

G.-F. Dalla Betta

Feb. 2, 2016

RD_FASE2: INFN-FBK Sensors

Gian-Franco Dalla Betta University of Trento and TIFPA INFN, Trento, Italy gianfranco.dallabetta@unitn.it

GOAL: development of new thin 3D and Planar Active Edge (PAE) pixel sensors on 6" p-type wafers at FBK:

- Technology and design to be optimized and qualified for extreme radiation hardness (2x10¹⁶ n_{eq} cm⁻²)
- Pixel layouts compatible with present (for testing) and future (RD53 65nm) FE chips of ATLAS and CMS

Strong sinergy with WP7 of AIDA2020

- Thin sensors on support wafer: SiSi or SOI → Substrate qualification
- Ohmic columns/trenches depth > active layer depth (for bias)
- Junction columns depth < active layer depth (for high V_{bd})
- Reduction of hole diameters to ~5 um
- Holes (at least partially) filled with poly-Si

Process Tests

ATLAS

Wafers

6" Si-Si silicon wafers (ICEMOS), 100±2μm and 130±2μm sensor layer thickness with ρ >3000 Ω cm (+500±10µm support wafer) Process

- n-on-p planar process
- three different p-spray doses Layout
- 10 ATLAS pixels (FEI4)
- 32 CMS pixels (PSI46)
- Many test structures

Test structures for SiSi DWB substrate qualification

TELL_ALO20_08055: 2+

TEL (_ALICE_CEOSS:

KLANK 2011. 22

ሻለ ሲነው ያህ የት ራሳ

Batch completed at FBK in Dec. 2014

Feb. 2, 2016

Summary of 2015 activity

4

- Tests on planar batch:
 - Good quality in terms of electrical characteristics (low defect density, low leakage current, low depletion voltage, high breakdown voltage)
 - Good efficiency and charge collection performance from test beam at FNAL Dec. 15 (before irradiation)
 - Deep diffusion of boron from LR substrate (~10 um)
- Successful technological tests for main steps of 3D:
 - Etching narrow (5 um) columns by DRIE
 - Two etchings from the same wafer side
 - Poly-Si filling of columns
 - Etching through oxide layer for SOI option
- Design and TCAD simulations

M. Meschini, INFN Firenze Spettri di Carica

 $\begin{array}{c} \mathsf{MPV} \ 100\mu \rightarrow 6400e^{-} \\ \mathsf{MPV} \ 130\mu \rightarrow 8000e^{-} \end{array}$

Carica media $100\mu \rightarrow 9000e^{-1}$ Carica media $130\mu \rightarrow 10600e^{-1}$

Efficienze >99.8% sul volume fiduciale, ottenuto escludendo tutti i pixel non funzionanti e richiedendo 8 pixel attivi intorno al pixel attraversato dalla traccia

di Trento

Etching test p-columns S. Ronchin, FBK

p-holes > 130 µm

70' SDE+10' HER

		Width at	Width at
Position	depth (um)	top	bottom
С	160	5.3	4.0
t	159	5,5	2.25
f	156	5,8	3.2
dx	157	5, 5?	2.9
SX	155	4.85	2.6

G.-F. Dalla Betta

p-holes > 100 μm 43' SDE + 10'HER

	depth	Width at	Width at
Position	(um)	top	bottom
С	117	4,7	3,2
t	117	4,4	3,2
f	114	4,7	3,2
Dx	115	5,2	3,2
Sx	114	4,8	2.4

G.-F. Dalla Betta Feb. 2, 2016 7 di Trento New 3D pixels: design and simulations Thickness = $150 \mu m$ 50 x 50 25 x 100 N+ col. depth = $130 \mu m$ **50 μm** 150 25 µm E 125 ^oixel capacitance 100 Sim. P col. L~28 um 75 50 µm Sim. .~35 um 50 N col. Bump -50x50 100 µm 25 pad -25x100 P col. 0 5 10 15 0 **Reverse Bias** [V] N col. 5 All designs assuming a column Pixel current [pA] Bump 4 diameter of 5 µm pad 3

2

1

0

0

-50x50

 -25×100

50

100

Reverse Bias [V]

150

200

- 50x50 design safe, 25x100 is difficult ... too little clearances (new ideas for bump pad to be tested)
- Capacitance compatible with RD53 specs
- Initial breakdown voltage high enough

