Correlations in forward diffractive Abelian and non-Abelian radiation

Roman Pasechnik
Lund U.

In collaboration with
B. Kopeliovich, I. Potashnikova

Diffraction 2016, Acireale, Italy
Diffractive factorisation breaking in pp collisions

Incoming hadrons are not elementary — experience soft interactions dissolving them leaving much fewer rapidity gap events than in ep scattering

Sources of diffractive factorisation breaking:

✓ soft survival (=absorptive) effects (Khoze-Martin-Ryskin and Gotsman-Levin-Maor) affecting e.g. the Pomeron flux (Goulianos)
✓ interplay of hard and soft fluctuations in incoming hadron wave function
✓ saturated shape of the universal dipole cross section for large dipole sizes

Two distinct approaches treating the above effects:

✓ Regge-corrected (KMR) approach — the first source of the factorisation breaking is accounted at the cross section level by “dressing” the factorisation formula by soft Pomeron exchanges

✓ Color dipole approach — the universal way of inclusive/diffractive scattering treatment, accounts for all the sources of Regge factorisation breaking at the amplitude level (Kopeliovich, RP et al)
Good-Walker picture of diffractive scattering

Hadron can be excited: not an eigenstate of interaction!

Completeness and orthogonality

$$\langle h' | h \rangle = \sum_{\alpha=1} (C_{\alpha}^{h'})^* C_{\alpha}^{h} = \delta_{hh'}$$

$$\langle \beta | \alpha \rangle = \sum_{h'} (C_{\beta}^{h'})^* C_{\alpha}^{h'} = \delta_{\alpha\beta}$$

Elastic and single diffractive amplitudes

$$f_{el}^{h \rightarrow h} = \sum_{\alpha=1} |C_{\alpha}^{h}|^2 f_{\alpha}$$

$$f_{sd}^{h \rightarrow h'} = \sum_{\alpha=1} (C_{\alpha}^{h'})^* C_{\alpha}^{h} f_{\alpha}$$

Single diffractive cross section

$$\sum_{h' \neq h} \left. \frac{d\sigma_{sd}^{h \rightarrow h'}}{dt} \right|_{t=0} = \frac{1}{4\pi} \left[\sum_{h'} |f_{sd}^{h} - f_{el}^{h}|^2 \right]$$

$$= \frac{1}{4\pi} \left[\sum_{\alpha} |C_{\alpha}^{h}|^2 |f_{\alpha}|^2 - \left(\sum_{\alpha} |C_{\alpha}^{h} f_{\alpha}| \right)^2 \right]$$

$$= \frac{1}{4\pi} \left(\langle f_{\alpha}^2 \rangle - \langle f_{\alpha} \rangle^2 \right) = \frac{1}{4\pi} \frac{\langle f_{\alpha}^2 \rangle - \langle f_{\alpha} \rangle^2}{4\pi}$$

Projectile has a substructure!

Dispersion of the eigenvalues distribution

TABLE I: Interplay between the probabilities of hard and soft

| | $|C_{\alpha}|^2$ | σ_{α} | $\sigma_{tot} = \sum_{\alpha=soft} |C_{\alpha}|^2 \sigma_{\alpha}$ | $\sigma_{sd} = \sum_{\alpha=soft} |C_{\alpha}|^2 \sigma_{\alpha}^2$ |
|----------|-----------------|-------------------|---|---|
| Hard | ~ 1 | $\sim \frac{1}{Q^2}$ | $\sim \frac{1}{Q^2}$ | $\sim \frac{1}{Q^2}$ |
| Soft | $\sim \frac{m_q^2}{Q^2}$ | $\sim \frac{1}{m_q^2}$ | $\sim \frac{1}{Q^2}$ | $\sim \frac{1}{m_q^2Q^2}$ |

Important basis for the dipole picture!
Diffractive Abelian (e.g. Drell-Yan) radiation via dipoles

interplay between hard and soft fluctuations is pronounced!

