Camere Monitor per fasci di alta intensità

WP 7 (INFN-RDH) Detector for high intensity beam M 6 (INFN-IRPT) New TERA chip development

R. Cirio, F. Fausti, L. Fanola Guarachi, S. Giordanengo, F. Marchetto, G. Mazza, V. Monaco, **R. Sacchi**, A. Vignati

INFN e Università di Torino

Fasci di elevata intensità

- Acceleratori di nuova generazione a fasci pulsati

 Sincrociclotroni, Accel. lineari, Cyclinacs, FFAGs, ...
 Acceleratori Laser Driven
- Nuove modalità di trattamento ipofrazionato

Typical Characteristics for high flux pulsed charged particle beams	
Pulse frequency (kHz)	0.2 – 1
Pulse Length (μs)	5 – 20
Number of particles per pulse (prot/pulse)	10 ⁷ -10 ⁸
Instantaneous Intensity (prot/s)	10 ¹² -10 ¹⁴ (~μΑ)

Fasci di elevata intensità

Intensità di corrente raccolta nella camera vs. E_{beam}

- altà densità di ionizzazione \rightarrow inefficienza di raccolta
- saturazione dell'elettronica di FE

Efficienza di raccolta

Ricombinazione **iniziale e colonnare**

- ricombinazione tra cariche generate lungo la traccia
- non dipende dal dose rate
- corretta attraverso calibrazione dosimetrica delle camere
- teoria di Jaffe

Ricombinazione **di volume**

- ricombinazione tra cariche generate da tracce vicine
- dipende dal dose rate, quantità che si vuole misurare !
- diverse parametrizzazioni in letteratura, (Boag, Wilson, Townsend...)
- In generale
 - cresce all'aumentare della densità di ionizzazione nel gas
 - diminusce al crescere del rapporto E/d=V/d²

tensità di corrente de fascio

Rivelatore a doppio gap

→ relazione univoca tra efficienza f_1 e rapporto f_2/f_1 → determinabile sperimentalmente

Rivelatore Multi-Gap

 3 IC con anodi e catodi indipendenti, gap da 0,5 - 1 - 1,5 cm

 Elettronica di lettura basata su front-end TERA08 modificato

Caratterizzazione del rivelatore

- Carbon Ion Beam 120 MeV/u @ CNAO
- Proton Beam at Bern University Hospital (Cyclotron of 15MeV)
- Fascio pulsato @ CATANA (62 MeV)

Nota: Efficienza determinata variando la tensione e fittando i dati con modelli di ricombinazione

Misure a CNAO

Fit globali delle tre camere con **modello di Boag-Wilson**, a tre flussi differenti

Misure a CNAO

Densità di ionizzazione vs flusso del fascio

Misure a CNAO

• caratteristica del rivelatore

Caratteristica del rivelatore

Conclusioni

- verificato la validità del metodo proposto
- caratteristica indipendente dall'intensità/pulse width
- caratteristica dipende dalla qualità del fascio

Risultati

- Tesi di Dottorato di L. Fanola Guarachi
- NIM A 798 (2015) 107-110 (caratterizzazione del readout)
 + articolo in preparazione per risultati si fascio
- Camera doppio gap realizzata da De.Tec.Tor per ELIMED

TERA09 Design

Basato sull'architettura di TERA08:

- Same process technology AMS CMOS 0.35 µm
- Increase clock from 100 to ~ 300 MHz
- Max count frequency ~ 80 MHz (20 MHz in TERA08)
- Counters sums are integrated in the chip
- Cooperation agreement signed with De.Tec.Tor S.r.I for the development of the new chip \rightarrow PhD Federico Fausti;
- A joint patent INFN/UniTo/De.Tec.Tor has been submitted;
- Premio Marconi della SIF 2015 a Federico Fausti (De.Tec.Tor) e Simona Giordanengo (INFN)

Block diagram of TERA09

- sums triggered by load signal
- half-full register warning signal provided

The current to frequency converter

- feedback capacitor C_{int} 600fF \rightarrow 1,2 pF
- OTA bias current 200 $\mu A \rightarrow 800 \,\mu A$
- clock cycle saved in the FSM, single 200 fF C_{sub}
- post-layout simulations 100 MHz \rightarrow 320 MHz clock

Project status and plans as presented at RDH meeting (Rome, Dec. 17st 2014)

ASIC submission : July - Sep. 2015

- Test board design: Oct.-Nov. 2015
- **Chips from foundry: Dec. 2015**
- **ASIC characterization: beginning 2016**
- Test radiation tolerance: 2016

Integration with detector and beam test: 2016

17

Project status and plans: Current state

- **Submission date to Europractice: Sep. 14th 2015**
- **Example:** Submission date to AMS: Sep. 21st 2015
- **Samples out from AMS: Nov. 6th 2015**
- **Packaged samples from Europractice: Nov. 23rd 2015**
- Test board PCB design: Oct. 2015
- Test board PCB manufacturing: Nov. 2015
- **DAQ system with LabVIEW FPGA: Nov.-Dec. 2015**
- ASIC characterization: Dec.-March 2016
- **Integration with detectors and beam tests**

TERA09 (23/11/2015)

TERA09 Test board

DAQ based in NI FPGA

Screenshots: pedestals

22

Screenshots: 1 ch signal

23

Results 100 MHz clk

Linearity

• deviation from linearity \pm 0,5 %

Results 200 MHz clk

Linearity

25

Results 265 MHz clk

Linearity

i [uA]

- deviation from linearity at large positive currents ~ 4% under investigation
- strange features above 270 MHz frequency

Conclusioni

- Parte digitale testata fino a 265 MHz
- Caraterizzazione della parte analogia in progress
- Alcune cose da capire/testare, in particolare ad alte frequenze

Da fare:

- Disegnare front-end board (Riunione con De.Tec.Tor a breve)
- Test di danneggiamento da radiazione — necessari ?
- Convenzione con De.Tec.Tor per sfruttamento commerciale TERA09
- pensare al prossimo chip

