HIT Experiment

 Report and Update on HIT Experiment Analysis RDH Meeting

February, 1tt2016

Experimental Setup

SC = plastic scintillator; trigger for the DAQ
PMMA = phantom
$\mathrm{Rn}=2$ pixelated LYSO, side by side, $1.6 \times 5 \times 5 \mathrm{~cm}^{3}$ each
Rs $=2$ pixelated LYSO, side by side, $1.6 \times 5 \times 5 \mathrm{~cm}^{3}$ each (PET photons detectors)
LTS = plastic scintillator (charged particles TOF)
DCH = Drift Chamber (charged particles tracking)
LYSO = matrix of four LYSO crystals
(prompt photons and charged particles detector)
STS1a,b,c = plastic scintillators
STS2a,b,c = plastic scintillators
(charged fragments TOF)
BGOa,b,c = BGO crystals (charged fragments detectors)

Data Taking Configurations

$\begin{aligned} & \text { LYSO@90} \\ & \text { BGO@ } 00^{\circ}, 10^{\circ}, 30^{\circ} \\ & \hline \end{aligned}$	$\mathrm{E}_{\text {beam }}(\mathrm{MeV} / \mathrm{u})$	Range (cm)	$\begin{gathered} \text { zPMMA } \\ (\mathrm{cm}) \\ \hline \end{gathered}$
${ }^{4} \mathrm{He}$	102	6.0	7.65
${ }^{4} \mathrm{He}$	125	8.5	10.0
${ }^{4} \mathrm{He}$	145	11.0	12.65
12 C	120	2.9	10.0
${ }^{12} \mathrm{C}$	160	4.9	10.0
12 C	180	6.0	10.0
12 C	220	8.5	10.0
160	210	6.0	7.65
160	260	8.5	10.0
160	300	11.0	12.65

$\begin{aligned} & \text { LYSO@60} \\ & \text { BGO@5, 15o,30} \end{aligned}$	$E_{\text {beam }}(\mathrm{MeV} / \mathrm{u})$	Range (cm)	zPMMA (cm)
${ }^{4} \mathrm{He}$	102	6.0	7.65
${ }^{4} \mathrm{He}$	125	8.5	10.0
${ }^{4} \mathrm{He}$	145	11.0	12.65
160	210	6.0	7.65
160	260	8.5	10.0
160	300	11.0	12.65

Prompt Photon

Paper in preparation:
prompt Yield at production
for He, C and O ion beams

Yield at Production Measurement ϕ_{r}

θ	Ion	Energy (MeV/u)	$\begin{gathered} \Phi_{\gamma} \\ \left(10^{-3} s r^{-1}\right) \end{gathered}$	$\begin{gathered} \sigma_{\text {stat }} \\ \left(10^{-3} s r^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \sigma_{\text {sys }} \\ \left(10^{-3} s r^{-1}\right) \end{gathered}$
90°	${ }^{4} \mathrm{He}$	125	5.34	0.06	0.17
		145	6.53	0.07	0.17
	${ }^{12} \mathrm{C}$	120	4.57	0.09	0.10
		160	7.66	0.13	0.10
		180	9.80	0.18	0.10
		220	12.22	0.22	0.11
	${ }^{16} \mathrm{O}$	210	12.65	0.12	0.38
		260	16.83	0.20	0.54
		300	22.10	0.15	0.77
60°	${ }^{4} \mathrm{He}$	102	3.70	0.08	0.11
		125	4.67	0.07	0.23
		145	6.40	0.08	0.14
	${ }^{16} \mathrm{O}$	210	12.44	0.13	0.41
		260	17.04	0.19	0.59
		300	21.32	0.19	1.03

Prompt Photon

Paper in preparation:
prompt Yield at production
for He, C and O ion beams

Yield (at production) фr Comparison:

DATA - MC

Some effort is ongoing for a further study on the systematic sources.

Yield (at production) ϕ_{r} Comparison:

Evaluation:

From the measured prompt photon yields at production we evaluated an achievable resolution on the BP estimation: $\sim 2 \mathrm{~mm}$ for a treatment with $\mathrm{He} /$ Oxy beams in a real case scenario, using the IBA slit camera as photon detector ${ }^{[1]}$.

Secondary Charged Particle $\|$ 垔 Particle ID Distributions: QDC vs TOF

Paper in preparation: charged particle Yield, energy spectra and profile at production for He, C ion beams

efficiency calculation. Analysis on going..

(very preliminary for Oxygen!)