Diffractive DIS $\propto r^4 \propto 1/M^4$ vs diffractive DY $\propto r^2 \propto 1/M^2$

Diffractive Drell Yan (semi-hard)

superposition has a Good-Walker structure

$$ \alpha \sigma(\vec{R}) - \sigma(\vec{R} - \alpha \vec{r}) = \frac{2\alpha \sigma_0}{R_0^2(x_2)} e^{-R^2/R_0^2(x_2)} (\vec{r} \cdot \vec{R}) + O(r^2) $$

$r \sim 1/(1 - \alpha)M$

SD DY/gauge bosons

SD heavy quarks

★ diffractive factorisation is automatically broken

★ any SD reaction is a superposition of dipole amplitudes

★ gap survival is automatically included at the amplitude level on the same footing as dip. CS

★ works for a variety of data in terms of universal dip. CS

Sophisticated dipole cascades are being put into MC: Lund Dipole Chain model (DIPSY)

Ref. G. Gustafson, and L. Lönnblad

RP et al 2011, 12

Kopeliovich et al 2006
Elastic amplitude and gap survival

Dipole elastic amplitude has eikonal form:

$$\text{Im} \, f_{el}(\vec{b}, \vec{r}_1 - \vec{r}_2) = 1 - \exp\left[i\chi(\vec{r}_1) - i\chi(\vec{r}_2)\right]$$

$$\sigma_{\bar{q}q}(r_p, x) = \int d^2b \, 2 \, \text{Im} \, f_{el}(\vec{b}, \vec{r}_p) = \sigma_0(1 - e^{-r_p^2/R_0^2(x)})$$

$$\chi(b) = -\int_{-\infty}^{\infty} dz \, V(\vec{b}, z)$$

Diffractive amplitude is proportional to

$$\text{Im} \, f_{el}(\vec{b}, \vec{r}_1 - \vec{r}_2 + \alpha\vec{r}) - \text{Im} \, f_{el}(\vec{b}, \vec{r}_1 - \vec{r}_2) = \exp\left[i\chi(\vec{r}_1) - i\chi(\vec{r}_2)\right] \exp\left[i\alpha \vec{r} \cdot \vec{\nabla} \chi(\vec{r}_1)\right]$$

$$|\vec{r}_i - \vec{r}_j| \sim b \sim R_p, \ i \neq j$$

Exactly the soft survival probability amplitude

another source of QCD factorisation breaking

controlled by soft spectator partons
vanishes in the black disc limit!

Absorption effect is automatically included into elastic amplitude at the amplitude level
SD-to-inclusive ratio for diffractive gauge bosons production

\[\text{RP et al 2011,12} \]

\[
\text{Im } f_{el}(\vec{b}, \vec{R}_{ij} + \alpha \vec{r}) - \text{Im } f_{el}(\vec{b}, \vec{R}_{ij}) \simeq \frac{\partial \text{Im } f_{el}(\vec{b}, \vec{R}_{ij})}{\partial \vec{R}_{ij}} \alpha \vec{r}^	op
\]

\[
|\Psi_i(\vec{r}_1, \vec{r}_2, \vec{r}_3; x_q, \{x_{q}^{2,3,\ldots}\}, \{x_{g}^{2,3,\ldots}\})|^2 = \frac{3a^2}{\pi^2} e^{-a(\vec{r}_1^2 + \vec{r}_2^2 + \vec{r}_3^2)} \rho(x_q, \{x_{q}^{2,3,\ldots}\}, \{x_{g}^{2,3,\ldots}\})
\]

\[
a = \langle r_{ch}^2 \rangle^{-1}
\]

\[
\int d^2r_1 d^2r_2 d^2r_3 e^{-a(\vec{r}_1^2 + \vec{r}_2^2 + \vec{r}_3^2)} \delta(\vec{r}_1 + \vec{r}_2 + \vec{r}_3) = \frac{1}{9} \int d^2R_{12} d^2R_{13} e^{-\frac{2a}{3}(R_{12}^2 + R_{13}^2 + R_{12}R_{13})}
\]

