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Phenomenological dipole approach

Example: Naive GBW parameterization  
of HERA data

saturates at  
large separations

A point-like colorless object  
does not interact with  
external color field!

Theoretical calculation of  
the dipole CS is a challenge

see e.g. B. Kopeliovich et al, since 1981Eigenvalue of the total cross section is 
the universal dipole cross section

SD cross section

wave function of  
a given Fock state total DIS cross section

BUT! Can be extracted from data and used in ANY process!

color transparency

ANY inclusive/diffractive scattering is due to an interference of dipole scatterings!
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Eigenstates of interaction in QCD:  
color dipoles Dipole: 

•   cannot be excited 
•   experience only elastic scattering 
•   have no definite mass, but only separation 
•   universal – elastic amplitude can be  
    extracted in one process and used in another

γ (∗)γ (∗)γ ∗

σqq σqq

  
V

p p p p

Fig. 20: The dipole representation of the amplitudes for Compton scattering (a) and for meson production (b),
corresponding to the graphs in Figs. 17a and 18.

factorization schemes have been developed, which combine features of the collinear and kt factorization
formalisms.

The two different types of factorization implement different ways of separating different parts of
the dynamics in a scattering process. The building blocks in a short-distance factorization formula corre-
spond to either small or large particle virtuality (or equivalently to small or large transverse momentum),
whereas the separation criterion in high-energy factorization is the particle rapidity. Collinear and k t

factorization are based on taking different limits: in the former case the limit of large Q2 at fixed xB and
in the latter case the limit of small xB at fixed Q2 (which must however be large enough to justify the
use of QCD perturbation theory). In the common limit of large Q2 and small xB the two schemes give
coinciding results. Instead of large Q2 one can also take a large quark mass in the limits just discussed.

A far-reaching representation of high-energy dynamics can be obtained by casting the results of kt

factorization into a particular form. The different building blocks in the graphs for Compton scattering
and meson production in Figs. 17a and 18 can be rearranged as shown in Fig. 20. The result admits a
very intuitive interpretation in a reference frame where the photon carries large momentum (this may be
the proton rest frame but also a frame where the proton moves fast, see Fig. 14): the initial photon splits
into a quark-antiquark pair, which scatters on the proton and finally forms a photon or meson again. This
is the picture we have already appealed to in Sect. 1.2.

In addition, one can perform a Fourier transformation and trade the relative transverse momentum
between quark and antiquark for their transverse distance r, which is conserved in the scattering on the
target. The quark-antiquark pair acts as a color dipole, and its scattering on the proton is described by
a “dipole cross section” σqq̄ depending on r and on xIP (or on xB in the case of inclusive DIS). The
wave functions of the photon and the meson depend on r after Fourier transformation, and at small r
the photon wave function is perturbatively calculable. Typical values of r in a scattering process are
determined by the inverse of the hard momentum scale, i.e. r ∼ (Q2 + M2

V )−1/2. An important result of
high-energy factorization is the relation

σqq̄(r, x) ∝ r2xg(x) (7)

at small r, where we have replaced the generalized gluon distribution by the usual one in the spirit of the
leading log x approximation. A more precise version of the relation (7) involves the kt dependent gluon
distribution. The dipole cross section vanishes at r = 0 in accordance with the phenomenon of “color
transparency”: a hadron becomes more and more transparent for a color dipole of decreasing size.

The scope of the dipole picture is wider than we have presented so far. It is tempting to apply it
outside the region where it can be derived in perturbation theory, by modeling the dipole cross section
and the photon wave function at large distance r. This has been very been fruitful in phenomenology, as
we will see in the next section.

The dipole picture is well suited to understand the t dependence of exclusive processes, parameter-
ized as dσ/dt ∝ exp(−b|t|) at small t. Figure 21 shows that b decreases with increasing scale Q2 +M2

V

QCD factorisation

partonic interpretation of 
a scattering does depend on 

frame of reference!



Gluon distribution amplitudes and dipole CS
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In most cases, a scattering cross section in the target rest frame  
can be represented in terms of three basic ingredients: 
 

Gluon to quark-antiquark splitting amplitude: 

 
Gluon Bremsstrahlung off a quark:  
 
 
 

Universal dipole cross section:

X
µ+

µ−Y

X
µ+

µ−

J/ψ

p

p

Y

Figure 1. Dominate mechanism for inclusive associated J/ψ → µ+µ− and forward jet high-pT
production in pp collisions (left) and the corresponding Drell-Yan background (right). Effective
amplitudes for G∗ +G → G+ cc̄ and q → q+(γ∗ → µ+µ−) hard subprocesses are denoted by filled
black and filled dark grey circles, respectively, described later in Fig. 4.

2 Inclusive heavy flavor production in pp collisions: the dipole approach

A detailed study of production mechanisms for a heavy quark pair in different color and

parity states giving rise to quarkonia production such as χc, J/ψ, ψ′, Υ etc is of particular

importance and has been discussed in many articles so far (see e.g. Refs. [? ? ]). Various

models were applied ranging from QCD factorisation approaches (also explicitly accounting

for higher order QCD corrections) [? ] to non-perturbative ones attemting to incorporate

complicated color screening and medium effects in heavy ion collisions such as color octet

mechanisms and CGC-based approaches [? ]. Despite a large variety of different approaches,

a universality between corresponding descriptions remains questionable, especially, when it

concerns to the underlined QCD mechanism for such C-odd states as J/ψ, ψ′ and Υ.

In this paper we aim at developing an alternative framework to C-parity negative S-

wave QQ̄ states based upon the universal color dipole approach [? ]. This framework has

earlier been proven to work quite well for P -wave quarkonia production such as χc(J+)

in both pp and pA collisions in Refs. [? ]. In the considering case the latter calculations

become more cumbersome due to an extra gluon emission off the produced QQ̄ state as

indicated in Fig. 1, and this is the leading-order contribution to the respective J/ψ and Υ

production. The major part of possible higher order contributions due to e.g. soft gluon

emissions is effectively taken into account through the universal dipole cross section as was

argued e.g. in Ref. [? ]. It is also rather straightforward to generalise the results in pp

collisons to pA and AA collisions in the dipole approach so the current analysis should

be considered as a baseline for that. Let us start with an overview of the color dipole

framework for heavy quark QQ̄ pair production.

Figure 2. Typical contributions to the non-relativistic heavy quark pair QQ̄ production in
G → QQ̄ splitting subprocess in the color background of the target in the target rest frame.
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Figure 3. Dominating gluon shadowing contributions to the non-relativistic color singlet C-odd
heavy quark pair {QQ̄}1+ production with a soft gluon γ ≪ 1 (upper two lines) and amplitudes for
q → q + γ fluctuation (bottom line).

Under the above conditions one can derive the amplitudes for inclusive production of

heavy quark {QQ̄} pair separately in color-singlet 1± and color-octet 8± states in association

with soft gluon Gb in impact parameter representation in factorised form

Ã(s⃗, r⃗, ρ⃗) =

∫

d2k

(2π)2
d2κ

(2π)2
d2k3
(2π)2

A(k⃗, κ⃗, k⃗3) e
−ik⃗s⃗−iκ⃗r⃗−ik⃗3ρ⃗ , (2.6)

Ã1−(s⃗, r⃗, ρ⃗) =
i

2
ΦQQ̄(r⃗,β)Φ

1−
QG(r⃗, ρ⃗,β) δ

i
j

N2
c−1
∑

d=1

fdbaĈ
(d)(s⃗, ρ⃗) ,

Ã1+(s⃗, r⃗, ρ⃗) =
i

2
ΦQQ̄(r⃗,β)Φ

1+
QG(r⃗, ρ⃗,β) δ

i
j

N2
c−1
∑

d=1

ddbaĈ
(d)(s⃗, γρ⃗) ,

Ã8−(s⃗, r⃗, ρ⃗) =
3

2
ΦQQ̄(r⃗,β)Φ

8−
QG(r⃗, ρ⃗,β) (τg)

i
j

N2
c−1
∑

d=1

fdbedaegĈ
(d)(s⃗, ρ⃗) ,

Ã8+(s⃗, r⃗, ρ⃗) = −
3

2
ΦQQ̄(r⃗,β)Φ

8+
QG(r⃗, ρ⃗,β) (τg)

i
j

N2
c−1
∑

d=1

fdbefaegĈ
(d)(s⃗, ρ⃗) ,

where the limit small QQ̄ dipole and soft final gluon is adopted, i.e. |r⃗| ∼ m−1
Q ≪ |ρ⃗| ∼

|s⃗| ∼ λ−1, γ ≪ β, and do not expand!!!

Φ1−
QG(r⃗, ρ⃗,β) = Φ8−

QG(r⃗, ρ⃗,β) = ΦQG(ρ⃗+ βr⃗)− ΦQG(ρ⃗− β̄r⃗) ≃ r⃗ · ∇⃗ρΦQG(ρ⃗) , (2.7)

Φ1+
QG(r⃗, ρ⃗,β) =

1

2

{ 1

β̄
ΦQG(ρ⃗+ βr⃗) +

1

β
ΦQG(ρ⃗− β̄r⃗)

}

≃
1

2ββ̄
ΦQG(ρ⃗) ,

Φ8+
QG(r⃗, ρ⃗,β) = ΦQG(ρ⃗+ βr⃗) + ΦQG(ρ⃗− β̄r⃗)− 2ΦQG(ρ⃗) ≃ (2β − 1)r⃗ · ∇⃗ρΦQG(ρ⃗) ,
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such that C-odd states 8+ and 1+ are symmetric w.r.t. momenta of Q and Q̄, namely,

β ↔ β̄, r⃗ ↔ −r⃗, while C-even ones 8− and 1− are anti-symmetric. Function Ĉ(d)(s⃗, ρ⃗) is

the interference between the gluon-nucleon Gd + N → N∗ interaction amplitudes γ(d)(s⃗)

defined as

Ĉ(d)(s⃗, ρ⃗) =
2√
3

(

γ(d)(s⃗)− γ(d)(s⃗+ ρ⃗)
)

, (2.8)
∫

d2s
∑

X

⟨i|Ĉ(d)(s⃗, ρ⃗)Ĉ(d′)(s⃗, ρ⃗)|i⟩ = δdd′ σq̄q(ρ⃗) , (2.9)

The distribution amplitudes for gluon splitting Ga → {QQ̄} and subsequent gluon

radiation Q(Q̄) → Q(Q̄)+Gb for transversely (T) polarised Ga,b (λini,f = ±1) are given by

[? ]

ΦT
QQ̄ =

√
αs

∫

d2κ

(2π)2
(ξµQ)

†mQ(e⃗ini · σ⃗) + (1− 2β)(σ⃗ · n⃗)(e⃗ini · κ⃗) + i(e⃗ini × n⃗) · κ⃗
κ2 + ϵ2

ξ̃µ̄
Q̄
e−iκ⃗r⃗

=

√
αs

2π
(ξµQ)

†
{

mQ(e⃗ini · σ⃗) + i(1 − 2β)(σ⃗ · n⃗)(e⃗ini · ∇⃗r)− (e⃗ini × n⃗) · ∇⃗r

}

ξ̃µ̄
Q̄
K0(ϵr) ,

ΦT
QG =

√
αs

∫

d2k3
(2π)2

2(e⃗f · k⃗3)
k23 + τ2

e−ik⃗3ρ⃗ =
i
√
αs

π
(e⃗f · ∇⃗ρ)K0(τρ) , (2.10)

respectively, where ξ̃µ̄
Q̄
= iσy(ξ

µ̄
Q̄
)∗, n⃗ is the unit vector along the momentum, and

ϵ = mQ , τ2 = λ2 + γM2
QQ̄ , M2

QQ̄ =
m2

Q + κ2

ββ̄
.

