Inclusive heavy flavour production in the dipole picture

Roman Pasechnik Lund U.

In collaboration with B. Kopeliovich, V. Goncalves, J. Nemchik, I. Potashnikova

Diffraction 2016, Acireale, Italy

Phenomenological dipole approach

Eigenvalue of the total cross section is the universal dipole cross section

Dipole:

- cannot be excited
- experience only elastic scattering
- have no definite mass, but only separation
- universal elastic amplitude can be extracted in one process and used in another

see e.g. B. Kopeliovich et al, since 1981

Eigenstates of interaction in QCD: color dipoles

$$\sum_{h'} \frac{d\sigma_{sd}^{h \to h'}}{dt} \bigg|_{t=0} = \sum_{\alpha=1} |C_{\alpha}^{h}|^{2} \frac{\sigma_{\alpha}^{2}}{16\pi} =$$
SD cross section
$$\int d^{2}r_{T} (|\Psi_{h}(r_{T})|^{2}) \frac{\sigma^{2}(r_{T})}{16\pi} = \frac{\langle \sigma^{2}(r_{T}) \rangle}{16\pi}$$

wave function of a given Fock state

total DIS cross section

$$\sigma_{tot}^{\gamma^* p}(Q^2, x_{Bj}) = \int d^2 r_T \int_0^1 dx \left| \Psi_{\gamma^*}(r_T, Q^2) \right|^2 \sigma_{\bar{q}q}(r_T, x_{Bj})$$

Theoretical calculation of the dipole CS is a challenge

BUT! Can be extracted from data and used in ANY process!

Example: Naive GBW parameterization of HERA data

partonic interpretation of

a scattering does depend on

frame of reference!

color transparency

QCD factorisation

 $\sigma_{\bar{q}q}(r_T,x) = \sigma_0 \left[1 - e^{-\frac{1}{4}r_T^2 \mathcal{Q}_s^2(x)} \right]$

saturates at large separations

$$r_T^2 \gg 1/Q_s^2$$

$$egin{aligned} &\sigma_{ar{q}q}(r_T) \propto r_T^2 & r_T
ightarrow 0 \ &\sigma_{qar{q}}(r,x) \propto r^2 x g(x) \end{aligned}$$

A point-like colorless object does not interact with external color field!

ANY inclusive/diffractive scattering is due to an interference of dipole scatterings!

Gluon distribution amplitudes and dipole CS

In most cases, a scattering cross section in the target rest frame can be represented in terms of three basic ingredients:

Gluon to quark-antiquark splitting amplitude:

$$\begin{split} \Phi_{Q\bar{Q}}^{T} &= \sqrt{\alpha_{s}} \int \frac{d^{2}\kappa}{(2\pi)^{2}} \left(\xi_{Q}^{\mu}\right)^{\dagger} \frac{m_{Q}(\vec{e}_{ini}\cdot\vec{\sigma}) + (1-2\beta)(\vec{\sigma}\cdot\vec{n})(\vec{e}_{ini}\cdot\vec{\kappa}) + i(\vec{e}_{ini}\times\vec{n})\cdot\vec{\kappa}}{\kappa^{2} + \epsilon^{2}} \tilde{\xi}_{\bar{Q}}^{\bar{\mu}} e^{-i\vec{\kappa}\vec{r}} \\ &= \frac{\sqrt{\alpha_{s}}}{2\pi} \left(\xi_{Q}^{\mu}\right)^{\dagger} \left\{ m_{Q}(\vec{e}_{ini}\cdot\vec{\sigma}) + i(1-2\beta)(\vec{\sigma}\cdot\vec{n})(\vec{e}_{ini}\cdot\vec{\nabla}_{r}) - (\vec{e}_{ini}\times\vec{n})\cdot\vec{\nabla}_{r} \right\} \tilde{\xi}_{\bar{Q}}^{\bar{\mu}} K_{0}(\epsilon r) \,, \end{split}$$

Gluon Bremsstrahlung off a quark:

$$\Phi_{qG^*}^T(\alpha,\vec{\pi}) = \sqrt{\alpha_s} \left(\eta_Q^s\right)^{\dagger} \frac{(2-\alpha)(\vec{e_*}\cdot\vec{\pi}) + im_q \alpha^2(\vec{n}\times\vec{e_*})\cdot\vec{\sigma} - i\alpha(\vec{\pi}\times\vec{e_*})\cdot\vec{\sigma}}{\vec{\pi}^2 + \alpha^2 m_q^2} \eta_Q^{s'}$$

