A natural Fermi scale

Majorana Lectures Naples, June 15, 2012

> Riccardo Barbieri SNS and INFN, Pisa

The Fine Tuning problem of the Fermi scale

$$\delta m_H^2 \approx \frac{\lambda^2}{16\pi^2} \Lambda_{NP}^2$$

The ElectroWeak scale determined by the Higgs mass Why $G_F^{-1/2} << \Lambda_{NP}$? Why $G_F^{-1/2} << G_N^{-1/2}$?

In all explicit examples, without unwarranted cancellations, new phenomena required at a scale Λ_{NP} not far from m_h

 \Rightarrow What are and where are they?

The (many) reactions to the FT problem

O. Ignore it and view the SM in isolation (if no other short distance scale, what about gravity?)

1. Cure it by symmetries: SUSY, Higgs as PGB

2. A new strong interaction nearby

3. A new strong interaction not so nearby: quasi-CFT

4. Saturate the UV nearby: extra-dimensions around the corner

5. Warp space-time: RS

->> 6. Accept it: anthropic selection, the multiverse, the 10^{120} vacua of string theory

Anything else?

Natural theories

Symmetries crucial to the empirical success of particle physics so far Have they exhausted their role?

Question: Where and how to look for these phenomena? (Nothing seen at the LHC so far)

Answer: No theorem but this page offers the driving criterium

SUSY and its crucial configuration

(to be made more precise in any given SB-mediation scheme)

All s-particles other than $ilde{g}, ilde{t}_L, ilde{t}_R, ilde{b}_L, ilde{h}$ weakly constrained

The crucial configuration

"s-particles at their naturalness limit"

A first look at the LHC

A synthetic description of the LHC phenomenology

$$pp \rightarrow \tilde{g}\tilde{g} \quad \text{dominant over} \quad pp \rightarrow \tilde{t}\tilde{t}^* \; (\tilde{b}\tilde{b}^*)$$

$$\begin{array}{c} m_{\tilde{g}} - m_{\tilde{\chi}} \\ 2m_t \\ m_t \\ m_t \\ m_t \\ m_t \\ 0 \end{array} \quad \tilde{g} \rightarrow b\bar{t}(t\bar{b}) + \tilde{\chi}^{\pm} \\ \tilde{g} \rightarrow g + \tilde{\chi} \\ 0 \end{array} \quad pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\bar{t}\bar{b}(t\bar{t}tb) + \chi\chi \\ pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\bar{b}\bar{b}(t\bar{t}bb) + \chi\chi \\ pp \rightarrow \tilde{g}\tilde{g} \rightarrow tt\bar{b}\bar{b} + \chi\chi \\ \chi = \chi^{\pm}, \chi_1, \chi_2 \end{array}$$

3 body final states either by cascade or direct ($m_{\tilde{t}}, m_{\tilde{b}}$ almost don't matter) When phase space opens up, $\tilde{g} \to b\bar{b}\chi$ suppressed If $\mu < M_1, M_2$ then χ^{\pm}, χ^0 close in mass

current bounds on $\ \widetilde{g}, \widetilde{t}, \widetilde{b}$

ATLAS,
$$\int Ldt \approx 2fb^{-1}$$

$\tilde{b}_1 \tilde{b}_1^*$ (MSSM)	${ ilde b}_1 o b { ilde \chi}_1^0$	$m_{\tilde{b}_1} = 390 \text{ GeV} (m_{\tilde{\chi}_1^0} = 0)$	2 <i>b</i> -jets
$ ilde{b}_1 ilde{b}_1^*$ (MSSM)	$ ilde{b}_1 o b ilde{\chi}_1^0$	$m_{\tilde{b}_1} = 350 \text{ GeV} (m_{\tilde{\chi}_1^0} = 120 \text{ GeV})$	2 <i>b</i> -jets
$ ilde{g} ilde{g}$, $ ilde{b}_1 ilde{b}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{b}_1 b$, $ ilde{b}_1 ightarrow b ilde{\chi}_1^0$	$m_{ ilde{g}} = 920 \; { m GeV} \; (m_{ ilde{b}_1} < 800 \;\; { m GeV})$	$0\ell + b$ -jets
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow ar{b} ilde{\chi}_1^0$	$m_{ ilde{g}} = 900 \; ext{GeV} \; (m_{ ilde{\chi}_1^0}^{-} < 300 \;\; ext{GeV})$	$0\ell + b$ -jets
$\tilde{g}\tilde{g}, \tilde{t}_1\tilde{t}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{t}_1 t, \ ilde{t}_1 ightarrow t ilde{\chi}_1^0$	$m_{ ilde{g}} = 620 \; { m GeV} \; (m_{ ilde{t}_1} < 440 \;\; { m GeV})$	$1\ell + b$ -jets
$\tilde{g}\tilde{g}, \tilde{t}_1\tilde{t}_1^*$ (MSSM)	$ ilde{g} ightarrow ilde{t}_1 t$, $ ilde{t}_1 ightarrow t ilde{\chi}_1^0$	$m_{\tilde{g}} = 650 { m GeV} (m_{\tilde{t}_1} < 450 { m GeV})$	2ℓSS
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{ ilde{g}} = 700 \; { m GeV} \; (m_{ ilde{\chi}_1^0} < 100 \;\; { m GeV})$	$1\ell + b$ -jets
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow t ar{t} ilde{\chi}_1^0$	$m_{\tilde{g}} = 650 \text{ GeV} (m_{\tilde{\chi}_1^0} < 215 \text{ GeV})$	2ℓSS
$\tilde{g}\tilde{g}$ (simpl. model)	$ ilde{g} ightarrow tb + ilde{\chi}_1^0$	$m_{ ilde{g}} = 710 \; { m GeV} \; (m_{ ilde{\chi}_1^0} < 100 \;\; { m GeV})$	1ℓ + <mark>b-je</mark> ts