The differential cross section of the process Ga + p → {QQ̄}Gb +X is then given by

dσ

dβ d ln γ
=

∫

d2rd2ρ |ΨQQ̄G(β, γ, r⃗, ρ⃗)|
2 Σ(β, γ, r⃗, ρ⃗) , (2.11)

|ΨQQ̄G|
2 =

1

8

1

2

∑

λini,f

∑

µ,µ̄

Nc
∑

i,j=1

N2
c−1
∑

a,b=1

ΨQQ̄GΨ
∗
QQ̄G ,

where summation over final-state Q, Q̄, Gb spin µ, µ̄ ,λf and color i, j, b indices and aver-

aging over intial gluon Ga spin λi and color a indices, respectively, is explicitly performed.

In Eq. (2.11), the effective dipole cross sections for each C-parity and color configuration

are given by

Σ1−(β, γ, r⃗, ρ⃗) = Σ8−(β, γ, r⃗, ρ⃗) = Σ8+(β, γ, r⃗, ρ⃗) = σGG(ρ) ≡
9

4
σq̄q(ρ) ,

Σ1+(β, γ, r⃗, ρ⃗) =
5

4
σq̄q(γρ) . (2.12)

It thus appears that 1− and 8± states get non-vanishing gluon shadowing corrections in

the limit γ → 0 governed by the soft scale ρ ≫ r which determines the size of effective

gluonic dipole while the QQ̄ dipole is vanishingly small. The gluonic dipole cross section

σGG differs from the quark one σq̄q by the Casimir factor 2N2
c /(N

2
c − 1) = 9/4 for Nc = 3.
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Figure 4. Heavy quark pair production in association with a forward quark: “Bramsstrahlung”
(upper line) vs “Fusion” mechanism (bottom line).

The differential cross section of the process q + p → q + {QQ̄}Gb +X is then given by

dσ

d lnα dβ d ln γ
=

∫

d2π⃗

(2π)2

∫

d2rd2ρ |Ψq{QQ̄}G(α,β, γ, π⃗, r⃗, ρ⃗)|
2 Σ(β, γ, r⃗, ρ⃗) , (2.15)

|Ψq{QQ̄}G|
2 =

1

3

1

2

∑

λ∗,f

∑

s,s′

∑

µ,µ̄

Nc
∑

l,m,i,j=1

N2
c−1
∑

b=1

Ψq{QQ̄}GΨ
∗
q{QQ̄}G ,

where λ∗ = T,L is the intermediate gluon polarisation, s, s′ and l,m are the spin indices

of the initial and final light quark, respectively, and the averaging over these indices in

the quark in the initial state is performed explicitly. Here, since there are no shifts in

positions of the projectile quark induced by interactions with the t-channel gluon from the

target nucleon, the effective dipole cross section Σ is the same as in Eq. (2.12) and it is

thus convenient to keep the distribution amplitude for the gluon bremsstrahlung off the

projectile light quark ΦqG∗ in momentum representation, i.e.

ΦL
qG∗(α, π⃗) =

√
αs

2(1 − α)Q

π⃗2 + α2m2
q
(ηsQ)

† ηs
′

Q , (2.16)

ΦT
qG∗(α, π⃗) =

√
αs (η

s
Q)

† (2− α)(e⃗∗ · π⃗) + imqα2(n⃗× e⃗∗) · σ⃗ − iα(π⃗ × e⃗∗) · σ⃗
π⃗2 + α2m2

q
ηs

′

Q ,(2.17)

for longitudinally (L) and transversely (T) polarised gluon G∗
a with polarisation vector

e⃗∗(λ∗ = ±1), respectively. Then, in Eq. (2.15) the total distribution amplitude Ψq{QQ̄}G is
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Figure 3. Dominating gluon shadowing contributions to the non-relativistic color singlet C-odd
heavy quark pair {QQ̄}1+ production with a soft gluon γ ≪ 1 (upper two lines) and amplitudes for
q → q + γ fluctuation (bottom line).

Under the above conditions one can derive the amplitudes for inclusive production of

heavy quark {QQ̄} pair separately in color-singlet 1± and color-octet 8± states in association

with soft gluon Gb in impact parameter representation in factorised form

Ã(s⃗, r⃗, ρ⃗) =

∫

d2k

(2π)2
d2κ

(2π)2
d2k3
(2π)2

A(k⃗, κ⃗, k⃗3) e
−ik⃗s⃗−iκ⃗r⃗−ik⃗3ρ⃗ , (2.6)

Ã1−(s⃗, r⃗, ρ⃗) =
i

2
ΦQQ̄(r⃗,β)Φ

1−
QG(r⃗, ρ⃗,β) δ

i
j
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c−1
∑

d=1

fdbaĈ
(d)(s⃗, ρ⃗) ,

Ã1+(s⃗, r⃗, ρ⃗) =
i

2
ΦQQ̄(r⃗,β)Φ

1+
QG(r⃗, ρ⃗,β) δ

i
j

N2
c−1
∑

d=1

ddbaĈ
(d)(s⃗, γρ⃗) ,

Ã8−(s⃗, r⃗, ρ⃗) =
3

2
ΦQQ̄(r⃗,β)Φ
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QG(r⃗, ρ⃗,β) (τg)

i
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N2
c−1
∑

d=1

fdbedaegĈ
(d)(s⃗, ρ⃗) ,

Ã8+(s⃗, r⃗, ρ⃗) = −
3

2
ΦQQ̄(r⃗,β)Φ

8+
QG(r⃗, ρ⃗,β) (τg)

i
j

N2
c−1
∑

d=1

fdbefaegĈ
(d)(s⃗, ρ⃗) ,

where the limit small QQ̄ dipole and soft final gluon is adopted, i.e. |r⃗| ∼ m−1
Q ≪ |ρ⃗| ∼

|s⃗| ∼ λ−1, γ ≪ β, and do not expand!!!

Φ1−
QG(r⃗, ρ⃗,β) = Φ8−

QG(r⃗, ρ⃗,β) = ΦQG(ρ⃗+ βr⃗)− ΦQG(ρ⃗− β̄r⃗) ≃ r⃗ · ∇⃗ρΦQG(ρ⃗) , (2.7)

Φ1+
QG(r⃗, ρ⃗,β) =

1

2

{ 1

β̄
ΦQG(ρ⃗+ βr⃗) +

1

β
ΦQG(ρ⃗− β̄r⃗)

}

≃
1

2ββ̄
ΦQG(ρ⃗) ,

Φ8+
QG(r⃗, ρ⃗,β) = ΦQG(ρ⃗+ βr⃗) + ΦQG(ρ⃗− β̄r⃗)− 2ΦQG(ρ⃗) ≃ (2β − 1)r⃗ · ∇⃗ρΦQG(ρ⃗) ,
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color-singlet {QQ̄}1 pair onto a vector J/ψ or Υ state is often taken in a similar form as

to DIS γ → QQ̄ wave function such that

Ψ
λJ/ψ
QQ̄→J/ψ

(β, ρ⃗ ) ≃ (3.1)

J/ψ, ψ′, Υ

χc,b

Σ1− = Σ8− = Σ8+ =
9

4
σq̄q(ρ) , Σ1+ =

5

4
σq̄q(γρ) .

+

Figure 5.

4 Numerical results vs data

5 Summary
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The 3× 3 matrices T
(l)
abd(ij) in (A.3) act in the color space of the c̄c quarks, and the

indexes i, j correspond to the c and c̄, respectively

T
(1)
abd = τaτdτb, T

(2)
abd = τbτdτa, T

(3)
abd = τaτbτd,

T
(4)
abd = τdτbτa, T

(5)
abd = τdτaτb, T

(6)
abd = τbτaτd,

T
(7)
abd = i

N2
c −1∑

e=1
febdτaτe, T

(8)
abd = i

N2
c −1∑

e=1
fedbτeτa, T

(9)
abd = i

N2
c −1∑

e=1
fadeτeτb,

T
(10)
abd = i

N2
c −1∑

e=1
fadeτbτe, T

(11)
abd = i

N2
c −1∑

e=1
fabeτeτd ,

T
(12)
abd = i

N2
c −1∑

e=1
fabeτdτe, T

(13)
abd = i

N2
c −1∑

e,g=1
fabefedgτg,

T
(14)
abd = i

N2
c −1∑

e,g=1
fadefebgτg, T

(15)
abd = i

N2
c −1∑

e,g=1
febdfaegτg. (A.8)

Here λa = τa/2 are the Gell-Mann matrices.
Note that the matrices T

(l)
abd are not independent, but connected by linear relations (we

skip the indexes abd),

T (3) − T (1) + T (7) = 0, T (5) − T (1) + T (9) = 0,
T (4) − T (2) + T (8) = 0, T (6) − T (2) + T (10) = 0,
T (13) − T (11) + T (13) = 0, T (13) + T (14) + T (15) = 0,
T (15) − T (7) + T (8) = 0, T (14) − T (10) + T (9) = 0. (A.9)

The c-quark spinors ξ in (A.3) are defined in (11); {X} is the set of variables describing
the state X; the 15 vertex functions Γ̂l read

Γ̂1 = Û1(k⃗1,α1)V̂1(k⃗23,α2,α3),

Γ̂2 = V̂2(k⃗13,α1,α3)Û2(k⃗2,α2),

Γ̂3 = −α1Û1(k⃗1,α1)V̂1(k⃗23 − α3k⃗T ,α2,α3),

Γ̂4 = −α2V̂2(k⃗13 − α3k⃗T ,α1,α3)Û2(k⃗2,α2),

Γ̂5 = −α2α3Û1(k⃗1 − k⃗T ,α1)V̂1(k⃗23,α2,α3),

Γ̂6 = −α1α3V̂2(k⃗13,α1,α3)Û2(k⃗2 − k⃗T ,α2),

Γ̂7 = −α1Û1(k⃗1,α1)V̂1(k⃗23 + α2k⃗T ,α2,α3),

Γ̂8 = −α2V̂2(k⃗13 + α1k⃗T ,α1,α3)Û2(k⃗2,α2),

Γ̂9 = −α2α3Û1(k⃗1 − α1k⃗T ,α1)V̂1(k⃗23,α2,α3),

Γ̂10 = −α1α3V̂2(k⃗13,α1,α3)Û2(k⃗2 − α2k⃗T ,α2),

Γ̂11 = α3Û0(k⃗12 + α1k⃗T ,α1,α2)V̂0(k⃗3),
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Note that the matrices T

(l)
abd are not independent, but connected by linear relations (we

skip the indexes abd),

T (3) − T (1) + T (7) = 0, T (5) − T (1) + T (9) = 0,
T (4) − T (2) + T (8) = 0, T (6) − T (2) + T (10) = 0,
T (13) − T (11) + T (13) = 0, T (13) + T (14) + T (15) = 0,
T (15) − T (7) + T (8) = 0, T (14) − T (10) + T (9) = 0. (A.9)

The c-quark spinors ξ in (A.3) are defined in (11); {X} is the set of variables describing
the state X; the 15 vertex functions Γ̂l read

Γ̂1 = Û1(k⃗1,α1)V̂1(k⃗23,α2,α3),

Γ̂2 = V̂2(k⃗13,α1,α3)Û2(k⃗2,α2),

Γ̂3 = −α1Û1(k⃗1,α1)V̂1(k⃗23 − α3k⃗T ,α2,α3),

Γ̂4 = −α2V̂2(k⃗13 − α3k⃗T ,α1,α3)Û2(k⃗2,α2),

Γ̂5 = −α2α3Û1(k⃗1 − k⃗T ,α1)V̂1(k⃗23,α2,α3),

Γ̂6 = −α1α3V̂2(k⃗13,α1,α3)Û2(k⃗2 − k⃗T ,α2),

Γ̂7 = −α1Û1(k⃗1,α1)V̂1(k⃗23 + α2k⃗T ,α2,α3),

Γ̂8 = −α2V̂2(k⃗13 + α1k⃗T ,α1,α3)Û2(k⃗2,α2),

Γ̂9 = −α2α3Û1(k⃗1 − α1k⃗T ,α1)V̂1(k⃗23,α2,α3),

Γ̂10 = −α1α3V̂2(k⃗13,α1,α3)Û2(k⃗2 − α2k⃗T ,α2),

Γ̂11 = α3Û0(k⃗12 + α1k⃗T ,α1,α2)V̂0(k⃗3),
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Dipole approach vs NLO QCD: Drell-Yan
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dipole approach NLO pQCD 
parton model

longitudinal momentum fractions of the projectile (target) parton, x1 (x2), can be expressed
in terms of Lorentz invariant scalar products as

x1 =
2P2 · q

s
; x2 =

2P1 · q
s

, (2)

where P µ
1 (P µ

2 ) is the projectile (target) four momentum, qµ is the four momentum of the
dilepton, q2 = M2 > 0, and xF is the Feynman-x, xF = x1 − x2.

