AMchip06 status

F. Crescioli

12/2/2016

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

AMchip06 Tests

- Internal fast self-test of the pattern bank
 - ▶ 50 chip tested
 - 8 chip with local defects (few localized patterns out of 128k not working)
 - 0 chip with severe defects (i.e. short circuit, non working IOs)
- "Run" mode testing
 - Power supply stability issues on the testbench
 - Zero errors run with 1.15 V, but not at target 1 V
 - Tests ongoing!

Test benches at LPNHE, INFN Milano

and soon INFN Frascati

Internal self-test

- Program the bank with data 1<<((i+j+k)%18) where i is a loop index, j is the pattern index and k bus index every 64 pattern location (i.e. pattern0 = pattern64 = pattern128 = ...,pattern1 = pattern64 = pattern127 = ..., ...)
- 2. Set the chip to threshold 1
- 3. Send data 1<<m on all buses, where m is a loop index
- 4. Send init and wait for all matched patterns to go through the output
- 5. Increase m and go to step 2 until m = 18
- 6. Increase i and go to step 1 until i = 18
- 7. Check the CRC32 value of the stream of data that went through the output

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Internal self-test

- The internal self-test is able to detect single-bit defects
 - If a bit doesn't match when stimulated or always match it will alter the patter sequence in output
 - CRC32 will not match the pre-computed one
- This test is programmable: we can test any range of patterns in the bank multiple of 64 (i.e. the whole chip, patterns 64 to 1024, ...)

• Testing the whole chip is < 1 sec

"Run" mode test

- 1. Generate a bank with random data and load into the chip
- 2. Generate random hit data (current FW limits to 32k hits per bus)
- 3. Given a fixed event length divisor of 16k (hits are always paired) compute the expected list of patterns per event given a certain threshold
 - There is the possibility to take into account OPCODE threshold lowering. Not used in current tests.
- 4. Load the predicted pattern list to the FPGA
- 5. Start looping events at full speed
- 6. The FPGA compares the output of the AM06 with the predicted list
- 7. After a certain time we stop and check for errors, then repeat from step 2
- 8. After a certain number of iteration we go to step 1 to change bank

"Run" mode test

- ▶ It is a parametric test. Typical parameters used in our tests are 50x50 loops, threshold 7 / 512 hits per event when testing the whole bank, threshold 0 / 4096 hits per event when testing the first 2k
- It is a tough test for the power supply: each time the hits stream starts the VDDCore current goes from few hundreds of mA to few Amps!
- We are not able to run at 1 V with the current test bench board (caps not fast enough, not close enough)
- Tests are ongoing but at 1.15 V avg (during the test cycle the voltage goes ±150 mV) I currently have 3/4 tested chips with 50x50 threshold 0 / 4k hits "run" mode test with 0 counted errors
- We noticed that if the voltage is too high (> 1.32 V) there are errors too

Conclusions

- ► As of now we didn't find any serious bug in AMchip06 design
- Yield is very good!
- Power consumption and the induced voltage drop is a source of lots of troubles that somehow limits our ability to test the chip
 - ► We can't test the chip at low voltages (1 V and below) with tough data
- We have a voltage range around 1.15 V where everything is working very well
- These issues are mitigated on the boards (caps very close to the BGA, no socket, no elastomer "mat", BGA is soldered)
 - $\blacktriangleright\,$ Preliminary tests on the LAMB shows the voltage to be within $\pm 50~{\rm mV}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Tests and testbench board patching are ongoing!

Conclusions II

 The AMchip06 "slow corner" meets its goal within the design voltage range (1-1.2 V)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Needs to understand better the operational margin
- Looking forward to check "fast corner" devices