
Measurements of the total and 
inelastic pp cross section with the 

ATLAS detector at 8 and 13 TeV 
 



Motivation 
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• Measurements of the total and inelastic cross sections and their energy 
evolution probe the non-perturbative regime of QCD 

• Measurements help to tune the generators 
• Important for projections of the pile-up conditions at the HL-LHC   
• Provides constraints on forward particle production in cosmic air showers  

Measurement of the inelastic  
cross section at √s= 7 TeV 
Nature Commun. 2 (2011) 463 

http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1472.html


New measurements at  
8 TeV and 13 TeV 
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ATLAS has performed a first series of measurements at 7 TeV where the basic 
methods were developed. Here the emphasis is on the new measurements 
recently released for publication:  

Measurement of the total cross section at √s= 8 TeV Phys. Lett. B (2016) 158 
Using the ALFA Roman Pot detector system to derive from elastic scattering 
and the optical theorem the total and inelastic cross section. 
Special run with β*=90m at low μ≈0.1 collecting 500 /µb. 

Measurement of the inelastic cross section at √s= 13 TeV  arXiv:1606.02625 
Using the MBTS forward scintillator to determine directly from the 
inelastic rate the cross section in the fiducial volume and extrapolated to 
full phase space.  
Special run with at very low μ≈2.3 10-3 collecting 60 /µb. 

http://www.sciencedirect.com/science/article/pii/S0370269316304403
http://arxiv.org/abs/1606.02625


Inelastic measurement 
with the MBTS at 13 TeV 
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This measurement uses the Minimum Bias Trigger Scintillator located in front of 
the endcap calorimeters to detect inelastic interactions. A new detector was built 
for run 2 with slightly larger acceptance.   
Two counters of the MBTS are requested with hits above threshold to select 
inelastic events. 

MBTS at z=±3.6m  
2.07 < |η< 3.86 



The diffractive component  
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The fiducial volume of the measurement is determined from MC and accounts 
for diffractive events with a low mass of the dissociated system escaping 
undetected the detector. 
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For the  fiducial region the  
selection efficiency is above 50 %. 



fiducial cross section  
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N: Number of observed events  
NBG: Number of background events (beam-gas, beam halo, activation) 
εtrig : Trigger efficiency, determined using other detectors  
εsel : Selection efficiency from MC, requiring two MBTS hits 
1-fξ : Migration of small ξ-events in the fiducial region 
L: Luminosity  
 
Two selections are applied which enable tuning of the simulation: 
 
1. Inclusive sample: at least 2 MBTS hits (4.2M events) 
2. Single-sided sample: at least 2 MBTS hits on one side, veto on the other side 

(440K events)      
 



Model tuning  
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The measured value of                                                       is used to constrain in the 
MC the composition of                                                       diffractive and non-
diffractive processes fD=(σSD+ σDD)/ σinel  
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The tuned models are used to  
calculate εsel  and 1-fξ. 



Tuned models compared to 
data   
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Background-corrected MBTS hit distributions are compared to different tuned 
model predictions.  

Best description is obtained for 
PYTHIA with the pomeron flux 
model from Donnachie and 
Landshoff with ε=0.085.  
Other DL and MBR models are 
used for systematics. EPOS and 
QGSJET do not describe the 
data well.  



fiducial cross section 
results   
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( ) mb (lumi) 3.1 exp.)( 6.01.68TeV 13fid
inel ±±=σ

Dominant uncertainty for the 
fiducial cross section is the 
luminosity.  
Good agreement is observed 
with the PYTHIA DL models.  



Total inelastic cross section   

DIFFRACTION 2016 Hasko Stenzel 10 

where                                    =11.0±2.3 
is the difference between the total 
inelastic measurement from ALFA 
and fiducial measurement with the 
MBTS at 7 TeV.   

( )
mb (extr.) 5.2 (lumi) 3.1                     

 exp.)( 6.03.79TeV 13inel

±±
±=σ

The extrapolation to full phase space combines previous measurements at 7 
TeV with a MC-based correction: 



Total cross section with 
ALFA at 8 TeV 
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( ) 0Im4 →⋅= teltot fπσ

Measurement using the ALFA Roman Pot detector system to record elastic 
scattering data in a special run with high β* optics, exploiting the optical 
theorem :  

4 RP stations with 
vertical SciFi 
trackers at ~ 240m  
from IP 1.   



The measurement principle 
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Measure elastic track positions at ALFA to get the 
scattering angle and thereby the t-spectrum dσ/dt 
 
                            p=beam momentum, θ*=scattering angle  
 
To calculate the scattering angle from the measured tracks 
                                            we need the beam optics, i.e. the  
                                             transport matrix elements. 
 
                                             In the simplest case (high β*,  
                                             phase advance 90°, 
                                             parallel-to-point focusing)                                                                           
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EventSelection 

DIFFRACTION 2016 Hasko Stenzel 13 

• first level elastic trigger 
• data quality cuts 
• apply geometrical acceptance cuts  
• apply elastic selection based on 

back-to-back topology and 
background rejection cuts 

3.8 M elastics selected, background level at 0.12%, mostly DPE, 
subtracted.  



Acceptance & unfolding 

DIFFRACTION 2016 Hasko Stenzel 14 

• Using PYTHIA8 as elastic scattering generator 
• Matrix beam transport IP  RP (+MadX)  
• Fast detector response parameterization tuned to data  

Transition matrix used as input for IDS unfolding. 