For most qualitative descriptions, it is sufficient to consider the DY process in terms of
the lowest order annihilation process, Eq. (1). Calculations with Eq. (1), however, under-
estimate measured DY cross sections by an overall factor. It is necessary to employ the
NLO framework for the DY process, in order to make quantitative predictions, see [11] for a
review. In addition, the DY cross section differential in the dileptons transverse momentum
receives huge corrections from higher order processes. Indeed, to lowest order, one would
not expect dileptons with large transverse momentum q⊥, in contrast to what is observed
in experiment. Even though the occurrence of perturbatively large transverse momenta can
be explained in NLO, it is not straightforward to calculate the shape of the q⊥-distribution
in the parton model. A resummation of large logarithms in q⊥/M [12] or alternatively the
introduction of an intrinsic transverse momentum [13] is necessary to avoid the divergence
of the differential cross section at q⊥ = 0.

In the parton model, all nonperturbative effects are parameterized in the parton distri-
bution functions qf , q̄f , which evolve according to the DGLAP evolution equations. For
DY in nuclear collisions, the parton distribution functions of the proton are simply replaced
by empirical nuclear parton distribution functions [14]. This approach does not explain the
dynamical origin of the nuclear effects

Figure 1: In the target rest frame, DY dilepton production looks like
bremsstrahlung. A quark or an antiquark from the projectile hadron scat-
ters off the target color field (denoted by the shaded circles) and radiates
a massive photon, which subsequently decays into the lepton pair. The
photon decay is not shown. The photon can be radiated before or after
the quark (antiquark) scatters.

Nuclear effects, effects from higher orders in perturbation theory, as well as other possible
nonperturbative effects, are more readily treated when the Drell-Yan process is viewed in
the target rest frame. Note that although cross sections are Lorentz invariant, the partonic
interpretation of high energy scattering processes does depend on the reference frame. In the
rest frame of the target, the production mechanism for high mass continuum dileptons looks

3

like bremsstrahlung [3, 4], see Fig. 1. In the high energy limit, when one can neglect terms
that are suppressed by a factor 1/energy, each of the two graphs factorizes into a production
vertex for the virtual photon times an amplitude for scattering a quark off the target. These
scattering amplitudes combine in the squared matrix element in exactly the same way as
in DIS, which makes it possible to express the DY cross section in terms of the same cross
section σN

qq̄ for scattering a qq̄-dipole off a nucleon (N) as in low-xBj DIS,

dσ(qN → γ∗X)

d ln α
=

∫
d2ρ |Ψγ∗q(α, ρ)|2 σN

qq̄(αρ, x) . (3)

Here, α is the light-cone momentum fraction the virtual photon takes away from its parent
quark, and ρ is the transverse separation between γ∗ and final quark. The electromagnetic
radiation, q → γ∗q, is described by the light-cone wavefunction Ψγ∗q(α, ρ), see Eqs. (A.18)
– (A.20), which can be calculated perturbatively. Summation over photon polarizations is
understood in Eq. (3). The dipole cross section σN

qq̄ is of nonperturbative origin and has to be
taken from phenomenology. The energy scale x of the dipole cross section will be discussed
in the next section. A detailed derivation of Eq. (3) is given in the appendix.

Using a phenomenological parameterization for the dipole cross section in Eq. (3) is a
very economical way to account for higher order and nonperturbative effects. The dipole
approach can even be applied at low values of M where perturbative QCD is not valid [15]. It
was found in a recent analysis [10] that most of E772 DY data (except some points at low M)
are reasonably well described in the dipole approach without introducing an arbitrary overall
normalization factor. In addition it was found that the transverse momentum distribution
does not diverge at q⊥ = 0, even without intrinsic transverse momentum.

We emphasize that the dipole approach does not describe an additional production mech-
anism for heavy dileptons. Rather, the two approaches are believed to describe the same
physics in different reference frames. Therefore, calculations in the NLO parton model and
in the dipole approach should give similar results for the DY cross section. This is what we
numerically check in this paper. In the following section, we compare numerical calculations
of the DY cross section (integrated over the transverse momentum of the dilepton) in both
approaches. In section 3, we also compare the predictions of dipole approach and parton
model for the DY transverse momentum distribution at RHIC.

2 Numerical comparison of the two approaches

In order to perform calculations that can be compared with experimental data, one has
to embed the partonic cross section, Eq. (3), into the hadronic environment. In the infinite
momentum frame, the momentum fraction of the projectile quark is x1, see Eq. (2). However,
when the scalar product defining x1 is evaluated in the target rest frame, one finds x1 = αz,
where z = x1/α is the momentum fraction of the incoming proton carried by the projectile
quark. The different meanings of x1 in the target rest frame and in the infinite momentum
frame is a manifestation of the frame dependence of partonic mechanisms. In the target rest
frame, x1 is the momentum fraction that the lepton pair takes from the projectile proton.

4

Thus, one obtains for the proton-nucleon DY cross section

d2σ(pN → l+l−X)

dM2dxF

=
αem

3πM2

x1

x1 + x2

∫ 1

x1

dα

α2

Nf∑

f=1

Z2
f

[
qf

(x1

α
, Q̃

)
+ q̄f

(x1

α
, Q̃

)]

×
∫

d2ρ |Ψγ∗q(α, ρ)|2 σN
qq̄(αρ, x) . (4)

We still need to know the scale Q̃ at which the projectile parton distributions are probed
and the energy x at which the dipole cross section enters. These quantities are not known
exactly, instead we have to rely on plausible arguments to determine their values. In order
to find Q̃, note that the transverse distances ρ that contribute to the DY cross section are
controlled by the extension parameter

η2 = (1 − α)M2 + α2m2
f . (5)

The numerically dominant term in the LC wavefunctions, Eqs. (A.18, A.19), is the one
that contains the Bessel function K1(ηρ). Since this function decays exponentially at large
arguments, the largest distances that can numerically contribute are of order ∼ 1/η. For
fluctuations with α → 1, these distances can become of the order of a typical hadronic radius,
in analogy to the aligned jet configurations in DIS [16]. On the other hand, the minimal value
of α is x1, so that the largest virtuality entering the calculation is Q̃2 = η2

max = (1− x1)M2.
We choose this quantity to be the hard scale at which the projectile parton distribution
is probed. The parton distribution functions (PDFs) are taken from CERNLIB [17]. The
quark mass is set to mf = 0 in all our calculations, see [10] for its numerical influence.

For the quark density of the projectile, we employ the leading order parameterization that
corresponds to the NLO parameterization used in the parton model calculation. This means
e.g. we use CTEQ5L in the dipole approach when comparing it with a NLO parton model
calculation using CTEQ5M. One should use leading order PDFs in the dipole approach,
because they are scheme independent and have a probabilistic interpretation.

The energy scale x of the dipole cross section in Eq. (4) is determined from the analogy
to DIS. In DIS, the argument of the dipole cross section is xBj = Q2/W 2, where Q is
the virtuality of the photon and W is the γ∗-proton cm energy. Therefore, we choose
x = M2/ŝ = αx2, where ŝ = sx1/α is the quark-proton cm energy squared.

Note that in the previous analysis [10], M2 and x2, instead of Q̃2 and x, were used. The
different choice of scales in this paper has the effect of increasing the cross section by a factor
of up to 2 for dilepton mass M ∼ 4 GeV. This is mostly due to the different choice of Q̃2.
Using αx2 instead of x2 is only a ∼ 10% effect at x2 < 0.1. These uncertainties vanish at
larger masses, M ∼ 8 GeV.
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Figure 2: Calculations in the dipole approach to DY and its modifica-
tion Eq. (9) compared to NLO parton model results at fixed target energy
(
√

s = 38.8 GeV). The CTEQ5M parameterization [22] is used for the
parton model calculation. The data are from E772 [23]. The curves and
data for the different mass bins have been rescaled for better visibility. In
all calculations, none of the free parameters of the dipole approach were
adjusted to DY data. Only DIS data have been used.
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Dipole approach predictions effectively account 
for higher order QCD corrections!
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”Bremsstrahlung” component

Basis for heavy flavour production in the dipole picture 

Gauge-invariant sub-sets of diagrams

+

+ +

+=

(1) (2)

(3) (4) (5)

Figure 4. Heavy quark pair production in association with a forward quark: “Bramsstrahlung”
(upper line) vs “Fusion” mechanism (bottom line).

The differential cross section of the process q + p → q + {QQ̄}Gb +X is then given by

dσ

d lnα dβ d ln γ
=

∫

d2π⃗

(2π)2

∫

d2rd2ρ |Ψq{QQ̄}G(α,β, γ, π⃗, r⃗, ρ⃗)|
2 Σ(β, γ, r⃗, ρ⃗) , (2.15)

|Ψq{QQ̄}G|
2 =

1

3

1

2

∑

λ∗,f

∑

s,s′

∑

µ,µ̄

Nc
∑

l,m,i,j=1

N2
c−1
∑

b=1

Ψq{QQ̄}GΨ
∗
q{QQ̄}G ,

where λ∗ = T,L is the intermediate gluon polarisation, s, s′ and l,m are the spin indices

of the initial and final light quark, respectively, and the averaging over these indices in

the quark in the initial state is performed explicitly. Here, since there are no shifts in

positions of the projectile quark induced by interactions with the t-channel gluon from the

target nucleon, the effective dipole cross section Σ is the same as in Eq. (2.12) and it is

thus convenient to keep the distribution amplitude for the gluon bremsstrahlung off the

projectile light quark ΦqG∗ in momentum representation, i.e.

ΦL
qG∗(α, π⃗) =

√
αs

2(1 − α)Q

π⃗2 + α2m2
q
(ηsQ)

† ηs
′

Q , (2.16)

ΦT
qG∗(α, π⃗) =

√
αs (η

s
Q)

† (2− α)(e⃗∗ · π⃗) + imqα2(n⃗× e⃗∗) · σ⃗ − iα(π⃗ × e⃗∗) · σ⃗
π⃗2 + α2m2

q
ηs

′

Q ,(2.17)

for longitudinally (L) and transversely (T) polarised gluon G∗
a with polarisation vector

e⃗∗(λ∗ = ±1), respectively. Then, in Eq. (2.15) the total distribution amplitude Ψq{QQ̄}G is

– 9 –

The remaining 1+ state has a special status since its production cross section vanishes as

∝ γ2 at γ → 0 and is given by an interplay of small γ and large ρ in the dipole cross section.

The effective distribution amplitudes in Eq. (2.11) ΨQQ̄G are then defined as

Ψ1±

QQ̄G(β, γ, r⃗, ρ⃗) =
1√
3
δabδ

i
j ΦQQ̄(r⃗,β)Φ

1±
QG(r⃗, ρ⃗,β) ,

Ψ8−

QQ̄G(β, γ, r⃗, ρ⃗) =
√
3

N2
c−1
∑

g=1

dabg(τg)
i
j ΦQQ̄(r⃗,β)Φ

8−
QG(r⃗, ρ⃗,β) ,

Ψ8+

QQ̄G(β, γ, r⃗, ρ⃗) = i
√
3

N2
c−1
∑

g=1

fabg(τg)
i
j ΦQQ̄(r⃗,β)Φ

8+
QG(r⃗, ρ⃗,β) .