Universal dipole cross section:

Dipole approach vs NLO QCD: Drell-Yan

Heavy flavour production: Bremsstrahlung vs Fusion

Gauge-invariant sub-sets of diagrams

B. Kopeliovich et al, PRD76 2007

<u>Gluon virtuality</u>

$$(p_2 - p_1)^2 \equiv -Q^2, \qquad Q^2 = \frac{\vec{\pi}^2 + \alpha^2 m_q^2}{\bar{\alpha}} \qquad \vec{\pi} = \alpha \vec{p}_2 - \bar{\alpha} \vec{k}, \qquad \vec{k} = \sum_i \vec{k}_i$$

Basis for heavy flavour production in the dipole picture

i

Dipole framework for heavy flavor production

Q-jet pT distribution in pp collisions: the dipole formula

$$G(x_{1},\mu^{2}) \equiv x_{1}g(x_{1},\mu^{2})$$

$$\frac{d\sigma_{\text{incl}}^{pp}}{dY\,d\alpha d^{2}p_{T}} = G(x_{1},\mu^{2}) \frac{d\sigma(Gp \to \bar{Q}Q + X)}{d\alpha d^{2}p_{T}}$$

$$\frac{d^{3}\sigma(G \to Q\bar{Q} + X)}{d\alpha d^{2}p_{T}} = \frac{1}{(2\pi)^{2}} \int d^{2}r_{1}d^{2}r_{2}e^{ip_{T}\cdot(\vec{r}_{1}-\vec{r}_{2})}\Psi_{Q\bar{Q}}^{*}(\alpha,\vec{r}_{1})\Psi_{Q\bar{Q}}(\alpha,\vec{r}_{2})\sigma_{\text{eff}}(\vec{r}_{1},\vec{r}_{2},\alpha)$$

$$\Psi_{Q\bar{Q}}^{*}(\alpha,\vec{r}_{1})\Psi_{Q\bar{Q}}(\alpha,\vec{r}_{2}) = \frac{\alpha_{s}}{(2\pi)^{2}} \left[m_{Q}^{2}K_{0}(m_{Q}r_{1})K_{0}(m_{Q}r_{2}) + (\alpha^{2} + \bar{\alpha}^{2})m_{Q}^{2}\frac{\vec{r}_{1}\cdot\vec{r}_{2}}{r_{1}r_{2}}K_{1}(m_{Q}r_{1})K_{1}(m_{Q}r_{2})\right]$$

$$\sigma_{\text{eff}}(\vec{r}_{1},\vec{r}_{2},\alpha) = \frac{9}{16}\sigma_{qq}(\alpha\vec{r}_{1}) + \frac{9}{16}\sigma_{qq}(\alpha\vec{r}_{1}) + \frac{9}{16}\sigma_{qq}(\alpha\vec{r}_{2}) + \frac{9}{16}\sigma_{qq}(\alpha\vec{r}_{2})$$

$$\sigma_{\text{eff}}(\vec{r}_{1},\vec{r}_{2},\alpha) = \frac{\sigma}{16}\sigma_{q\bar{q}}(\alpha\vec{r}_{1}) + \frac{\sigma}{16}\sigma_{q\bar{q}}(\bar{\alpha}\vec{r}_{1}) + \frac{\sigma}{16}\sigma_{q\bar{q}}(\alpha\vec{r}_{2}) + \frac{\sigma}{16}\sigma_{q\bar{q}}(\bar{\alpha}\vec{r}_{2}) - \frac{1}{16}\sigma_{q\bar{q}}(\alpha\vec{r}_{1} + \bar{\alpha}\vec{r}_{2}) - \frac{1}{16}\sigma_{q\bar{q}}(\alpha\vec{r}_{1} + \bar{\alpha}\vec{r}_{2}) - \frac{1}{2}\sigma_{q\bar{q}}(\alpha\vec{r}_{1} - \bar{\alpha}\vec{r}_{2}) - \frac{1}{2}\sigma_{q\bar{q}}(\alpha[\vec{r}_{1} - \vec{r}_{2}]) - \frac{1}{2}\sigma_{q\bar{q}}(\bar{\alpha}[\vec{r}_{1} - \vec{r}_{2}]) .$$