\[
\frac{d\sigma^{sd}_{\chi_G}}{d^2q_\perp dx_1 dM^2} = \frac{\alpha^2}{6\pi} \frac{\bar{R}_0^2(M^2/x_1) s^2(\sigma^2_0(s))}{B_{sd}(s) \bar{\sigma}_0} \frac{1}{A_2} \left[\frac{2}{(A_2 - 4A_1)^2} + \frac{A_2^2}{(A_2 - 4A_3)^2} \right]
\]

\[
A_1 = \frac{2a}{3} + \frac{2}{R_0^2(s)}, \quad A_2 = \frac{2a}{3}, \quad A_3 = \frac{2a}{3} + \frac{1}{R_0^2(s)}
\]

Hard GBW (small dipoles)

\[
\bar{\sigma}_0 = 23.03 \text{ mb}, \quad \bar{R}_0(x_2) = 0.4 \text{ fm} \times (x_2/x_0)^{0.144}, \quad x_0 = 3.04 \times 10^{-4}
\]

Soft KST (large dipoles)

\[
R_0(s) = 0.88 \text{ fm } (s_0/s)^{0.14}
\]

\[
\sigma_0(s) = \sigma_{\pi^p}^{\pi^p}(s) \left(1 + \frac{3R_0^2(s)}{8\langle r_{ch}^2 \rangle_{\pi}} \right)
\]

\[
\sigma_{\pi^p}^{\pi^p}(s) = 23.6(s/s_0)^{0.08} \text{ mb}
\]

\[
\langle r_{ch}^2 \rangle_{\pi} \simeq 0.44 \text{ fm}^2
\]

diffractive (Regge) slope

\[
B_{sd}(s) \simeq \langle r_{ch}^2 \rangle_{\pi} / 3 + 2\alpha'_{FP} \ln(s/s_0)
\]

At the leading twist, the dipole approach predicts the same angular correlation in DDY as in inclusive DY!
Diffractive factorisation breaking in DDY

vanishes in the forward limit, higher twist effect!

leading twist effect!

saturated shape of the dipole CS + unitarity corrections

Fraction of diffractive events
• steeply falls with energy
• grows with the hard scale

Opposite to factorization-based results (like Ingelman-Schlein)
PT correlations in inclusive and diffractive Drell-Yan

\[\frac{d^3\sigma}{dM^2 dq_T} (\text{fb}/\text{GeV}^3) \]

\[p_T [\text{GeV}] \]

\[\sqrt{s} = 1.96 \text{ TeV} \]
CT10 NLO

\[\sqrt{s} = 7 \text{ TeV} \]
CT10 NLO

D0 data
IP-sat
GBW
BGBK

CMS data
IP-sat
GBW
BGBK

RP et al 2013, 2016

\[\frac{1}{\sigma} \frac{d\sigma}{dp_T} (\text{GeV}^{-1}) \]

\[\frac{d\sigma}{dp_T} (\text{GeV}^{-1}) \]

\[\frac{d\sigma}{dp_T} (\text{GeV}^{-1}) \]

\[s \rightarrow l^+ l^- \]

\[s \rightarrow Z^+ Z^- \]

\[Z^0 \]

\[W^+ \]

\[W^- \]

\[CTEQ10 \]

\[0.3 < x_1 < 1.0, \text{ CTEQ10} \]
Angular correlations in Drell-Yan as a probe for saturation

A. Stasto et al, 2012
RP et al 2016

\[C(\Delta \phi) = \frac{2\pi \int_{p_T, p_T^h > p_T^{cut}} dp_T P_T dp_T^h P_T^h \frac{d\sigma(pp\rightarrow hG^*X)}{dY d^2 p_T d^2 p_T^h}}{\int_{p_T > p_T^{cut}} dp_T P_T \frac{d\sigma(pp\rightarrow G^*X)}{dY d^2 p_T}} \]

This picture does not change when turning to diffractive Drell-Yan
Diffractive non-Abelian (gluon) radiation via dipoles

when the LO contributions get generalised to all-order results, ALL possible higher-order (perturbative+nonperturbative) corrections due to NON-RESOLVED emissions are AUTOMATICALLY resumed and accounted for by the dipole formula!