Consider now associated QQ̄ state and forward parton (quark and gluon) production.

2.3 Quarkonia production in association with a forward high-p⊥ hadron

At high-p⊥, the initial-state gluon could likely arise from a small vicinity of a valence/sea

quark or a gluon in the projectile proton. The latter parton may thus get a high-p⊥ kick in

opposite direction and give rise to a leading hadron possibly measurable in a forward detec-

tor. The lowest order contribution to this process is then given by the light (sea/valence)

quark or gluon splitting q/g → q/g +G∗
a and where the virtual gluon G∗

a gives rise to the

heavy {QQ̄} + Gb system. Furthermore, we are interested in the kinematic configuration

when the projectile parton acquires a significant transverse momentum and loses only a

small fraction of its initial momentum α ≪ 1. This parton then fragments into a jet with

a forward leading hadron (e.g. pion) taking most of the initial parton momentum. If we

require in addition that this hadron should be detected in the fragmentation region of the

projectile proton, then the initial parton should carry a significant momentum fraction of

the projectile proton and thus the corresponding cross section will be dominated essentially

by quark density function peaked at large xq ! 1. Also, since this process is expected to

be studied at not too high energies at RHIC, the valence quark densities strongly dominate

over the gluon one and thus the process q → q + G∗
a should be sufficient for our purposes

here.

Let p1,2 are the 4-momenta of the projectile and final parent light quark, respectively.

Then introduce the relative momentum π⃗ between the final parent parton, p2, and the

center-of-gravity of the produced Q̄Q+Gb system

π⃗ = αp⃗2 − ᾱk⃗ , k⃗ =
∑

i

k⃗i . (2.13)

At sufficiently large quark p⃗2 ≫ λ the recoiled QQ̄ + Gb system has k⃗ ≃ −p⃗2 such that

π⃗ ≃ p⃗2 without a loss of generality. The radiated gluon G∗
a has a space-like virtuality given

by

(p2 − p1)
2 ≡ −Q2 , Q2 =

π⃗2 + α2m2
q

ᾱ
, (2.14)

where the consituent quark mass mq can be taken to be ∼ 300 MeV.
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gluon antishadowing. We provide predictions of nuclear effects plotted in Fig. 5 for open
charm production in p–W collisions at the energy of the HERA-B experiment.
In the same Section 4 we provide predictions for shadowing for charm production in

heavy ion collisions at the energies of RHIC (
√

s = 200 GeV) and LHC (
√

s = 5500 GeV)
depicted in Figs. 6 and 7.We found quite a sizeable contribution from the higher twist effect
of shadowing related to size of the c̄c pair. A most interesting observation is nearly identical
shadowing effects predicted for minimal bias and central collisions, what has been, indeed,
observed recently by the PHENIX experiment at RHIC. We identify the source of such a
coincidence, and emphasize that this observation should not be interpreted as an indication
for weak nuclear effects. Indeed, Figs. 7 demonstrate a substantial nuclear shadowing even
for RHIC.
In Section 5 we consider the case of medium high energies when noshadowing is

possible since the coherence length is short. Then the c̄c pair is produced momentarily
on a bound nucleon and then undergoes final state interactions. On the contrary to wide
spread believe, we argue that these interactions lead to absorption related to an unusual
configuration in which the heavy flavored hadron is created.
We summarize the results of calculations and observations in the concluding Section 6.

2. Light-cone dipole formalism for charm production

2.1. NN collisions

For the sake of concreteness in what follows we consider charm c̄c pair production,
unless otherwise specified. Our results are easily generalized to the case of heavier quarks.
The parton model treats this process in the rest frame of the produced pair as glue–glue
fusion,GG → c̄c. At the same time, in the rest frame of the nucleus it looks like interaction
of a c̄c fluctuationwhich has emerged from a projectile gluon. Thus, the problem is reduced
to the process,

G + N → c̄c + X. (5)

In the LC dipole approach the cross section is represented by a sum over different Fock
components of the projectile gluon whose LC wave functions squared are convoluted
with proper dipole cross sections. The cross section corresponding to Feynman graphs
depicted in Fig. 1 was calculated in [22] and it was found that it needs a dipole cross
section corresponding to a three-body system Gc̄c. This observation follows the general
prescription [10] that the partonic process a → bc is related to the dipole cross section

Fig. 1. Perturbative QCD mechanism of charm production in a gluon–nucleon collision. Only the lowest c̄c Fock
component of the gluon is taken into account.
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LC momenta

2.1 Gluon-initiated QQ̄ pair production

To the leading order, the typical hard subprocesses describing non-relativistic QQ̄ pair

production due to gluon splitting into QQ̄ dipole in the color backgroun field of the target

proton (or nucleus) in target rest frame are depicted in Fig. 2. Such diagrams provide a

dominant contribution to inclusive heavy flavor production, both in open charm and P-wave

quarkonia production channels which have been extensively studied in the dipole framework

in Refs. [? ]. Here we wish to provide a brief outlook into these results which will be used

later.

Let k1,2 be the 4-momenta of the produced heavy quarks Q and Q̄ (Q = c, b) with mass

mQ, respectively, determined by dominant Sudakov components as1

k1 ≃ β̄k − κ , k2 ≃ βk + κ ,

in terms of the relative κ⃗ and total k 4-momenta of the QQ̄ dipole, and longitudinal

(anti)quark fractions taken off the parent gluon, 0 < β < 1 and β̄ = 1 − β. Note, in

non-relativistic case the quarkonia wave function is peaked at β = 1/2. Furthermore, the

corresponding transverse momenta

κ⃗ = β̄k⃗2 − βk⃗1 , k⃗ = k⃗1 + k⃗2 , (2.1)

are used as independent kinematical variables in what follows. In this section the parent

gluon is considered to be transversely polarised unless noted otherwise.

Since C-transformation cannot be applied to colored states, instead, one employs parity

relative to interchange of (non-color) spatial and spin indices of the Q and Q̄ quarks. Then

negative parity w.r.t. such an interchange corresponds to QQ̄ state with positive C-parity

and denoted as {QQ̄}1− for color singlet and {QQ̄}8− for color octet, and vice verca.

Production of colorless C-odd 1+ is forbidden in reaction G+G → QQ̄ by selection rules,

so in order to study S-wave quarkonia production such as J/ψ and Υ one has to account

for production of higher Fock states, e.g. G+G → QQ̄+G.

In what follows, we employ the corresponding framework previously developed for in-

clusive Drell-Yan and DIS processes in color dipole formalism in Refs. [? ? ]. To start

with, one writes the amplitude in the impact parameter representation as follows (c.f. e.g.

Ref. [? ])

Â(s⃗, r⃗) =
1

(2π)4

∫

d2q⃗ d2κ⃗ Â(q⃗, κ⃗) e−iq⃗·s⃗−iκ⃗·r⃗ . (2.2)

The amplitude of the gluon exchange in a gluon-target scattering summed over target

valence quarks j = 1, 2, 3 reads

B̂(Gp → {X}) =
∑

j,a

τ (j)a ⟨f |γ̂a(R⃗j)|i⟩ ,

1Sub-dominant components are readily eliminated from the forthcoming expressions by the use of mo-

mentum conservation.
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d2q⃗ d2κ⃗ Â(q⃗, κ⃗) e−iq⃗·s⃗−iκ⃗·r⃗ . (2.2)

The amplitude of the gluon exchange in a gluon-target scattering summed over target

valence quarks j = 1, 2, 3 reads

B̂(Gp → {X}) =
∑

j,a

τ (j)a ⟨f |γ̂a(R⃗j)|i⟩ ,

1Sub-dominant components are readily eliminated from the forthcoming expressions by the use of mo-

mentum conservation.

– 3 –

where R⃗j is the impact parameter of a quark j, and the matrices γ̂a are the operators in

coordinate and color space for the target quarks

γ̂a(R⃗j) =
∑

i

τ (i)a χ(R⃗j − s⃗i) , χ(s⃗) =

√
αs

2π
√
6

∫

d2k
FGN→X(k⃗, {X})

k2 + λ2
e−ik⃗s⃗ ,

in terms of a non-perturbative gluon-nucleon coupling FGN→X , a gluon mass λ and the

transverse distance between t-th valence quark in the target nucleon and its center of gravity

s⃗i. The total amplitude for inclusive Ga + p → {QQ̄}Gb + X production in gluon-target

scattering is given by the sum of three contributions in Fig. 2
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where ΦQQ̄(r⃗,β) is the distribution amplitude of the Ga → QQ̄ splitting. The target gluon
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⟨Â†Â⟩|3q⟩1

one performs an averaging over color indices and polarisation λ∗ of the incoming projectile

gluon Ga as well as valence quarks and their relative coordinates in the target nucleon |3q⟩1.
The color averaging over the target provides

⟨τ (j)a · τ (j
′)

a′ ⟩|3q⟩1 =

{

1
6δaa′ : j = j′

− 1
12δaa′ : j ̸= j′

Finally, averaging over quark relative coordinates s⃗i in the initial nucleon wave function

and summing over all intermediate states leads to

∑

X

⟨i|γ̂a(⃗bk)γ̂a′ (⃗bl)|i⟩|3q⟩1 =
3

4
δaa′S(⃗bk, b⃗l) ,

where S(⃗bk, b⃗l) is a scalar function which can be expressed in terms of the quark-target

scattering amplitude χ(r⃗) and the proton wave function. This function is directly related
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]

. (2.3)

Following to this scheme one obtains the amplitude squared |A|2 in analytic form as a linear

combination of the dipole cross sections for different dipole separations, with coefficients

given by color structure and distribution amplitudes.
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The universal dipole 
cross section

???The result is

σ(G+ p → cc̄+X) =
∑

µµ̄

∫ 1

0
dβ

∫

d2rσ3(r,β, x2) |ΦQQ̄(r⃗,β)|
2 , (2.4)

where

σ3(r,β, x2) =
9

8

(

σq̄q(β̄r, x2) + σq̄q(βr, x2)
)

−
1

8
σq̄q(r, x2) , x2 =

M2
cc̄

2mpEG
, (2.5)

in the target rest frame.

2.2 Gluon shadowing and color singlet C-odd QQ̄ states

From the perturbation theory point of view corrections arising from an additional (initial

and final state) gluon radiation off G+G → QQ̄ subprocess is formally of the higher order

in QCD coupling but can be rather important, especially, in the limit of soft radiated gluon

(a constituent mass λ ≃ ΛQCD as an infrared regulator). Such effects can be consistently

incorporated in the dipole framework (for more details, see e.g. Ref. [? ]). In production

of QQ̄ pairs in color singlet C-even 1− as well as color octet C-odd 8− and C-even 8+

states considered above these corrections are of the next-to-leading order and contribute to

such important effect as the gluon shadowing in P -wave quarkonia and open heavy flavor

production discussed e.g. in Ref. [? ]. However, the color singlet C-odd QQ̄ state giving

rise to such important S-wave quarkonia states as J/ψ, ψ′ and Υ can only be produced

when, at least, three gluons are coupled to the quark line so diagrams with three-gluon

couplings are automatically excluded in this case. Thus, the considered QQ̄+G production

subprocess is of the leading order for the S-wave quarkonia and should be discussed in

detail.

