functions: explicit form ## For $Q^2 \gg 4M^2x^2$ we get (in terms of rest frame variables) $$x = Q^2/2Pq$$ $$g_{1}(x) = \frac{1}{2} \int \left(\mathbf{u}(\epsilon) \left(p_{1} + m + \frac{p_{1}^{2}}{\epsilon + m} \right) + \mathbf{v}(\epsilon) \left(p_{1} - m + \frac{p_{1}^{2}}{\epsilon - m} \right) \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon},$$ $$g_{2}(x) = -\frac{1}{2} \int \left(\mathbf{u}(\epsilon) \left(p_{1} + \frac{p_{1}^{2} - p_{T}^{2}/2}{\epsilon + m} \right) + \mathbf{v}(\epsilon) \left(p_{1} + \frac{p_{1}^{2} - p_{T}^{2}/2}{\epsilon - m} \right) \right) \delta \left(\frac{\epsilon + p_{1}}{M} - x \right) \frac{d^{3}p}{\epsilon}.$$ where u, v are functions related to the polarization tenzor, which is defined by the initial state $\Psi_{1/2}$ This result is exact for SFs generated by (free) many-fermion state J=1/2 represented by the spin spherical harmonics. For given state $\Psi_{1/2}$ we have checked calculation: $$\langle \mathbb{S}_z \rangle = \left\langle \Psi_{1/2} \, | \mathbb{S}_z | \, \Psi_{1/2} \right\rangle = \left\langle s_{z1} + s_{z2} + \ldots + s_{zn} \right\rangle$$ give equivalent results! ## Proton spin structure The SSH formalism can be used for proton description in conditions of DIS. We assume: The proton state can be at each Q² represented by a superposition of Fock states: $$\Psi = \sum_{q,g} a_{qg} |\varphi_1, ... \varphi_{n_q}\rangle |\psi_1, ... \psi_{n_g}\rangle$$ ☐ In a first step we ignore possible contribution of gluons, then: $$\Psi = \sum_{q} a_{q} \left| \varphi_{1}, ... \varphi_{n_{q}} \right\rangle$$ eigenstates: where the quark states $$|\varphi_1,...\varphi_{n_q}\rangle$$ are represented by $$J = J_z = \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2}$$ ## **Proton spin content** We have shown the system J=1/2 composed of (quasi) free fermions $\mu \rightarrow 0$ satisfies: $$|\langle \mathbb{S}_z \rangle| \le \frac{1}{6},$$ (or the same in terms of Γ_1) Reduced spin is compensated by OAM $$\left| \langle \mathbb{L}_z \rangle + \langle \mathbb{S}_z \rangle = \frac{1}{2} \right|$$ and equality takes place for a simplest configuration: $$J_1 = J_2 = J_3 = \dots = J_{n_q} = \frac{1}{2}$$ ### If we change notation $$|\langle \mathbb{S}_z \rangle| \le \frac{1}{6}, \qquad \longrightarrow \qquad \Delta \Sigma \lesssim 1/3$$ this result is well compatible with the data (cf. experiments [30-32]): $$\Delta \Sigma = 0.32 \pm 0.03 (stat.)$$ ^[30] M. G. Alekseev et al. [COMPASS Collaboration], Phys. Lett. B 693, 227 (2010)]. ^[31] V. Y. Alexakhin et al. [COMPASS Collaboration], Phys. Lett. B 647, 8 (2007). ^[32] A. Airapetian et al. [HERMES Collaboration], Phys. Rev. D 75, 012007 (2007). ^[33] C. Adolph et al. [COMPASS Collaboration], Phys. Lett. B 718, 922 (2013). ^[34] A. Airapetian et al. [HERMES Collaboration], JHEP 1008, 130 (2010). # Role of gluons in proton spin - Until now we assumed the simplest scenario: $\mu = m/\epsilon \rightarrow 0$ and $J_g = 0$, which gave $\Delta \Sigma \approx 1/3$. This complies with the data very well, for both, quarks and gluons. - However, the recent data from RHIC may suggest $\mathbf{J_g} > 0$. Such value does not contradict our approach. If one admits also $\mu = m/\varepsilon > 0$, then instead of $$|\langle \mathbb{S}_z^q \rangle| = \frac{1}{6} \qquad \frac{\langle \mathbb{S}_z^q \rangle}{\langle \mathbb{L}_z^q \rangle} = \frac{1}{2}$$ we have $$|\langle \mathbb{S}_z^q \rangle| = \frac{1 + 2\tilde{\mu}}{6} \qquad \frac{\langle \mathbb{S}_z^q \rangle}{\langle \mathbb{L}_z^q \rangle} = \frac{1 + 2\tilde{\mu}}{2 - 2\tilde{\mu}} \qquad J^q = \langle \mathbb{S}_z^q \rangle + \langle \mathbb{L}_z^q \rangle \qquad \tilde{\mu} = \left\langle \frac{m}{\epsilon} \right\rangle$$ At the same time: $$\frac{1}{2} = J^q + J^g$$ $$\Delta \Sigma = \frac{1}{3} \left(1 - 2J^g \right) \left(1 + 2\tilde{\mu} \right)$$ # Summary ## **Covariant approach:** - Constrains on LI & RS are crucial! - TMDs: relations, calculation, predictions, QCD evolution... - Interplay of spin & OAM, role of gluons... - \square Agreement with the data, particularly as for $\Delta\Sigma$, is a strong argument for this approach # Thank you for your attention! # **Backup slides** #### F_1 , F_2 - EXACT AND MANIFESTLY COVARIANT FORM: $$F_1(x) = \frac{M}{2} \left(\frac{B}{\gamma} - A \right), \qquad F_2(x) = \frac{Pq}{2M\gamma} \left(\frac{3B}{\gamma} - A \right),$$ where $$A = \frac{1}{Pq} \int G \left(\frac{Pp}{M} \right) [m^2 - pq] \delta \left(\frac{pq}{Pq} - x_B \right) \frac{d^3p}{P^0},$$ $$B = \frac{1}{Pq} \int G \left(\frac{pP}{M} \right) \left[\left(\frac{Pp}{M} \right)^2 + \frac{(Pp)(Pq)}{M^2} - \frac{pq}{2} \right] \delta \left(\frac{pq}{Pq} - x_B \right) \frac{d^3p}{P^0},$$ $$\gamma = 1 - \left(\frac{Pq}{Mq} \right)^2.$$ conventional collinear approach: $p_{\mu} \rightarrow xP_{\mu}$ ### ... SIMILARLY FOR G_1 , G_2 : $$g_1 = Pq\left(G_S - \frac{Pq}{qS}G_P\right), \qquad g_2 = \frac{(Pq)^2}{qS}G_P,$$ where ere $$G_{P} = \frac{m}{2Pq} \int \Delta G \left(\frac{pP}{M} \right) \left[\frac{pS}{pP + mM} 1 + \frac{1}{mM} \left(pP - \frac{pu}{qu} Pq \right) \right]$$ $$\times \delta \left(\frac{pq}{Pq} - x_{B} \right) \frac{d^{3}p}{p_{0}},$$ $$G_{S} = \frac{m}{2Pq} \int \Delta G \left(\frac{pP}{M} \right) \left[1 + \frac{pS}{pP + mM} \frac{M}{m} \left(pS - \frac{pu}{qu} qS \right) \right]$$ $$\times \delta \left(\frac{pq}{Pq} - x_{B} \right) \frac{d^{3}p}{p_{0}};$$ $$u = a + (aS)S - \frac{(Pq)}{p} P$$ $$u = q + (qS)S - \frac{(Pq)}{M^2}P.$$ #### SPIN OF THE PARTICLE IN ITS SCALE DEPENDENT PICTURE #### **Two questions:** - How much do the virtual particles surrounding bare particle contribute to the spin of corresponding real, dressed particle? - How much do the virtual particles mediating binding of the constituents of a composite particle contribute to its spin? The **electron**, as a Dirac particle, in its rest frame has AM defined by its spin, s = 1/2. This value is the same for the dressed electron (as proved experimentally) and for the bare one (as defined by the QED Lagrangian). # So, can the AM contribution of virtual cloud J^{γ} (Q²) differ from zero and how much? #### For similarly motivated studies see: Bo-Qiang Ma; talk for DSPIN-15 Tianbo Liu, Bo-Qiang Ma; Phys.Rev. D91 (2015) 017501 S. J. Brodsky, Dae Sung Hwang, Bo-Qiang Ma, I. Schmidt; Nucl. Phys. B 593 (2001) 311–335 Matthias Burkardt and Hikmat BC; Phys.Rev. D79 (2009) 071501(R) Xinyu Zhang, Bo-Qiang Ma; Phys.Rev. D85 (2012) 114048 ### Semiclassical calculation of stationary electromagnetic field in the frame defined by spinor spherical harmonic: $$\Phi_{jl_{p}j_{z}}\left(\mathbf{r}\right) = \frac{1}{\sqrt{2\epsilon}} \left(\begin{array}{c} \sqrt{\epsilon + m} R_{kl_{p}} \Omega_{jl_{p}j_{z}}\left(\omega\right) \\ -\sqrt{\epsilon - m} R_{k\lambda_{p}} \Omega_{j\lambda_{p}j_{z}}\left(\omega\right) \end{array} \right)$$ Our reference frame is the rest frame of the composite system of these states. $$I_{\mu} = (I_0, \mathbf{I}) = \Phi_{jl_p j_z}^{\dagger} (\mathbf{r}) \gamma^0 \gamma_{\mu} \Phi_{jl_p j_z} (\mathbf{r})$$ $$\mathbf{E}(\mathbf{r}) = \int I_0(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3/2}} d^3 \mathbf{r}'$$ $$\mathbf{E}(\mathbf{r}) = \int I_0(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3/2}} d^3 \mathbf{r}' \qquad \mathbf{H}(\mathbf{r}) = \int \mathbf{I}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^{3/2}} d^3 \mathbf{r}'$$ $$\mathbf{J}^{\gamma} = \int \mathbf{r} \times (\mathbf{E} \times \mathbf{H}) d^3 \mathbf{r} = 0$$ This result represents a mean value, which is not influenced by the fluctuations generated by single γ . #### Can we do a similar calculation for the color field?