

Report and Update on HIT Experiment Analysis

RDH Meeting

February, 1st2016

Experimental Setup

Data Taking Configurations

LYSO@90° BGO@0°,10°,30°	E _{beam} (MeV/u)	Range (cm)	zPMMA (cm)
⁴ He	102	6.0	7.65
⁴ He	125	8.5	10.0
⁴ He	145	11.0	12.65
¹² C	120	2.9	10.0
¹² C	160	4.9	10.0
¹² C	180	6.0	10.0
¹² C	220	8.5	10.0
16 O	210	6.0	7.65
16 O	260	8.5	10.0
¹⁶ O	300	11.0	12.65
LYSO@60° BGO@5°,15°,30°	E _{beam} (MeV/u)	Range (cm)	zPMMA (cm)
⁴ He	102	6.0	7.65
⁴ He	125	8.5	10.0
⁴ He	145	11.0	12.65
¹⁶ O	210	6.0	7.65
16 O	260	8.5	10.0
16 O	300	11.0	12.65

Prompt Photon

Paper in preparation: prompt Yield at production for He, C and O ion beams

<u>Yield at Production Measurement ϕ_{γ} </u>

θ	Ion	Energy	Φ_{γ}	$\sigma_{ m stat}$	$\sigma_{ m sys}$
		$({\rm MeV/u})$	$(10^{-3} \ sr^{-1})$	$(10^{-3} \ sr^{-1})$	$(10^{-3} \ sr^{-1})$
	⁴ He	125	5.34	0.06	0.17
	ne	145	6.53	0.07	0.17
		120	4.57	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$^{12}\mathrm{C}$	160	7.66	0.13	0.10
90°	U	180	9.80	0.18	$\begin{array}{c c} & (10^{-3} \ sr^{-1}) \\ \hline 0.17 \\ 0.17 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.11 \\ 0.38 \\ 0.54 \\ 0.54 \\ 0.77 \\ \hline 0.11 \\ 0.23 \\ 0.14 \\ 0.41 \\ \end{array}$
		220	12.22	0.22	0.11
		220 210 260	12.65	0.12	0.38
	^{16}O	260	16.83	0.20	0.54
		300	22.10	0.15	0.77
		102	3.70	0.08	0.11
	⁴ He	125	4.67	$\begin{array}{c cccc} (10^{-3} \ sr^{-1}) & (10^{-3} \ sr^{-1}) \\ \hline 0.06 & 0.17 \\ \hline 0.07 & 0.17 \\ \hline 0.09 & 0.10 \\ \hline 0.13 & 0.10 \\ \hline 0.18 & 0.10 \\ \hline 0.22 & 0.11 \\ \hline 0.22 & 0.11 \\ \hline 0.12 & 0.38 \\ \hline 0.20 & 0.54 \\ \hline 0.15 & 0.77 \\ \hline 0.08 & 0.11 \\ \hline 0.07 & 0.23 \\ \hline 0.08 & 0.14 \\ \hline 0.13 & 0.41 \\ \hline 0.19 & 0.59 \\ \end{array}$	
600		145	6.40	0.08	0.14
60°	¹⁶ O	210	12.44	0.13	0.41
		260	17.04	0.19	0.59
		300	21.32	0.19	1.03

Preliminary 4

Report on HIT Experiment Analysis

Prompt Photon

Paper in preparation: prompt Yield at production for He, C and O ion beams

Yield (at production) φ_γ Comparison:

DATA - MC

Some effort is ongoing for a further study on the systematic sources.

Prompt Photon

Paper in preparation: prompt Yield at production for He, C and O ion beams

<u>Yield (at production) φγ Comparison:</u> He 90° Ο He 60° $\Phi_{\gamma}(10^{-3} \, { m sr}^{-1})$ C 90° 22 O 90° 20 O 60° 18 C 90° - 80 MeV/u C 90° - 220 MeV/u LYSO 16 C 90° - 220 MeV/u BaF r, 14 C 90° - 95 MeV/u - Pinto v 12 10 8 6 **Preliminarv** 100 150 200 250 300 Beam Energy (MeV/u)

Evaluation:

From the **measured prompt photon yields at production** we evaluated an achievable resolution on the BP estimation: ~ 2 mm for a treatment with He/ Oxy beams in a real case scenario, using the IBA slit camera as photon detector ^[1].

Report on HIT Experiment Analysis

[1] Smeets et al., "Prompt gamma imaging with a slit camera for realtime range control in proton therapy", Phys. Med. Biol. 57, 3371 (2012)

Report on HIT Experiment Analysis

Paper in preparation: charged particle Yield, energy spectra and profile at production for He, C ion beams

Secondary Charged Particle

Yield (at production) $\phi_{p,d,t}$:

Some effort is ongoing for a further study on experimental efficiency calculation. Analysis on going.. **Preliminary**

(very preliminary for Oxygen!)