Consider the Ga+Gd → {QQ̄}+Gb subprocess in the limit of small momentum fraction

γ and transverse momentum k⃗3 of the radiated soft gluon Gb, i.e. in the limit γ ≫ β and

|⃗k3| ∼ λ≪ |⃗k1,2|. The invariant mass of the produced {QQ̄}+Gb system

M2 ≃
m2

Q + k⃗ 2
1

β̄
+

m2
Q + k⃗ 2

2

β
+
λ2 + k⃗ 2

3

γ

serves as a hard scale of the process. In general, its amplitude is given by the sum of fifteen

different diagrams which were shown and thoroughly discussed in Appendix of Ref. [? ]

in the zeroth order in small γ → 0. In this limit, however, only 1− and 8± states acquire

non-zeroth contributions whereas 1+ amplitude vanishes linearly with small γ and thus

have not been discussed before. The leading order contributions to the 1+ amplitude linear

in γ ≪ 1 come from the diagrams presented in Fig. 3 (upper two lines). Other diagrams
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Q-jet pT distribution in pp collisions: the dipole formula

The inclusive hadronic pp → QQ̄ +X cross section reads

dσpp
incl

dY dαd2pT
= G(x1, µ

2)
dσ(Gp → Q̄Q+X)

dαd2pT
, (0.1)

where the differential Gp → QQ̄ +X cross section is

d3σ(G → QQ̄ +X)

dαd2pT
=

1

(2π)2

∫

d2r1d
2r2e

ipT ·(r⃗1−r⃗2)Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2)σeff(r⃗1, r⃗2,α)

(0.2)

and the projectile collinear gluon distribution in the incoming proton is

G(x1, µ
2) ≡ x1g(x1, µ

2) , x1,2 =
M√
s
e±Y . (0.3)

at the hard scale µ2 ≃ M2 being the invariant mass of the QQ̄ system defined as

µ2 ≃ M2
Q̄Q =

m2
Q + p2T
αᾱ

. (0.4)

In Eq. (0.2) the product of distribution amplitudes is

Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2) =

αs

(2π)2
[

m2
QK0(mQr1)K0(mQr2)

+(α2 + ᾱ2)m2
Q

r⃗1 · r⃗2
r1r2

K1(mQ r1)K1(mQ r2)

]

(0.5)

and the effective cross section is given by

σeff(r⃗1, r⃗2,α) =
9

16
σqq̄(αr⃗1) +

9

16
σqq̄(ᾱr⃗1) +

9

16
σqq̄(αr⃗2) +

9

16
σqq̄(ᾱr⃗2)

−
1

16
σqq̄(ᾱr⃗1 + αr⃗2)−

1

16
σqq̄(αr⃗1 + ᾱr⃗2)

−
1

2
σqq̄(α[r⃗1 − r⃗2])−

1

2
σqq̄(ᾱ[r⃗1 − r⃗2]) . (0.6)

The elementary ingredient is the dipole cross section which in the simplest GBW model is
given by

σq̄q(x, r⃗) = σ0

[

1− e
− r

2

R2
0(x)

]

≃ σ0
r2

R2
0(x)

, r2 ≪ R2
0(x) (0.7)

In the color transparency limit r2 ≪ R2
0(x) the effective dipole cross section simplifies to

σeff(r⃗1, r⃗2,α) ≈
σ0

R2
0(x)

[

α2 + ᾱ2 −
1

4
αᾱ

]

r⃗1 · r⃗2 , (0.8)
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R2
0(x)

[

α2 + ᾱ2 −
1

4
αᾱ

]

{

4m2
Qp

2
T

(m2
Q + p2T )

4
+ (α2 + ᾱ2)

2(m4
Q + p4T )

(m2
Q + p2T )

4

}

(0.9)
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1

4
αᾱ
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σqq̄(ᾱr⃗1) +

9

16
σqq̄(αr⃗2) +

9

16
σqq̄(ᾱr⃗2)
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αᾱ

]

r⃗1 · r⃗2 , (0.8)

which implies

d3σ(G → QQ̄ +X)

dαd2pT
=

αs

(2π)2
σ0

R2
0(x)

[

α2 + ᾱ2 −
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The dipole formula in momentum space

Integrating Eq. (2.23) over the quark transverse momentum pT one gets

dσ(Gp→ Q̄Q+X)

dα
=

∫

d2r |A|2(r⃗; r⃗) ,

|A|2(r⃗; r⃗) =
[

σ1−

3 (r⃗,α) + σ8−

3 (r⃗,α) + σ8+

3 (r⃗,α)
]

|ΦQQ̄(r⃗,α)|2 , (2.27)

in terms of the corresponding effective three-body dipole cross sections for inclusive (singlet
+ octet) Q̄Q pair production

σ1−

3 =
1

8
σq̄q(r⃗) , σ8−

3 =
5

16
σq̄q(r⃗) , σ8+

3 =
9

16

[

2σq̄q(αr⃗) + 2σq̄q(ᾱr⃗)− σq̄q(r⃗)
]

,

∑

S=1−,8±

σS
3 ≡ σqqG(α, r⃗) =

9

8

(

σq̄q(ᾱr⃗) + σq̄q(αr⃗)
)

−
1

8
σq̄q(r⃗) . (2.28)

and the G→ Q̄Q transition amplitude squared

|ΦQQ̄(r⃗,α)|2 ≡
∑

λ∗=±1

Tr
[

Φ̂Q̄Q(r⃗,α) · Φ̂
†
Q̄Q

(r⃗,α)
]

=
αs

(2π)2

[

m2
QK

2
0 (mQ r) + (α2 + ᾱ2)m2

QK
2
1 (mQ r)

]

. (2.29)

Therefore the total cross section for the process G+ p→ QQ̄ can be expressed as follows

σ(G+ p→ QQ̄+X) =

∫

dα

∫

d2r|ΦQQ̄(r⃗,α)|2σqqG(α, r⃗) (2.30)

as derived previously in Refs. [16? ].
In the perturbative QCD language, the universal dipole cross section is related to the

unintegrated gluon PDF F(x, κ⃗2
⊥) as follows

σq̄q(r⃗, x) =
4π

3

∫

d2κ⊥

κ⃗4
⊥

(1− eiκ⃗⊥·r⃗)αsF(x, κ⃗2
⊥) . (2.31)

This relation allows to obtain an alternative expression for the single quark spectrum in the
momentum space, which is given by

d3σ(G→ QQ̄ +X)

d(lnα)d2pT
=

1

6π

∫

d2κ⊥

κ4
⊥

α2
sF(x, κ2

⊥)× (2.32)

{[

9
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H0(α, ᾱ, pT )−

9

4
H1(α, ᾱ, pT , κ) +H2(α, ᾱ, pT , κ) +

1

8
H3(α, ᾱ, pT , κ)

]

+ [α←→ ᾱ]

}

,

where

H0(α, ᾱ, pT ) =
m2

Q + (α2 + ᾱ2)p2T
(p2T +m2

Q)
2

, (2.33)

H1(α, ᾱ, pT , κ) =
m2

Q + (α2 + ᾱ2)p⃗T · (p⃗T − ακ⃗)

[(p⃗T − ακ⃗)2 +m2
Q](p

2
T +m2

Q)
, (2.34)

H2(α, ᾱ, pT , κ) =
m2

Q + (α2 + ᾱ2)(p⃗T − ακ⃗)2

[(p⃗T − ακ⃗)2 +m2
Q]

2
, (2.35)
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[(p⃗T + ακ⃗)2 +m2
Q][(p⃗T − ᾱκ⃗)2 +m2

Q]
. (2.36)
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H0(α, ᾱ, pT ) =
m2

Q + (α2 + ᾱ2)p2T
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H3(α, ᾱ, pT , κ) =
m2
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The inclusive hadronic pp → QQ̄ +X cross section reads

dσpp
incl

dY dαd2pT
= G(x1, µ

2)
dσ(Gp → Q̄Q+X)

dαd2pT
, (0.1)

where the differential Gp → QQ̄ +X cross section is

d3σ(G → QQ̄ +X)

dαd2pT
=

1

(2π)2

∫

d2r1d
2r2e

ipT ·(r⃗1−r⃗2)Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2)σeff(r⃗1, r⃗2,α)

(0.2)

and the projectile collinear gluon distribution in the incoming proton is

G(x1, µ
2) ≡ x1g(x1, µ

2) , x1,2 =
M√
s
e±Y . (0.3)

at the hard scale µ2 ≃ M2 being the invariant mass of the QQ̄ system defined as

µ2 ≃ M2
Q̄Q =

m2
Q + p2T
αᾱ

. (0.4)

In Eq. (0.2) the product of distribution amplitudes is

Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2) =

αs

(2π)2
[

m2
QK0(mQr1)K0(mQr2)

+(α2 + ᾱ2)m2
Q

r⃗1 · r⃗2
r1r2

K1(mQ r1)K1(mQ r2)

]

(0.5)

and the effective cross section is given by

σeff(r⃗1, r⃗2,α) =
9

16
σqq̄(αr⃗1) +

9

16
σqq̄(ᾱr⃗1) +

9

16
σqq̄(αr⃗2) +

9

16
σqq̄(ᾱr⃗2)

−
1

16
σqq̄(ᾱr⃗1 + αr⃗2)−

1

16
σqq̄(αr⃗1 + ᾱr⃗2)

−
1

2
σqq̄(α[r⃗1 − r⃗2])−

1

2
σqq̄(ᾱ[r⃗1 − r⃗2]) . (0.6)

The elementary ingredient is the dipole cross section which in the simplest GBW model is
given by

σq̄q(x, r⃗) = σ0

[

1− e
− r

2

R2
0(x)

]

≃ σ0
r2

R2
0(x)

, r2 ≪ R2
0(x) (0.7)

In the color transparency limit r2 ≪ R2
0(x) the effective dipole cross section simplifies to

σeff(r⃗1, r⃗2,α) ≈
σ0

R2
0(x)

[

α2 + ᾱ2 −
1

4
αᾱ

]

r⃗1 · r⃗2 , (0.8)

which implies

d3σ(G → QQ̄ +X)

dαd2pT
=
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(2π)2
σ0

R2
0(x)
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α2 + ᾱ2 −
1

4
αᾱ

]

{

4m2
Qp

2
T

(m2
Q + p2T )

4
+ (α2 + ᾱ2)

2(m4
Q + p4T )

(m2
Q + p2T )

4

}

(0.9)

2

The inclusive hadronic pp → QQ̄ +X cross section reads

dσpp
incl

dY dαd2pT
= G(x1, µ

2)
dσ(Gp → Q̄Q+X)

dαd2pT
, (0.1)

where the differential Gp → QQ̄ +X cross section is

d3σ(G → QQ̄ +X)

dαd2pT
=

1

(2π)2

∫

d2r1d
2r2e

ipT ·(r⃗1−r⃗2)Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2)σeff(r⃗1, r⃗2,α)

(0.2)

and the projectile collinear gluon distribution in the incoming proton is

G(x1, µ
2) ≡ x1g(x1, µ

2) , x1,2 =
M√
s
e±Y . (0.3)

at the hard scale µ2 ≃ M2 being the invariant mass of the QQ̄ system defined as

µ2 ≃ M2
Q̄Q =

m2
Q + p2T
αᾱ

. (0.4)

In Eq. (0.2) the product of distribution amplitudes is

Ψ∗
QQ̄(α, r⃗1)ΨQQ̄(α, r⃗2) =

αs

(2π)2
[

m2
QK0(mQr1)K0(mQr2)

+(α2 + ᾱ2)m2
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Q-jet pT distribution in pp collisions vs LHC data

approach is based on the standard DGLAP equations, disregarding possible non-linear QCD
effects.

In Fig. 2 we present a comparison between the GBW and KMR models for the un-
integrated gluon distribution as a function of the longitudinal momentum fraction x (left
panel) and the transverse momenta κ of the gluon (right panel) for fixed values of κ2 and
x, respectively. We have that these models exhibit different x and κ dependence, with the
GBW gluon being suppressed at large values of κ and enhanced at small momenta. The
suppression at large transverse momenta in the GBW model is directly associated to the
fact that this model does not consider the parton evolution.
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FIG. 4: Comparison between predictions obtained using the r2-approximation and different models
for the unintegrated gluon distribution.

III. NUMERICAL RESULTS VS DATA

The results are presented in Figs. 3 - 6. Some comments:

• The results were obtained assuming mb = 4.5 GeV and µ2 = M2
QQ̄

. However, different
choices were tested with the resulting modifications being small.

• The effect of the pT -shift is only presented for the KMR predictions. However, the
impact of the shift in the other models is very similar. The shift was implemented by
the modification of the momentum in the integrand of the spectra: pT → pT +∆pT ,
with ∆pT = 0.1(0.2) · pT . We can improve this analysis using a model for ∆pT (y, pT ).