- New 3-trap level "Perugia" model, D. Passeri et al. (doi:10.1016/j.nima.2015.08.039)
- 1 μ m thick (~2d) slice, with MIP vertical hits at several different points
- 20-ns integration of current signals, average, and normalization to injected charge
- Much better results than with previous trap model !
- Higher Signal Efficiency at lower V_{bias} in 25x100 (2E), as expected due to smaller L

G.-F. Dalla Betta Feb. 2, 2016 10 **3D Pixel Wafer Layout** di Trento **Final version** Many different pixel geometries 00 and pitch variations: STRIP **FE-I4** - 50 x 250 (2E) std - 50 x 50 (1E) - 25 x 100 (1E and 2E) 25 x 500 (1E) FE-I3 FC - 50 x 50 (1E) <u>ଭ୍ରାତ୍ତ୍ର୍ର୍ତ୍ର୍ର୍ର୍ର୍ର୍ର୍ର୍ର୍</u> RD – 25 x 100 (1E and 2E) RD53 STRIP PSI46 53 PSI46dig -I3 dig big 100 x 150 (2E and 3E) std - 50 x 50 (1E and 2E) FCP $-50 \times 100, 100 \times 100 (2E + 4E)$ - 50 x 100, 100 X 150 (2E + 6E) – 25 x 100 (1E and 2E) **FCP** - 30 x 100 (1E) **RD53** - 50 x 50 (1E) - 25 x 100 (1E) + Test structures (strip, diodes, etc) - 25 x 100 (2E)

Fabrication status at FBK

11

- First 3D batch (15 SiSi DWB wafers) aborted at the end of October 2015 due to problem with Boron doping of ohmic columns ...
- Four wafers (3D_rec) completed anyway to check all relevant process steps (under test)
- A new 3D batch (10 SiSi DWB wafers) re-launched in November 2015, now being completed:
 - 3 wafers 100µm thick, p-columns with poly "cap"
 - 2 wafers 100µm thick, p-columns without poly "cap"
 - 3 wafers 130µm thick, p-columns with poly "cap"
 - 2 wafers 130µm thick, p-columns without poly "cap"
- First two wafers ready this week ...

Fabrication at FBK (1)

P column etching/poly filling details

G.-F. Dalla Betta

With poly cap

Without poly cap

Fabrication at FBK (2)

P column etching/poly filling details (w/o poly cap)

G.-F. Dalla Betta

Column opening

Column end

G.-F. Dalla Betta

di Trento

S. Ronchin, FBK

0

NINE

- N |

8____

<u>*--</u>

8____

A few pictures from 3D_rec

- 4 wafers completed smoothly
- Good lithographical quality
- Tests confirm lack of ohmic doping

G.-F. Dalla Betta

15 Feb. 2, 2016

Back-Up slides

55 µm

Junction columns optimized for uniformity

G.-F. Dalla Betta

Poly-Si filling and 2nd DRIE

Reducing the hole diameter with poly-Si deposition to ease the 2nd DRIE on the same wafer side

First holes partially filled with poly-Si

Feb. 2, 2016

G.-F. Dalla Betta

Slim edges

- Slim edge concept based on multiple ohmic columns termination developed for IBL (~200 μ m) M. Povoli et al., JINST 7 (2012) C01015
- It can be made slimmer by reduced inter-electrode spacing (safely 75 - 100 μm, more aggressively down to ~50 μm)
- 3D guard rings also possible with similar dead area

→Different material quality ?

Guard Ring reverse currents on 3 wafers with 3 p-spray doses: Low Medium High (correct V_{bd} trend)

Test diode: C-V measurements

Measured at FBK

22

Depletion voltages:

• $V_{depl} \sim 16V$ for 130 μ m thick.

G.-F. Dalla Betta

V_{depl} ~ 20V for 100 μm thick.
do not scale with square of thickness

\rightarrow Different resistivities ...

Concentration profiles

- Doping 1 3 x 10¹² cm⁻³
- Thicknesses about 10 µm lower than the nominal values, compatible with Boron diffusion from support wafer and measurement limit (L_{debye})

Feb. 2, 2016

G.-F. Dalla Betta

Pixel sensors I-V measurements

23

UNEN

Feb. 2, 2016

Measured at INFN Firenze up to high voltage