The dipole formula in momentum space

$$\sigma_{\bar{q}q}(\vec{r},x) = \frac{4\pi}{3} \int \frac{d^2 \kappa_{\perp}}{\vec{\kappa}_{\perp}^4} \left(1 - e^{i\vec{\kappa}_{\perp}\cdot\vec{r}}\right) \alpha_s \mathcal{F}(x,\vec{\kappa}_{\perp}^2)$$

$$\frac{d^3\sigma(G \to Q\bar{Q} + X)}{d(\ln\alpha)d^2p_T} = \frac{1}{6\pi} \int \frac{d^2\kappa_{\perp}}{\kappa_{\perp}^4} \alpha_s^2 \mathcal{F}(x,\kappa_{\perp}^2) \times \left\{ \left[\frac{9}{8} \mathcal{H}_0(\alpha,\bar{\alpha},p_T) - \frac{9}{4} \mathcal{H}_1(\alpha,\bar{\alpha},p_T,\kappa) + \mathcal{H}_2(\alpha,\bar{\alpha},p_T,\kappa) + \frac{1}{8} \mathcal{H}_3(\alpha,\bar{\alpha},p_T,\kappa) \right] + [\alpha \longleftrightarrow \bar{\alpha}] \right\}$$

$$\mathcal{H}_{0}(\alpha,\bar{\alpha},p_{T}) = \frac{m_{Q}^{2} + (\alpha^{2} + \bar{\alpha}^{2})p_{T}^{2}}{(p_{T}^{2} + m_{Q}^{2})^{2}}, \qquad r^{2} \ll R_{0}^{2}(x)$$

$$\mathcal{H}_{1}(\alpha,\bar{\alpha},p_{T},\kappa) = \frac{m_{Q}^{2} + (\alpha^{2} + \bar{\alpha}^{2})p_{T}^{2} \cdot (p_{T}^{2} - \alpha\vec{\kappa})}{[(p_{T}^{2} - \alpha\vec{\kappa})^{2} + m_{Q}^{2}](p_{T}^{2} + m_{Q}^{2})}, \qquad \sigma_{\bar{q}q}(x,\vec{r}) = \sigma_{0} \left[1 - e^{-\frac{r^{2}}{R_{0}^{2}(x)}}\right] \simeq \sigma_{0} \frac{r^{2}}{R_{0}^{2}(x)}$$

$$\mathcal{H}_{2}(\alpha,\bar{\alpha},p_{T},\kappa) = \frac{m_{Q}^{2} + (\alpha^{2} + \bar{\alpha}^{2})(p_{T}^{2} - \alpha\vec{\kappa})^{2}}{[(p_{T}^{2} - \alpha\vec{\kappa})^{2} + m_{Q}^{2}]^{2}}, \qquad \sigma_{\mathrm{eff}}(\vec{r}_{1},\vec{r}_{2},\alpha) \approx \frac{\sigma_{0}}{R_{0}^{2}(x)} \left[\alpha^{2} + \bar{\alpha}^{2} - \frac{1}{4}\alpha\bar{\alpha}\right] \vec{r}_{1} \cdot \vec{r}_{2}$$

$$\frac{d^3\sigma(G \to Q\bar{Q} + X)}{d\alpha d^2 p_T} = \frac{\alpha_s}{(2\pi)^2} \frac{\sigma_0}{R_0^2(x)} \left[\alpha^2 + \bar{\alpha}^2 - \frac{1}{4}\alpha\bar{\alpha} \right] \left\{ \frac{4m_Q^2 p_T^2}{(m_Q^2 + p_T^2)^4} + (\alpha^2 + \bar{\alpha}^2) \frac{2(m_Q^4 + p_T^4)}{(m_Q^2 + p_T^2)^4} \right\}$$

Q-jet pT distribution in pp collisions vs LHC data

Open heavy flavour production vs LHC data: D-mesons

Open heavy flavour production vs LHC data: B-mesons

S- and P-wave quarkonia wave functions

Schrodinger equation for spatial ccbar wave function

Color-Singlet chic -> J/psi production in the dipole picture

work in progress

Gluon shadowing corrections and direct J/psi

Color-Singlet direct J/psi production in the dipole picture

Conclusions

- The dipole picture provides universal and robust means for studies the heavy flavour production processes (open HF and quarkonia) in both pp and pA collisions beyond QCD factorisation
- Recent inclusive b-jets, D- and B-meson production data in pp collisions at the LHC are well described in the framework of color dipole approach which effectively but correctly accounts for perturbative QCD effects
- Preliminary results on J/psi production exhibit a correct behaviour with transverse momentum and a dominance of the CS mechanism while chic data description at high pT's requires an account for an additional gluon radiation
- Residual sensitivity to the modelling of the universal dipole cross section, the fragmentation functions and quarkonia wave functions should provide model-independent constraints on these important ingredients