• Calculations performed in Ref. [23] using the parton reggeization formalism indicated
that the description of the b-jet data at large pT is only possible if a contribution
associated to the fragmentation of gluons into bottom is included.

IV. SUMMARY

Appendix A: ??
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FIG. 6: Transverse momentum distribution for the b-jet production integrated over the rapidity

range |y| ≤ 2.1 considering distinct models for the unintegrated gluon distribution.

[12] P. Hagler, R. Kirschner, A. Schafer, L. Szymanowski and O. Teryaev, Phys. Rev. D 62, 071502
(2000).

[13] L. V. Gribov, E. M. Levin and M. G. Ryskin, Phys. Rept. 100, 1 (1983).
[14] E. M. Levin and M. G. Ryskin, Phys. Rept. 189, 267 (1990).

[15] Yu. M. Shabelski and A. G. Shuvaev, Phys. Atom. Nucl. 69, 314 (2006).
[16] N. N. Nikolaev, G. Piller and B. G. Zakharov, “Quantum coherence in heavy flavor production

on nuclei,” Z. Phys. A 354, 99 (1996).
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Quarkonia: Color-Singlet vs Color-Octet mechanisms
M. Butenschoen, B. Kniehl’10

TABLE 1. NLO fit results for the J/ψ COLDMEs.

⟨OJ/ψ (1S[8]0 )⟩ (4.76±0.71)×10−2 GeV3

⟨OJ/ψ (3S[8]1 )⟩ (2.65±0.91)×10−3 GeV3

⟨OJ/ψ (3P[8]0 )⟩ (−1.32±0.35)×10−2 GeV5

FIT TO HERA AND TEVATRON DATA

The pT distribution of J/ψ hadroproduction measured
experimentally flattens at pT < 3 GeV due to nonper-
turbative effects, a feature that cannot be faithfully de-
scribed by fixed-order perturbation theory.We, therefore,
exclude the CDF data points with pT < 3 GeV from
our fit. We have checked that our fit results depend only
feebly on the precise location of this cutoff. The fit re-
sults for the CO LDMEs corresponding to our default
NLO NRQCD predictions are collected in Table 1. In
Figs. 1(a) and (b), the latter (solid lines) are compared
with the CDF [12] and H1 [13, 14] data, respectively.
For comparison, also the default predictions at LO

(dashed lines) as well as those of the CSM at NLO
(dot-dashed lines) and LO (dotted lines) are shown. In
order to visualize the size of the NLO corrections to
the hard-scattering cross sections, the LO predictions are
evaluated with the same LDMEs.
We observe from Fig. 1(c) that the 3P[8]J short-distance

cross section of hadroproduction receives sizable NLO
corrections that even turn it negative at pT ! 7 GeV.
This is, however, not problematic because a particular
CO contribution represents an unphysical quantity de-
pending on the NRQCD scale µΛ and the choices of the
renormalization scheme and is entitled to become nega-
tive as long as the full cross section remains positive.
In contrast to the situation at LO, the line shapes of

the 1S[8]0 and 3P[8]J contributions significantly differ at
NLO. Therefore we can now, in our combined HERA-
Tevatron fit, independently determine ⟨OJ/ψ (1S[8]0 )⟩ and
⟨OJ/ψ (3P[8]0 )⟩. Notice that ⟨OJ/ψ (3P[8]0 )⟩ comes out neg-
ative, which is not problematic for the same reasons as
explained above for the short distance cross sections.

PREDICTIONS FOR FURTHER DATA

We observe from Fig. 2 that our NLO NRQCD predic-
tions nicely describe the pT distributions from PHENIX
[15] (a) and CMS [16] (b) as well as theW distributions
from H1 [13, 14] (c), with most of the data points falling
inside the yellow (light shaded) error band. The NLO
NRQCD prediction of the z distribution (d) agrees with
the H1 data in the intermediate z range, but its slope ap-
pears to be somewhat too steep at first sight. However,
the contribution due to resolved photoproduction, which
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FIGURE 1. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to the CDF
[12] and H1 [13, 14] input data.
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FIGURE 2. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to RHIC [15],
CMS [16], and H1 [13, 14] data not included in the fit.

is not yet included here, is expected to fill the gap in the
low-z range, precisely where the resolved contribution
is peaked. Near the high-z endpoint region, the NRQCD
expansion is understood to break down, and the NRQCD
series could be resummed via the introduction of univer-
sal shape functions [17], possibly in the context of soft
collinear effective theory [18].

TABLE 1. NLO fit results for the J/ψ COLDMEs.

⟨OJ/ψ (1S[8]0 )⟩ (4.76±0.71)×10−2 GeV3

⟨OJ/ψ (3S[8]1 )⟩ (2.65±0.91)×10−3 GeV3

⟨OJ/ψ (3P[8]0 )⟩ (−1.32±0.35)×10−2 GeV5

FIT TO HERA AND TEVATRON DATA

The pT distribution of J/ψ hadroproduction measured
experimentally flattens at pT < 3 GeV due to nonper-
turbative effects, a feature that cannot be faithfully de-
scribed by fixed-order perturbation theory.We, therefore,
exclude the CDF data points with pT < 3 GeV from
our fit. We have checked that our fit results depend only
feebly on the precise location of this cutoff. The fit re-
sults for the CO LDMEs corresponding to our default
NLO NRQCD predictions are collected in Table 1. In
Figs. 1(a) and (b), the latter (solid lines) are compared
with the CDF [12] and H1 [13, 14] data, respectively.
For comparison, also the default predictions at LO

(dashed lines) as well as those of the CSM at NLO
(dot-dashed lines) and LO (dotted lines) are shown. In
order to visualize the size of the NLO corrections to
the hard-scattering cross sections, the LO predictions are
evaluated with the same LDMEs.
We observe from Fig. 1(c) that the 3P[8]J short-distance

cross section of hadroproduction receives sizable NLO
corrections that even turn it negative at pT ! 7 GeV.
This is, however, not problematic because a particular
CO contribution represents an unphysical quantity de-
pending on the NRQCD scale µΛ and the choices of the
renormalization scheme and is entitled to become nega-
tive as long as the full cross section remains positive.
In contrast to the situation at LO, the line shapes of

the 1S[8]0 and 3P[8]J contributions significantly differ at
NLO. Therefore we can now, in our combined HERA-
Tevatron fit, independently determine ⟨OJ/ψ (1S[8]0 )⟩ and
⟨OJ/ψ (3P[8]0 )⟩. Notice that ⟨OJ/ψ (3P[8]0 )⟩ comes out neg-
ative, which is not problematic for the same reasons as
explained above for the short distance cross sections.
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We observe from Fig. 2 that our NLO NRQCD predic-
tions nicely describe the pT distributions from PHENIX
[15] (a) and CMS [16] (b) as well as theW distributions
from H1 [13, 14] (c), with most of the data points falling
inside the yellow (light shaded) error band. The NLO
NRQCD prediction of the z distribution (d) agrees with
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FIGURE 1. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to the CDF
[12] and H1 [13, 14] input data.
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FIGURE 2. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to RHIC [15],
CMS [16], and H1 [13, 14] data not included in the fit.

is not yet included here, is expected to fill the gap in the
low-z range, precisely where the resolved contribution
is peaked. Near the high-z endpoint region, the NRQCD
expansion is understood to break down, and the NRQCD
series could be resummed via the introduction of univer-
sal shape functions [17], possibly in the context of soft
collinear effective theory [18].
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FIT TO HERA AND TEVATRON DATA

The pT distribution of J/ψ hadroproduction measured
experimentally flattens at pT < 3 GeV due to nonper-
turbative effects, a feature that cannot be faithfully de-
scribed by fixed-order perturbation theory.We, therefore,
exclude the CDF data points with pT < 3 GeV from
our fit. We have checked that our fit results depend only
feebly on the precise location of this cutoff. The fit re-
sults for the CO LDMEs corresponding to our default
NLO NRQCD predictions are collected in Table 1. In
Figs. 1(a) and (b), the latter (solid lines) are compared
with the CDF [12] and H1 [13, 14] data, respectively.
For comparison, also the default predictions at LO

(dashed lines) as well as those of the CSM at NLO
(dot-dashed lines) and LO (dotted lines) are shown. In
order to visualize the size of the NLO corrections to
the hard-scattering cross sections, the LO predictions are
evaluated with the same LDMEs.
We observe from Fig. 1(c) that the 3P[8]J short-distance

cross section of hadroproduction receives sizable NLO
corrections that even turn it negative at pT ! 7 GeV.
This is, however, not problematic because a particular
CO contribution represents an unphysical quantity de-
pending on the NRQCD scale µΛ and the choices of the
renormalization scheme and is entitled to become nega-
tive as long as the full cross section remains positive.
In contrast to the situation at LO, the line shapes of

the 1S[8]0 and 3P[8]J contributions significantly differ at
NLO. Therefore we can now, in our combined HERA-
Tevatron fit, independently determine ⟨OJ/ψ (1S[8]0 )⟩ and
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FIGURE 1. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to the CDF
[12] and H1 [13, 14] input data.
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FIGURE 2. NLO NRQCD predictions of J/ψ hadro- and
photoproduction resulting from the fit compared to RHIC [15],
CMS [16], and H1 [13, 14] data not included in the fit.

is not yet included here, is expected to fill the gap in the
low-z range, precisely where the resolved contribution
is peaked. Near the high-z endpoint region, the NRQCD
expansion is understood to break down, and the NRQCD
series could be resummed via the introduction of univer-
sal shape functions [17], possibly in the context of soft
collinear effective theory [18].

2 J.P. Lansberg: On the mechanisms of heavy-quarkonium hadroproduction

and need to be considered on the same footing as the
CSM cut. A first evaluation [21] of the latter incorpo-
rating constraints for the low- and large-PT (the scaling
limit) region give rates significantly larger than the usual
CSM cut. Moreover, low-PT data from RHIC are very well
described without need of re-summing initial-gluon contri-
butions. However, as expected [21], this approach under-
estimates the cross-section at large values of PT and other
mechanisms have to be considered in this region.

In section 2, we present the latest results available
on QCD corrections to hadroproduction of J/ ,  0 and
⌥ (nS). In section 3, we discuss how the s-channel cut
contribution to the CS channel can be evaluated and we
present a comparison with data. In section 4, we briefly
review other recent theoretical results. In section 5, we
show how the study of the production of quarkonia in as-
sociation with a heavy-quark pair of the same flavour may
be used to disentangle between the di↵erent mechanisms
proposed to explain quarkonium production. Finally, we
present our conclusions and outlooks.

2 QCD corrections

More than ten years ago now, the very first NLO calcula-
tion on quarkonium production to date became available.
It was centred on unpolarised photoproduction of  [23]
via a colour-singlet (CS) transition. Later on, NLO cor-
rections were computed for direct �� collisions [24,25] for
which it had been previously shown [26] that the LO CS
contribution alone was not able to correctly reproduce the
measured rates by DELPHI [27]. NLO corrections have
also recently been computed for the integrated cross sec-
tion of two J/ -production observables at the B-factories:
J/ + cc̄ [28] and J/ + ⌘c [29]. As of today, only the
full colour-octet (CO) contributions to direct �� collisions
have been evaluated at NLO for PT > 0 [24,25].

At the LHC and the Tevatron,  and ⌥ production
proceeds most uniquely via gluon-fusion processes. The
corresponding cross section at NLO (↵4

S for hadroproduc-
tion processes) are significantly more complicated to com-
pute than the former ones and became only available one
year ago [30,19]. We shall discuss them in the next section.

The common feature of all these calculations is the sig-
nificant size of the NLO corrections, in particular for large
transverse momenta PT of the quarkonia for the computa-
tions of di↵erential cross sections in PT . In �p an pp colli-
sions, QCD corrections to the CS production indeed open
new channels with a di↵erent behaviour in PT which raise
substantially the cross section in the large-PT region.