Analysis of elastic data 
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• Data-driven method to calculate the reconstruction efficiency 
~90% 

• Tuning of the beam optics model with ALFA constraints  effective 
optics 

• Trigger efficiency very high ~99.9% determined from data stream 
with looser conditions 

• Dedicated luminosity determination 
     resulting in a small uncertainty of  
     only 1.5%  



elastic cross section 
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A: acceptance(t) 
M: unfolding procedure (symbolic) 
N: selected events 
B: estimated background 
εreco: reconstruction efficiency 
εtrig: trigger efficiency 
εDAQ: dead-time correction  
Lint: luminosity 
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Main systematics: 
t-independent: luminosity ± 1.5% 
t-dependent: beam energy:  ± 0.65% 



Theoretical prediction 
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The theoretical prediction used to fit the elastic data consists of the Coulomb term,  
the Coulomb-Nuclear-Interference term and the dominant Nuclear term.  

Proton dipole form factor  
 
Coulomb phase 

Coulomb 

CNI 

Nuc. 2 



Fit results 
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The fit includes experimental systematic 
uncertainties in the χ2 (profile method). 
 
The fit range is set to –t[0.014,0.1] GeV2,  
where possible deviations from 
exponential form of the nuclear 
amplitude are expected to be small.   
 
The extrapolation uncertainty is 
evaluated by a variation of the fit range. 

( )
( ) 2GeV (extr.)15.0(exp.)16.0stat.)(05.074.19TeV 8

mb (extr.)31.0(exp.)85.0stat.)(18.007.96TeV 8
−±±±=

±±±=
B

totσ



Energy evolution 
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Comparison with COMPETE model  
Chin. Phys. C, 38, 090001 (2014) 
for the evolution of the total cross 
section. 

Comparison with a model from 
Schegelsky and Ryskin  
Phys. Rev. D 85, 094024 (2012) 
for the evolution of the nuclear slope. 

http://pdg.lbl.gov/
http://pdg.lbl.gov/
http://pdg.lbl.gov/
http://pdg.lbl.gov/
http://pdg.lbl.gov/
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.85.094024


Derived quantities 
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( )2
22

16
1

cB
tot

el
π
ρσσ +

=Elastic cross section from the 
integrated fit-function 

( ) ( ) ( )mb syst39.0stat04.033.24TeV 8 ±±=elσ

and inealstic cross section by subtraction  eltotinel σσσ −=

( ) ( ) ( )mb syst69.0stat15.073.71TeV 8 ±±=inelσ

The difference 
between 
ATLAS and 
TOTEM is at 
the level of 1.9 
σ, assuming 
uncorrelated 
uncertainties.  



Conclusion 
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ATLAS has performed new measurements of inelastic cross 
section at 13 TeV with MBTS and of the total and inelastic cross 
section at 8 TeV with  ALFA. 

( ) mb (extr.) 5.2  (lumi) 3.1 exp.)( 6.03.79TeV 13inel ±±±=σ

( )
( ) 2GeV (extr.)15.0(exp.)16.0stat.)(05.074.19TeV 8

mb (extr.)31.0(exp.)85.0stat.)(18.007.96TeV 8
−±±±=

±±±=
B

totσ

Further measurements on elastics and diffractive physics is to 
come with the ALFA and AFP detectors (see Mateusz and 
Marek‘s talks). 



Back-up 
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Background  
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 t-reconstruction methods   
• subtraction method: 

 
 
 

• local angle method:  
 

 
 

• local subtraction:  
 

 
 

• lattice method:   
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 t-resolution   

Subtraction method has 
by far best resolution, 
dominated by beam 
divergence.  
 
All other methods suffer 
from a poor local angle 
resolution.  



Migration 
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Unfolding 
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Beam optics 
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  Reconstruction efficiency 



profiling method 

DIFFRACTION 2016 Hasko Stenzel 30 

D: data, T: theoretical prediction  
V: statistical covariance matrix  
δ: systematic shift k in t spectrum  
β: nuisance parameter for syst. shift k   
ε: t-independent normalization uncertainty (luminosity, reco efficiency) 
α: nuisance parameter for normalization uncertainties 
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fitted nuisance parameters 

Expect nuisance parameters with mean of zero and sigma of one 
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 Results for 4  
different methods   
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Extrapolation uncertainty  
• rho uncertainty ρ=0.1362±0.0034 
• electric form factor: replace standard dipole by double dipole 
• Coulomb phase: different parameterizations 
• include also magnetic form factor in fit 
• fit range variation by +/- 6 bins  main uncertainty 

Nominal fit range 0.014-0.1  
selected on the basis of 
theoretical arguments + 
acceptance> 10% 
 
Variation up to 0.15 also 
theory-inspired.  
 
Walk is typically 0.5mb  
sizeable difference between 
methods.  
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Alternative models  

 
RMS from models:  0.28 mb 
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Stability checks  
Consistency between arms 

time stability Bunch stability 
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