SD amplitude

\[|A_{SD}|^2 \simeq \frac{3}{256} \left| \Psi_{in} \right|^2 \left| \Psi_{fin} \right|^2 \sum_{i,j=1}^2 \left[\nabla^i \Psi_{Q\bar{Q}}^* (\alpha, \vec{r}) \nabla^j \Psi_{Q\bar{Q}} (\alpha, \vec{r}') \right] \Omega_{soft}^{ij} \]

“soft color screening” part

\[\Omega_{soft}^{ij} = \left[\nabla^i \sigma_{q\bar{q}} (\vec{r}_{12}) + \nabla^i \sigma_{q\bar{q}} (\vec{r}_{13}) \right] \left[\nabla^j \sigma_{q\bar{q}} (\vec{r}_{12}) + \nabla^j \sigma_{q\bar{q}} (\vec{r}_{13}) \right] \]

SD-to-inclusive ratio

\[\frac{d\sigma_{SD}}{d\Omega} \simeq \frac{R_0^2(x_2)}{\bar{\sigma}_0} \left[\alpha^2 + \bar{\alpha}^2 - \frac{1}{4} \alpha \bar{\alpha} \right]^{-1} F_S(x_1, s) \frac{d\sigma_{incl}}{d\Omega} \]

\[F_S(x_1, s) \equiv \frac{729 a^2 \sigma_0(x_1 s)^2 \Lambda(x_1 s)}{4096 \pi^2 B_{SD}(s)} \]

The angular correlation is affected by color-screening interaction in higher-twist diffraction (e.g. in DIS, see talk by A. Rezaeian) but not in the leading twist!

“skeleton” contributions are subject for “dressing!”

B. Kopeliovich et al, 2007
RP et al, in progress
Heavy QQbar angular correlation

\[
\frac{d^3\sigma(G \to Q\bar{Q} + X)}{d(\ln \alpha)d^2p_T} = \frac{1}{6\pi} \int \frac{d^2\kappa_\perp}{\kappa_\perp^4} \alpha_s^2 \mathcal{F}(x, \kappa_\perp^2) \times \left\{ \left[\frac{9}{8} \mathcal{H}_0(\alpha, \bar{\alpha}, p_T) - \frac{9}{4} \mathcal{H}_1(\alpha, \bar{\alpha}, p_T, \kappa) + \mathcal{H}_2(\alpha, \bar{\alpha}, p_T, \kappa) + \frac{1}{8} \mathcal{H}_3(\alpha, \bar{\alpha}, p_T, \kappa) \right] + [\alpha \leftrightarrow \bar{\alpha}] \right\}
\]

followed by a discussion with O. Teryaev and M. Tasevsky

The same for inclusive and leading-twist single-diffractive QQbar production!
Conclusions

✓ The dipole picture provides universal and robust means for studies the inclusive and single-diffractive processes in both pp and pA collisions at large Feynman xF beyond QCD factorisation

✓ Major sources of diffractive factorisation breaking in hadron-hadron collisions are (i) the absorptive corrections, and (ii) the hard-soft interplay due to transverse motion of spectators, making the hadronic diffraction of the leading-twist nature

✓ The universal partial dipole amplitude accounts for the absorptive corrections such that no additional probabilistic fudge factors are necessary in the dipole picture

✓ Single-diffractive gauge bosons’ (e.g. Drell-Yan) and heavy flavour production at large Feynman xF has been studied beyond diffractive factorisation

✓ The SD-to-diffractive ratio affects the scale and rapidity dependence of the leading-twist hadronic diffractive observables compared to the inclusive ones, the angular correlations are the same as in the inclusive case.