Let us discuss this shortly for the gluon-fusion pro-
cesses which dominate the yield in pp. If we only take
into account the CS transition to 3S1 quarkonia, it is well
known that the di↵erential cross section at LO as a func-
tion of PT scale like P�8

T [6]. This is expected from con-
tributions coming from the typical “box” graphs of Fig. 1
(a). At NLO [30,19], we can distinguish three noticeable
classes of contributions. First, we have the loop contribu-

tions as shown on Fig. 1 (b), which are UV divergent3
but as far their PT scaling is concerned, they would still
scale like P�8

T . Then we have the t-channel gluon ex-
change graphs like on Fig. 1 (c). They scale like P�6

T .
For su�ciently large PT , their smoother PT behaviour
can easily compensate their ↵S suppression compared to
the LO (↵3

S) contributions. They are therefore expected
to dominate over the whole set of diagrams up to ↵4

S .
To be complete, we should not forget the ↵4

S contribu-
tions from Q+QQ̄ (where Q is of the same flavour as the
quarks in Q). Indeed, one subset of graphs for Q + QQ̄
is fragmentation-like (see Fig. 1 (d)) and scales like P�4

T .
Such contributions are therefore expected to dominate at
large PT , where the smoother decrease in PT is enough
to compensate the suppression in ↵S and the one due to
the production of 4 heavy quarks. As mentioned above, in
practice [19], this happens at larger PT than as expected
before [20]. We shall come back to this channel later. In
the next sections, we shall discuss the impact of the NLO
corrections to the CS channels and then a first computa-
tion including the a priori dominant ↵5

S contributions i.e.
topologies illustrated by Fig. 1 (e) and (f).
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To what concerns the CO contributions, the e↵ects of
NLO (here ↵4

S) contributions are expected to be milder.
3 These divergences can be treated as usual using dimen-

sional regularisation, see e.g. [30].
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quarks in Q). Indeed, one subset of graphs for Q + QQ̄
is fragmentation-like (see Fig. 1 (d)) and scales like P�4

T .
Such contributions are therefore expected to dominate at
large PT , where the smoother decrease in PT is enough
to compensate the suppression in ↵S and the one due to
the production of 4 heavy quarks. As mentioned above, in
practice [19], this happens at larger PT than as expected
before [20]. We shall come back to this channel later. In
the next sections, we shall discuss the impact of the NLO
corrections to the CS channels and then a first computa-
tion including the a priori dominant ↵5

S contributions i.e.
topologies illustrated by Fig. 1 (e) and (f).
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Fig. 1. Representative diagrams contributing to 3S
1

hadropro-
duction via Colour-Singlet channels at orders ↵3

S (a), ↵4

S

(b,c,d), ↵5

S (e,f) and via Colour-Octet channels at orders ↵3

S

(g,h). The quark and antiquark attached to the ellipsis are
taken as on-shell and their relative velocity v is set to zero.

To what concerns the CO contributions, the e↵ects of
NLO (here ↵4

S) contributions are expected to be milder.
3 These divergences can be treated as usual using dimen-

sional regularisation, see e.g. [30].
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For other channels, whose LO contribution is at ↵3
S or ↵4

S ,
the cut would produce logarithms of sij/smin

ij . Those can
be large. Nevertheless, they can be factorised over their
corresponding LO contribution, which scales at most as
P�6

T . The sensitivity on smin
ij is thus expected to come to

nothing at large PT .

Thanks to the exact NLO computation of [30], such
a procedure can be tested for the process pp ! Q + jj.
For instance, the di↵erential cross section for the real ↵4

s

corrections, ⌥ (1S) + jj production, is displayed in Fig. 3
(Left). The grey band illustrates the sensitivity to the
invariant-mass cut smin

ij between any pairs of light partons
when it is varied from 0.5m2

b to 2m2
b . The yield becomes

insensitive to the value of smin
ij as PT increases, and it re-

produces very accurately the di↵erential cross section at
NLO accuracy. In the charmonium case, the similar con-
tributions from pp !  0 + jj matches even better, for
lower PT and with a smaller dependence of smin

ij the full
NLO computation, as seen on Fig. 3 (Right).
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Fig. 4. Comparison between di↵erential cross sections at NLO
and NNLO? accuracy as function as function of the Q trans-
verse momentum PT at the Tevatron (

p
s = 1.96 TeV) and the

data for (a) ⌥ (1S) [7] & (b) direct  (2S) [43].

We now turn to the results concerning the real con-
tribution at ↵5

S , which we refer to as NNLO?. We used
the approach described in Ref. [42], which allows the au-
tomatic generation of both the subprocesses and the cor-
responding scattering amplitudes. The di↵erential cross-
sections for ⌥ (1S) and  (2S) are shown in Fig. 4. The red
band (referred to as NNLO?) corresponds to the sum of
the NLO yield and the Q + jjj contributions. In the ⌥
case, the contribution from ⌥ with three light partons fills
the gap between the data and the NLO calculation, while
for the  (2S) there seems to remain a small gap between
the NNLO? band and the preliminary CDF data [43]. In
both cases, the ↵5

S contribution is very sensitive to the
choice of the renormalisation scale, µr. This is expected:
for moderate values of the PT , the missing virtual part
might be important, whereas at large PT , the yield is dom-
inated by Born-level ↵5

S-channels from which we expect a
large dependence on µr. Even though the uncertainty on
the normalisation is rather large, the prediction of the PT

shape is quite stable and agrees well with the behaviour
found in the data [7,8,43].
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Fig. 5. Polarisation of (a) ⌥ (nS) ((b)  (2S)) directly produced
as function of its transverse momentum PT at the Tevatron.

Concerning the polarisation, the direct yield is pre-
dicted to be mostly longitudinal, see Fig. 5 (a). However,
existing experimental data for ⌥ are centred on the prompt

yield [7,44]. In order to draw further conclusions, we would
need first to gain some insights on NLO corrections to P -
wave production at PT > 0 . Yet, since the yield from
P -wave feed-down is likely to give transversely polarised
⌥ , the trend is more than encouraging. To what concerns

Lansberg
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(∝ r2
T ) for the dipole cross section is used. For the coefficient in front of r2

T we employ the

expression obtained by the first term of Taylor expansion of Eq. (9):

“r2
T ”: σq̄q(rT , s) =

σ0(s)

r2
0(s)

· r2
T . (12)

2.2 Charmonium wave functions

The spatial part of the cc̄ pair wave function satisfying the Schrödinger equation

(
−

∆

mc
+ V (r)

)
Ψnlm(r⃗ ) = Enl Ψnlm(r⃗ ) (13)

is represented in the form

Ψ(r⃗ ) = Ψnl(r) · Ylm(θ,ϕ) , (14)

where r⃗ is 3-dimensional cc̄ separation, Ψnl(r) and Ylm(θ,ϕ) are the radial and orbital parts

of the wave function. The equation for radial Ψ(r) is solved with the help of the program

[13]. The following four potentials V (r) have been used (see Fig. 3):
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2.3 Light-cone wave functions for the bound states

As has been mentioned, the lowest Fock component |cc̄⟩ in the infinite momentum frame

is not related by simple Lorentz boost to the wave function of charmonium in the rest

frame. This makes the problem of building the light-cone wave function for the lowest

|cc̄⟩ component difficult, no unambiguous solution is yet known. There are only recipes

in the literature, a simple one widely used [19], is the following. One applies a Fourier

transformation from coordinate to momentum space to the known spatial part of the non-

relativistic wave function (14), Ψ(r⃗ ) ⇒ Ψ(p⃗ ), which can be written as a function of the

effective mass of the cc̄, M2 = 4(p2 + m2
c), expressed in terms of light-cone variables

M2(α, pT ) =
p2

T + m2
c

α(1 − α)
. (18)
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Figure 4: The radial part of the wave function Ψnl(r) for the 1S and 2S states
calculated with four different potentials (see text).

In order to change integration variable pL to the light-cone variable α one relates them via

M , namely pL = (α−1/2)M(pT ,α). In this way the cc̄ wave function acquires a kinematical

factor

Ψ(p⃗ ) ⇒
√

2
(p2 + m2

c)
3/4

(p2
T + m2

c)
1/2

· Ψ(α, p⃗T ) ≡ Φψ(α, p⃗T ) . (19)

This procedure is used in [20] and the result is applied to calculation of the amplitudes

(1). The result is discouraging, since the ψ′ to J/ψ ratio of the photoproduction cross sections

are far too low in comparison with data. However, the oversimplified dipole cross section

σqq̄(rT ) ∝ r2
T has been used, and what is even more essential, the important ingredient of

Lorentz transformations, the Melosh spin rotation, has been left out. The spin transforma-

tion has also been left out in the recent publication [21] which repeats the calculations of

[20] with a more realistic dipole cross section which levels off at large separations. This leads

to suppression of the node-effect (less cancelation) and enhancement of Ψ′ photoproduction.
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Schrodinger equation for spatial  ccbar wave function
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..from the rest frame to the LC frame Melosh spin rotation

Nevertheless, the calculated ψ′ to J/ψ ratio is smaller than the data by a factor of two.

The 2-dimensional spinors χc and χc̄ describing c and c̄ respectively in the infinite mo-

mentum frame are known to be related via the Melosh rotation [22, 19] to the spinors χ̄c

and χ̄c̄ in the rest frame:

χ
c

= R̂(α, p⃗T )χc ,

χ
c̄

= R̂(1 − α,−p⃗T )χc̄ , (20)

where the matrix R(α, p⃗T ) has the form:

R̂(α, p⃗T ) =
mc + αM − i [σ⃗ × n⃗] p⃗T√

(mc + αM)2 + p2
T

. (21)

Since the potentials we use in section 2.2 contain no spin-orbit term, the cc̄ pair is in

S-wave. In this case spatial and spin dependences in the wave function factorize and we

arrive at the following light cone wave function of the cc̄ in the infinite momentum frame

Φ(µ,µ̄)
ψ (α, p⃗T ) = U (µ,µ̄)(α, p⃗T ) · Φψ(α, p⃗T ) , (22)

where

U (µ,µ̄)(α, p⃗T ) = χµ†
c R̂†(α, p⃗T ) σ⃗ · e⃗ψ σy R̂∗(1 − α,−p⃗T ) σ−1

y χ̃µ̄
c̄ (23)

and χ̃c̄ is defined in (4).

Note that the wave function (22) is different from one used in [23, 24, 25] where it was

assumed that the vertex ψ → cc̄ has the structure ψµ ū γµ u like the for the photon γ∗ → cc̄.

The rest frame wave function corresponding to such a vertex contains S wave and D wave.

The weight of the latter is dictated by the structure of the vertex and cannot be justified by

any reasonable nonrelativistic potential model for the cc̄ interaction.

Now we can determine the light-cone wave function in the mixed longitudinal momentum

- transverse coordinate representation:

Φ(µ,µ̄)
ψ (α, r⃗T ) =

1

2 π

∫
d2p⃗T e−ip⃗T r⃗T Φ(µ,µ̄)

ψ (α, p⃗T ) . (24)
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of RHIC and LHC.

2 The light-cone dipole formalism for charmonium pro-
duction off a nucleon

The important advantage of the light-cone (LC) dipole approach is its simplicity in the
calculations of nuclear effects. It has been suggested two decades ago [30] that quark con-
figurations (dipoles) with fixed transverse separations are the eigenstates of interaction in
QCD. Therefore the amplitude of interaction with a nucleon is subject to eikonalization
in the case of a nuclear target. In this way one effectively sums the Gribov’s inelastic
corrections in all orders.