θ	Ion	$\begin{array}{ c c c c c }\hline \mathbf{on} & \mathbf{Energy} & \Phi_p \pm \sigma_{stat} \pm \sigma_{sys} \\ \hline \end{array}$		$\Phi_d \pm \sigma_{stat} \pm \sigma_{sys}$	$\Phi_t \pm \sigma_{stat} \pm \sigma_{sys}$	
		$({\rm MeV}/{\rm u})$	$(10^{-3} \ sr^{-1})$	$(10^{-3} \ sr^{-1})$	$(10^{-3} \ sr^{-1})$	
90°	⁴ He	125	$0.789 \pm 0.027 \pm 0.073$	$0.066 \pm 0.005 \pm 0.024$	$0.001 \pm 0.001 \pm 0.000$	
		145	$1.531 \pm 0.038 \pm 0.105$	$0.090 \pm 0.006 \pm 0.026$	$0.002 \pm 0.001 \pm 0.003$	
	$^{12}\mathrm{C}$	120	$0.447 \pm 0.027 \pm 0.029$	$0.011 \pm 0.003 \pm 0.003$	$0.001 \pm 0.001 \pm 0.000$	
		160	$1.267 \pm 0.056 \pm 0.085$	$0.064 \pm 0.008 \pm 0.016$	$0.008 \pm 0.003 \pm 0.001$	
		180	$1.950 \pm 0.087 \pm 0.113$	$0.102 \pm 0.013 \pm 0.022$	$0.012 \pm 0.004 \pm 0.002$	
		220	$4.086 \pm 0.115 \pm 0.216$	$0.181 \pm 0.016 \pm 0.032$	$0.016 \pm 0.005 \pm 0.003$	
	¹⁶ O	210	3.2 ± 0.1	analysis on going	analysis on going	
		260	5.6 ± 0.1	"	"	
		300	11.8 ± 0.1	"	"	
60°	⁴ He	102	$4.788 \pm 0.070 \pm 0.402$	$0.315 \pm 0.010 \pm 0.063$	$0.031 \pm 0.003 \pm 0.011$	
		125	$10.717 \pm 0.109 \pm 0.908$	$0.917 \pm 0.019 \pm 0.212$	$0.099 \pm 0.006 \pm 0.037$	
		145	$17.658 \pm 0.155 \pm 1.787$	$1.948 \pm 0.030 \pm 0.542$	$0.168 \pm 0.008 \pm 0.095$	
	¹⁶ O	210	17.7 ± 0.1	analysis on going	analysis on going	
260 32		32.2 ± 0.3	"	"		
		300	58.2 ± 0.3	"	"	

Secondary Charged Particle

Measurement of the beam range (BP position)

From previous experiments:

SC

 $\theta = 90^{\circ}$

DCH

PMMA

LYSO

 $\theta = 60^{\circ}$

DCH

LYSO

- the secondary charged z
 emission distribution is
 related to the beam range;
- with 10³ secondary protons produced by 10⁸ ions (220 MeV/u ¹²C) the **parameter Δ** describing the width of the z distribution is known with a **resolution** of about ~ 3 mm.

A calibration describing the **behavior of Δ as a function of the beam range** inside the target for the HIT experimental configurations is ongoing.

Paper in preparation: charged particle Yield, energy spectra and profile at production for He, C ion beams

For ¹⁶O ions at 260 MeV/u (LYSO at 90°) we performed a segmented target geometry measurement

Secondary Charged Particles R 4 AIR 5 cm 1.5 cm 2.65 cm cm 3 2 1 TARGET TARGET TARGET TARGET 0 -1 -2 -3 1 cm 1 cm 1 cm -4 12.15 cm -5 Z -13 -12 -11 -10 -8 -9 -7 -6 -5 -2 -3 Ô -4 -1

Secondary Charged Particles

Segmented 12.65 cm Target: with AIR spaces

DATA

Secondary Charged Particles

Segmented 12.15 cm Target: with AIR spaces

Secondary Charged Particles

DOSE PROFILER CONSIDERATIONS

The data plot shown here corresponds to a detector acceptance much smaller than that of DP.

From MC we learn that for Oxigen at 260 MeV/u in order to deliver a 1 Gy on a 3 x 25 x 25 mm³ slice around the Bragg Peak one needs **2.4 10^7** primaries: => physical dose of ~**1.9 Gy**.

We also know from MC how to scale for more reasonable thicknesses. That number of reconstructed tracks would correspond in the Dose Profiler to:

~2.71 10⁸ prim: ~11 Gy @ 7 cm PMMA ~(8.4 cm H₂0) ~6.66 10⁸ prim: ~28 Gy @10 cm PMMA ~(12.0 cm H₂0)

number of reconstructed tracks would correspond in the Dose Profiler to:

The presence of structures remains distinguishable also for lower doses

Very Preliminary!!

The ToF measurement combined with the deposit energy information allows for Particle Identification: p,d,t.

The analysis has been performed for 0,10,15 and 30 degrees..

Paper in preparation: forward He ion beam fragmentation on PMMA target

Only Helium Beam analysis has been done.. Carbon and Oxygen ion beams will come in next months

The relative Yield for p,d,t has been calculated for all angles and beam energies (102, 125, 145 MeV/u)

Preliminary

At 30° we have two separate set of measurements (in agreement!)