My rough summary:

 $m_{\tilde{g}} \gtrsim 700~GeV$ $m_{\tilde{b}} \gtrsim 350~GeV$ $m_{\tilde{t}} \gtrsim 200~GeV$

(from Tevatron searches)

CMS in progress on 3d generation squarks

Kovalskyi

venerdì 15 giugno 2012

What about the Higgs mass?The NMSSM as a possible way out(since the 70's, Fayet, etc) $f = \mu H_1 H_2 \Rightarrow f = \lambda S H_1 H_2$ $m_h^2 \le m_Z^2 (\cos^2 2\beta + \frac{2\lambda^2}{g^2 + g'^2} \sin^2 2\beta) + \delta_t(m_{\tilde{t}_1}, X_t)$

A pessimistic reaction

The SUSY scale, M_S , and the Fermi scale, $G_F^{-1/2}$, not so tied together as we thought

⇒ flavour physics, CPV as in SM⇒ no SUSY at LHC so far

An "extreme" example:

Split-SUSY = SUSY scalars at ~ M_S SUSY fermions at ~ G_F^{-1}

("High-scale" SUSY = all s-particles at
$$M_{S}$$
)

The Higgs boson as a PGB

A new strong sector at the TeV scale

Like the pion in QCD, the Higgs boson as a quasi GB of a spontaneously broken global symmetry

venerdì 15 giugno 2012

Phenomenology of the "composite" fermions

Heavy-light couplings

Single production

(Some of) the existing limits

Pair production

Contino, Servant 2008

[CMS L=1.14 fb ⁻¹] PAS-EXO-11-050	$T\bar{T} \to WbW\bar{b} \to b\bar{b}l^+l^- \not\!\!\!E_T$	$m_T > 422 \mathrm{GeV}$
[CMS L=0.80 fb ⁻¹] PAS-EXO-11-051	$T\bar{T} \to WbW\bar{b} \to b3jl^{\pm}E_T$	$m_T > 450 \mathrm{GeV}$
[CMS L=191 pb ⁻¹] PAS-EXO-11-005	$T\bar{T} \to tZ\bar{t}Z \to (l^+l^-)l^\pm jj$	$m_T > 417 \mathrm{GeV}$
[CMS L=1.14 fb ⁻¹] PAS-EXO-11-036	$B\bar{B} \to Wt W\bar{t} \to l^{\pm}l^{\pm} b 3j \not \!$	$m_B > 495 \mathrm{GeV}$

Single production

10²

300

350 400

450 500 550

650

600

Relatively light composite fermions preferred by currently "allowed" SM range for m_H

Matsedonskyi, Panico, Wulzer, 2012

$$T, \ \tilde{T}$$
 lightest fermionic partners of $t_L, \ t_R$
 $\xi = rac{v^2}{f^2}$ made small by fine tuning

Higgs boson branching ratios

venerdì 15 giugno 2012

Summary

- 1. What underlies EWSB still unknown, as is the solution of the "little hierarchy" problem
- 2. To discover the Higgs boson and to know (some of) its properties has such far reaching implications that it pays to be patient a bit more to draw any conclusion
- 3. To discover (or to exclude natural) supersymmetry important to focus on $m_{\tilde{g}}, m_{\tilde{t}}, m_{\tilde{b}}, m_{\tilde{h}}$
- 4. Among "Exotica" the searches for the heavy fermions of the Higgs=PGB picture stand up