θ	Ion	Energy (MeV/u)	$\begin{gathered} \Phi_{p} \pm \sigma_{\text {stat }} \pm \sigma_{\text {sys }} \\ \left(10^{-3} \mathrm{sr}^{-1}\right) \end{gathered}$	$\begin{gathered} \Phi_{d} \pm \sigma_{\text {stat }} \pm \sigma_{\text {sys }} \\ \left(10^{-3} s r^{-1}\right) \end{gathered}$	$\begin{gathered} \Phi_{t} \pm \sigma_{\text {stat }} \pm \sigma_{\text {sys }} \\ \left(10^{-3} s r^{-1}\right) \end{gathered}$
90°	${ }^{4} \mathrm{He}$	$\begin{aligned} & 125 \\ & 145 \end{aligned}$	$\begin{aligned} & \hline 0.789 \pm 0.027 \pm 0.073 \\ & 1.531 \pm 0.038 \pm 0.105 \end{aligned}$	$\begin{aligned} & 0.066 \pm 0.005 \pm 0.024 \\ & 0.090 \pm 0.006 \pm 0.026 \end{aligned}$	$\begin{aligned} & \hline 0.001 \pm 0.001 \pm 0.000 \\ & 0.002 \pm 0.001 \pm 0.003 \end{aligned}$
	${ }^{12} \mathrm{C}$	$\begin{aligned} & \hline 120 \\ & 160 \\ & 180 \\ & 220 \end{aligned}$	$\begin{aligned} & \hline 0.447 \pm 0.027 \pm 0.029 \\ & 1.267 \pm 0.056 \pm 0.085 \\ & 1.950 \pm 0.087 \pm 0.113 \\ & 4.086 \pm 0.115 \pm 0.216 \end{aligned}$	$\begin{aligned} & \hline 0.011 \pm 0.003 \pm 0.003 \\ & 0.064 \pm 0.008 \pm 0.016 \\ & 0.102 \pm 0.013 \pm 0.022 \\ & 0.181 \pm 0.016 \pm 0.032 \end{aligned}$	$\begin{aligned} & \hline 0.001 \pm 0.001 \pm 0.000 \\ & 0.008 \pm 0.003 \pm 0.001 \\ & 0.012 \pm 0.004 \pm 0.002 \\ & 0.016 \pm 0.005 \pm 0.003 \end{aligned}$
	${ }^{16} \mathrm{O}$	$\begin{aligned} & 210 \\ & 260 \\ & 300 \end{aligned}$	$\begin{gathered} 3.2 \pm 0.1 \\ 5.6 \pm 0.1 \\ 11.8 \pm 0.1 \end{gathered}$	analysis on going 99 99	analysis on going 99
60°	${ }^{4} \mathrm{He}$	$\begin{aligned} & 102 \\ & 125 \\ & 145 \end{aligned}$	$\begin{gathered} 4.788 \pm 0.070 \pm 0.402 \\ 10.717 \pm 0.109 \pm 0.908 \\ 17.658 \pm 0.155 \pm 1.787 \end{gathered}$	$\begin{aligned} & 0.315 \pm 0.010 \pm 0.063 \\ & 0.917 \pm 0.019 \pm 0.212 \\ & 1.948 \pm 0.030 \pm 0.542 \end{aligned}$	$\begin{aligned} & 0.031 \pm 0.003 \pm 0.011 \\ & 0.099 \pm 0.006 \pm 0.037 \\ & 0.168 \pm 0.008 \pm 0.095 \end{aligned}$
	${ }^{16} \mathrm{O}$	$\begin{aligned} & 210 \\ & 260 \\ & 300 \end{aligned}$	$\begin{aligned} & 17.7 \pm 0.1 \\ & 32.2 \pm 0.3 \\ & 58.2 \pm 0.3 \end{aligned}$	analysis on going 99 99	analysis on going 99 99

Secondary Charged Particle
Measurement of the beam range (BP position)

From previous experiments:
the secondary charged z emission distribution is related to the beam range; with 10^{3} secondary protons produced by 10^{8} ions (220 $\mathrm{MeV} / \mathrm{u}^{12} \mathrm{C}$) the parameter $\boldsymbol{\Delta}$ describing the width of the z distribution is known with a resolution of about $\boldsymbol{\sim} \mathbf{~ m m}$.

A calibration describing the behavior of Δ as a function of the beam range inside the target for the HIT experimental configurations is ongoing. spectra and profile at production for He, C ion beams

For ${ }^{16} \mathrm{O}$ ions at $260 \mathrm{MeV} / \mathrm{u}\left(\mathrm{LYSO}\right.$ at 90°) we performed a segmented target geometry measurement

Secondary Charged Particles

Secondary Charged Particles

Reference 10 cm Target: no AIR spaces

Secondary Charged Particles

Reference 10 cm Target: no AIR spaces

Secondary Charged Particles

Segmented 12.65 cm Target: with AIR spaces

Secondary Charged Particles

Segmented 12.15 cm Target: with AIR spaces

Secondary Charged Particles

Segmented 12.15 cm Target: with AIR spaces

Secondary Charged Particles

DOSE PROFILER CONSIDERATIONS

The data plot shown here corresponds to a detector acceptance much smaller than that of DP.

We can approximately scale (at the same distance from target) to the acceptance of Dose Profiler considering a factor ~17 (conservative!!!): number of reconstructed tracks $=>\sim 4.510^{7}$ primaries.