He102 (%)	0°	5°	10°	15°	30°	30°
proton	20.4 ± 2.8	25.8 ± 3.1	30.5 ± 4.0	35.5 ± 4.1	65.5 ± 8.4	65.4 ± 7.5
deuteron	31.2 ± 4.3	33.0 ± 3.9	32.6 ± 4.3	35.0 ± 4.1	26.8 ± 3.5	26.5 ± 3.1
triton	48.4 ± 6.3	41.2 ± 4.7	37.0 ± 4.8	29.5 ± 3.4	7.7 ± 1.1	8.0 ± 1.0
He125 (%)	0°	5°	10°	15°	30°	30°
proton	22.4 ± 3.1	27.4 ± 3.2	31.8 ± 3.8	37.2 ± 4.2	68.5 ± 7.6	69.2 ± 7.6
deuteron	32.7 ± 4.6	34.8 ± 4.0	34.7 ± 4.1	36.7 ± 4.1	25.6 ± 2.9	24.9 ± 2.7
triton	44.9 ± 6.0	37.8 ± 4.2	33.5 ± 3.8	26.1 ± 2.9	6.0 ± 0.7	5.8 ± 0.7
He145 (%)	0°	5°	10°	15°	30° .	30°
proton	23.8 ± 3.4	29.1 ± 3.4	33.4 ± 4.0	39.2 ± 4.4	70.9 ± 8.0	70.6 ± 7.6
deuteron	34.0 ± 5.0	36.0 ± 4.2	36.0 ± 4.3	36.9 ± 4.1	24.3 ± 2.7	24.5 ± 2.7
triton	42.2 ± 5.8	35.0 ± 4.1	30.6 ± 3.5	24.0 ± 2.6	4.8 ± 0.6	4.8 ± 0.6

Paper in preparation: forward He ion beam fragmentation on PMMA target

The relative Yield for p,d,t has been calculated for all angles and beam energies (102, 125, 145 MeV/u)

The Kinetic Energy of the particles is obtained from the ToF measurements

0°	5°	
20.4 ± 2.8	25.8 ± 3.1	و
31.2 ± 4.3	33.0 ± 3.9	l
48.4 ± 6.3	41.2 ± 4.7	l
0°	5°	
22.4 ± 3.1	27.4 ± 3.2	e e
32.7 ± 4.6	34.8 ± 4.0	l
44.9 ± 6.0	37.8 ± 4.2	l
0°	5°	
23.8 ± 3.4	29.1 ± 3.4	e e
34.0 ± 5.0	36.0 ± 4.2	l
42.2 ± 5.8	35.0 ± 4.1	l
	20.4 ± 2.8 31.2 ± 4.3 48.4 ± 6.3 0° 22.4 ± 3.1 32.7 ± 4.6 44.9 ± 6.0 0° 23.8 ± 3.4 34.0 ± 5.0	20.4 ± 2.8 25.8 ± 3.1 31.2 ± 4.3 33.0 ± 3.9 48.4 ± 6.3 41.2 ± 4.7 0° 5° 22.4 ± 3.1 27.4 ± 3.2 32.7 ± 4.6 34.8 ± 4.0 44.9 ± 6.0 37.8 ± 4.2 0° 5° 23.8 ± 3.4 29.1 ± 3.4 34.0 ± 5.0 36.0 ± 4.2

beam fragmentation on PMMA target

The absolute Yield for p,d,t, and more in general for H, has been calculated for all angles and beam energies (102, 125, 145 MeV/u).

Paper in preparation: forward He ion beam fragmentation on PMMA target

Report and Update on HIT Experiment Analysis

Resuming:

- the prompt gamma yield at production analysis is complete for He, C and O ion beams: it will be submit soon;
- the **charged secondary** analysis on yield, spectra and profile at production is done for **He** and **C** and it will be submit soon. The **O** analysis is still on going but we hope to finish it before summer;
- the fragmentation of the He ion beam at small angles is complete and it will the submit soon. For C and O analysis.. wait next few months..

RDH Meeting-the beta+ activityanalysis is still ongoing for He ion beamsFebruary, 1st 2016(unfortunately there are no available datas for C and O);

Report and Update on HIT Experiment Analysis

Resuming:

- the prompt gamma yield at production analysis is complete for He, C and O ion beams: it will be submit soon;
- the **charged secondary** analysis on yield, spectra and profile at production is done for **He** and **C** and it will be submit soon. The **O** analysis is still on going but we hope to finish it before summer;
- the fragmentation of the He ion beam at small angles is complete and it will the submit soon. For C and O analysis.. wait next few months..

RDH Meeting-the beta+ activityanalysis is still ongoing for He ion beamsFebruary, 1st 2016(unfortunately there are no available datas for C and O);

Beta⁺ Analysis

Some effort is ongoing for a further study on experimental efficiency calculation..

2D profiles for H

Off-Spill analysis

Prompt Raw Energy Spectra