Assuming that the produced c̄c pair is sufficiently small so that multigluon vertices can
be neglected we can write the cross section for G N → χX) as (see Fig. 1),

σ(GN → χX) =
π

2(N2
c − 1)

∑

a,b

∫ d2kT

k4
T

αs(k
2
T )F(x, k2

T )
∣∣∣Mab(k⃗T )

∣∣∣
2

, (3)

where F(x, k2
T ) = ∂G(x, k2

T )/∂(ln k2
T ) is the unintegrated gluon density, G(x, k2

T ) = x g(x, k2
T )

(x = M2
χ/ŝ); Mab(k⃗T ) is the fusion amplitude G G → χ with a, b being the gluonic indexes.

χ

N

G
χ

G

N

Figure 1: Perturbative QCD mechanism of production of the χ states in
a gluon-nucleon collision.

In the rest frame of the nucleon the amplitude can be represented in terms of the c̄c LC
wave functions of the projectile gluon and ejectile charmonium,

Mab(k⃗T ) =
δab√

6

1∫

0

dα
∫

d2rT

∑

µ̄µ

(
Φµ̄µ

χ (r⃗T ,α)
)∗ [

eik⃗T ·r⃗1 − eik⃗T ·r⃗2

]
Φµ̄µ

G (r⃗T ,α) , (4)

where
r⃗1 = (1 − α) r⃗T , r⃗2 = −α⃗ r⃗T . (5)

For the sake of simplicity we separate the normalization color factors
〈
c̄c, {8}a

∣∣∣ and

⟨c̄c, {1}| from the LC wave function of the gluon and charmonium respectively, and calculate
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3. Gluon shadowing

The phenomenological dipole cross section which enters the exponent in Eq. (27)
is fitted to DIS data. Therefore, it includes effects of gluon radiation which are in
fact the source of rising energy (1/x) dependence of the σN

q̄q(r, x). However, a simple
eikonalization in Eq. (27) corresponds to the Bethe–Heitler approximation assuming that
the whole spectrum of gluons is radiated in each interaction independently of other
rescatterings. This is why the higher order terms in expansion of (27) contain powers
of the dipole cross section. However, gluons radiated due to interaction with different
bound nucleons can interfere leading to damping of gluon radiation similar to the Landau–
Pomeranchuk [23] effect in QED. Therefore, the eikonal expression Eq. (27) needs
corrections which are known as gluon shadowing.
Nuclear shadowing of gluons is a leading twist effect since the cloud of massless gluons

has a larger size than the source which is a small size c̄c pair. Gluon shadowing is treated
by the parton model in the infinite momentum frame of the nucleus as a result of glue–glue
fusion. On the other hand, in the nuclear rest frame the same phenomenon is expressed in
terms of the Glauber like shadowing for the process of gluon radiation [24]. In impact
parameter representation one can easily sum up all the multiple scattering corrections
which have the simple eikonal form [13]. Besides, one can employ the well developed
color dipole phenomenology with parameters fixed by data from DIS. Gluon shadowing
was calculated employing the light-cone dipole approach for DIS [18] and production of
charmonia [6], and a substantial deviation from QCD factorization was found. Here we
calculate gluon shadowing for c̄c pair production.

3.1. Associated gluon radiation, GN → c̄cGX

First of all, one should develop a dipole approach for gluon radiation accompanying
production of a c̄c pair in gluon–nucleon collision. Then nuclear effects can be easily
calculated via simple eikonalization.
The amplitude of the process GN → c̄cG is illustrated in Fig. 2. According to the

general prescription [10] the dipole cross section which enters the factorized formula
for the process of parton a-nucleon collision leading to multiparton production, aN →
b + c + · · · + dX, is the cross section for the colorless multiparton ensemble |ābc . . .d⟩.
The same multiparton dipole cross section is responsible for nuclear shadowing. Indeed, in
the case of the process GN → c̄cX it was the cross section σ3 Eq. (23) which correspond
to a state |c̄cG⟩ interacting with a nucleon.

Fig. 2. Perturbative QCD mechanism for production of a c̄c pair and a gluon in a gluon–nucleon collision. The
upper blob includes different attachments of the gluons as is depicted in Fig. 8.

work in progress

Color-Singlet chic -> J/psi production in the dipole picture

Direct LO chic production NLO correction to direct chic 
production

Direct LO chic->J/psi Direct LO chic->J/psi
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Fig. 8. Born graphs contributing to c̄c pair production accompanied with radiation of a gluon.

Here

x = M2(c̄, c,G)

s
, (A.5)

M2
c̄cG = m2

c + k21
α1

+ m2
c + k22
α2

+ λ2 + k23
α3

, (A.6)

where k⃗1, k⃗2, k⃗3 and α1,α2,α3 are the transverse momenta and fractions of the initial light-
cone momentum of the projectile gluon carried by the produced c̄, c and G (see Fig. 2),
respectively, and

k⃗T = k⃗1 + k⃗2 + k⃗3. (A.7)

2.1 Gluon-initiated QQ̄ pair production

To the leading order, the typical hard subprocesses describing non-relativistic QQ̄ pair

production due to gluon splitting into QQ̄ dipole in the color backgroun field of the target

proton (or nucleus) in target rest frame are depicted in Fig. 2. Such diagrams provide a

dominant contribution to inclusive heavy flavor production, both in open charm and P-wave

quarkonia production channels which have been extensively studied in the dipole framework

in Refs. [? ]. Here we wish to provide a brief outlook into these results which will be used

later.

Let k1,2 be the 4-momenta of the produced heavy quarks Q and Q̄ (Q = c, b) with mass

mQ, respectively, determined by dominant Sudakov components as1

k1 ≃ β̄k − κ , k2 ≃ βk + κ ,

in terms of the relative κ⃗ and total k 4-momenta of the QQ̄ dipole, and longitudinal

(anti)quark fractions taken off the parent gluon, 0 < β < 1 and β̄ = 1 − β. Note, in

non-relativistic case the quarkonia wave function is peaked at β = 1/2. Furthermore, the

corresponding transverse momenta

κ⃗ = β̄k⃗2 − βk⃗1 , k⃗ = k⃗1 + k⃗2 , (2.1)

are used as independent kinematical variables in what follows. In this section the parent

gluon is considered to be transversely polarised unless noted otherwise.

Since C-transformation cannot be applied to colored states, instead, one employs parity

relative to interchange of (non-color) spatial and spin indices of the Q and Q̄ quarks. Then

negative parity w.r.t. such an interchange corresponds to QQ̄ state with positive C-parity

and denoted as {QQ̄}1− for color singlet and {QQ̄}8− for color octet, and vice verca.

Production of colorless C-odd 1+ is forbidden in reaction G+G → QQ̄ by selection rules,

so in order to study S-wave quarkonia production such as J/ψ and Υ one has to account

for production of higher Fock states, e.g. G+G → QQ̄+G.

In what follows, we employ the corresponding framework previously developed for in-

clusive Drell-Yan and DIS processes in color dipole formalism in Refs. [? ? ]. To start

with, one writes the amplitude in the impact parameter representation as follows (c.f. e.g.

Ref. [? ])

Â(s⃗, r⃗) =
1

(2π)4

∫

d2q⃗ d2κ⃗ Â(q⃗, κ⃗) e−iq⃗·s⃗−iκ⃗·r⃗ . (2.2)

The amplitude of the gluon exchange in a gluon-target scattering summed over target

valence quarks j = 1, 2, 3 reads

B̂(Gp → {X}) =
∑

j,a

τ (j)a ⟨f |γ̂a(R⃗j)|i⟩ ,

1Sub-dominant components are readily eliminated from the forthcoming expressions by the use of mo-

mentum conservation.
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(NLO) corrections for
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???The result is

σ(G+ p → cc̄+X) =
∑

µµ̄

∫ 1

0
dβ

∫

d2rσ3(r,β, x2) |ΦQQ̄(r⃗,β)|
2 , (2.4)

where

σ3(r,β, x2) =
9

8

(

σq̄q(β̄r, x2) + σq̄q(βr, x2)
)

−
1

8
σq̄q(r, x2) , x2 =

M2
cc̄

2mpEG
, (2.5)

in the target rest frame.

2.2 Gluon shadowing and color singlet C-odd QQ̄ states

From the perturbation theory point of view corrections arising from an additional (initial

and final state) gluon radiation off G+G → QQ̄ subprocess is formally of the higher order

in QCD coupling but can be rather important, especially, in the limit of soft radiated gluon

(a constituent mass λ ≃ ΛQCD as an infrared regulator). Such effects can be consistently

incorporated in the dipole framework (for more details, see e.g. Ref. [? ]). In production

of QQ̄ pairs in color singlet C-even 1− as well as color octet C-odd 8− and C-even 8+

states considered above these corrections are of the next-to-leading order and contribute to

such important effect as the gluon shadowing in P -wave quarkonia and open heavy flavor

production discussed e.g. in Ref. [? ]. However, the color singlet C-odd QQ̄ state giving

rise to such important S-wave quarkonia states as J/ψ, ψ′ and Υ can only be produced

when, at least, three gluons are coupled to the quark line so diagrams with three-gluon

couplings are automatically excluded in this case. Thus, the considered QQ̄+G production

subprocess is of the leading order for the S-wave quarkonia and should be discussed in

detail.

Consider the Ga+Gd → {QQ̄}+Gb subprocess in the limit of small momentum fraction

γ and transverse momentum k⃗3 of the radiated soft gluon Gb, i.e. in the limit γ ≫ β and

|⃗k3| ∼ λ≪ |⃗k1,2|. The invariant mass of the produced {QQ̄}+Gb system

M2 ≃
m2

Q + k⃗ 2
1

β̄
+

m2
Q + k⃗ 2

2

β
+
λ2 + k⃗ 2

3

γ

serves as a hard scale of the process. In general, its amplitude is given by the sum of fifteen

different diagrams which were shown and thoroughly discussed in Appendix of Ref. [? ]

in the zeroth order in small γ → 0. In this limit, however, only 1− and 8± states acquire

non-zeroth contributions whereas 1+ amplitude vanishes linearly with small γ and thus

have not been discussed before. The leading order contributions to the 1+ amplitude linear

in γ ≪ 1 come from the diagrams presented in Fig. 4 (upper two lines). Other diagrams

with real gluon emission off a quark different from that coupled to the t-channel gluon

turn out to be of a higher order in small γ ≪ β fraction and are thus suppressed in the

considering kinematics. Finally, we have omitted the diagrams of a bremsstrahlung type

where the target gluon is coupled to the projectile quark before or after gluon radiation

since these diagrams are suppressed by a high mass in the gluon propagator [? ]. Also, the

latter diagrams do not contribute to production of S-wave C-odd quarkonia states.
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such that C-odd states 8+ and 1+ are symmetric w.r.t. momenta of Q and Q̄, namely,

β ↔ β̄, r⃗ ↔ −r⃗, while C-even ones 8− and 1− are anti-symmetric. Function Ĉ(d)(s⃗, ρ⃗) is
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.
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It thus appears that 1− and 8± states get non-vanishing gluon shadowing corrections in

the limit γ → 0 governed by the soft scale ρ ≫ r which determines the size of effective

gluonic dipole while the QQ̄ dipole is vanishingly small. The gluonic dipole cross section

σGG differs from the quark one σq̄q by the Casimir factor 2N2
c /(N
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c − 1) = 9/4 for Nc = 3.
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the interference between the gluon-nucleon Gd + N → N∗ interaction amplitudes γ(d)(s⃗)

defined as
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Conclusions

✓   The dipole picture provides universal and robust means for studies  
      the heavy flavour production processes (open HF and quarkonia)  
      in both pp and pA collisions beyond QCD factorisation  

✓   Recent inclusive b-jets, D- and B-meson production data in pp collisions  
      at the LHC are well described in the framework of color dipole approach  
      which effectively but correctly accounts for perturbative QCD effects 

✓   Preliminary results on J/psi production exhibit a correct behaviour  
      with transverse momentum and a dominance of the CS mechanism  
      while chic data description at high pT’s requires an account for  
      an additional gluon radiation  

✓   Residual sensitivity to the modelling of the universal dipole cross section,  
      the fragmentation functions and quarkonia wave functions should  
      provide model-independent constraints on these important ingredients
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