From MC we learn that for Oxigen at $260 \mathrm{MeV} / \mathrm{u}$ in order to deliver a 1 Gy on a $3 \times 25 \times 25 \mathrm{~mm}^{3}$ slice around the Bragg Peak one needs $2.4 \mathbf{1 0}^{\mathbf{7}}$ primaries:
=> physical dose of $\sim 1.9 \mathbf{G y}$.
We also know from MC how to scale for more reasonable thicknesses. That number of reconstructed tracks would correspond in the Dose Profiler to:
~2.71 10^{8} prim: ~11 Gy @ 7 cm PMMA ~ (8.4 $\left.\mathrm{cm} \mathrm{H}_{2} \mathrm{O}\right)$
~6.66 10^{8} prim: ~28 Gy @10 cm PMMA ~(12.0 $\left.\mathrm{cm} \mathrm{H}_{2} 0\right)$

Secondary Charged Particles

DOSE PROFILER CONSIDERATIONS

The data plot shown here corresponds to a detector acceptance much smaller than that of DP.

arget) to the iservative!!!):
to deliver a 1 Gy on ds $2.4 \mathbf{1 0}^{7}$

We also know trom ivic now to scale tor more reasonadre thicknesses. That number of reconstructed tracks would correspond in the Dose Profiler to:
The presence of structures remains distinguishable also for lower doses

Fragmentation Analysis

The ToF measurement combined with the deposit energy information allows for Particle Identification: p,d,t.

The analysis has been performed for $0,10,15$ and 30 degrees..

Paper in preparation: forward He ion beam fragmentation on PMMA target

Only Helium Beam analysis has been done.. Carbon and Oxygen ion beams will come in next months

Fragmentation Analysis

The relative Yield for p, d, t has been calculated for all angles and beam energies (102, 125, $145 \mathrm{MeV} / \mathrm{u}$)

At 30° we have two separate set of measurements (in agreement!)

He102 (\%)	0°	5°	10°	15°	30°	30°
proton	20.4 ± 2.8	25.8 ± 3.1	30.5 ± 4.0	35.5 ± 4.1	65.5 ± 8.4	65.4 ± 7.5
deuteron	31.2 ± 4.3	33.0 ± 3.9	32.6 ± 4.3	35.0 ± 4.1	26.8 ± 3.5	26.5 ± 3.1
triton	48.4 ± 6.3	41.2 ± 4.7	37.0 ± 4.8	29.5 ± 3.4	7.7 ± 1.1	8.0 ± 1.0
He125 $\%)$	0°	5°	10°	15°	30°	30°
proton	22.4 ± 3.1	27.4 ± 3.2	31.8 ± 3.8	37.2 ± 4.2	68.5 ± 7.6	69.2 ± 7.6
deuteron	32.7 ± 4.6	34.8 ± 4.0	34.7 ± 4.1	36.7 ± 4.1	25.6 ± 2.9	24.9 ± 2.7
triton	44.9 ± 6.0	37.8 ± 4.2	33.5 ± 3.8	26.1 ± 2.9	6.0 ± 0.7	5.8 ± 0.7
He145 $\%)$	0°	5°	10°	15°	30°	30°
proton	23.8 ± 3.4	29.1 ± 3.4	33.4 ± 4.0	39.2 ± 4.4	70.9 ± 8.0	70.6 ± 7.6
deuteron	34.0 ± 5.0	36.0 ± 4.2	36.0 ± 4.3	36.9 ± 4.1	24.3 ± 2.7	24.5 ± 2.7
triton	42.2 ± 5.8	35.0 ± 4.1	30.6 ± 3.5	24.0 ± 2.6	4.8 ± 0.6	4.8 ± 0.6

Fragmentation Analysis

$\theta=30^{\circ}$

The relative Yield for $\mathrm{p}, \mathrm{d}, \mathrm{t}$ has been calculated for all angles and beam energies (102, 125, $145 \mathrm{MeV} / \mathrm{u}$)

Paper in preparation: forward He ion

Fragmentation Analysis

The absolute Yield for p,d,t, and more in general for H , has been calculated for all angles and beam energies (102, 125, $145 \mathrm{MeV} / \mathrm{u})$.
 beam fragmentation on PMMA target

Report and Update on HIT Experiment Analysis

Resuming:

- the prompt gamma yield at production analysis is complete for He, C and \mathbf{O} ion beams: it will be submit soon;
- the charged secondary analysis on yield, spectra and profile at production is done for He and \mathbf{C} and it will be submit soon. The \mathbf{O} analysis is still on going but we hope to finish it before summer;
- the fragmentation of the He ion beam at small angles is complete and it will the submit soon. For \mathbf{C} and \mathbf{O} analysis.. wait next few months..
RDH Meeting - the beta+ activity analysis is still ongoing for He ion beams February, 1st2016 (unfortunately there are no available datas for \mathbf{C} and $\mathbf{0}$);

Report and Update on HIT Experiment Analysis

Resuming:

- the prompt gamma yield at production analysis is complete for He, C and \mathbf{O} ion beams: it will be submit soon;
- the charged secondary analysis on yield, spectra and profile at production is done for He and \mathbf{C} and it will be submit soon. The \mathbf{O} analysis is still on going but we hope to finish it before summer;
- the fragmentation of the He ion beam at small angles is complete and it will the submit soon. For \mathbf{C} and \mathbf{O} analysis.. wait next few months..
RDH Meeting - the beta+ activity analysis is still ongoing for He ion beams February, 1st2016 (unfortunately there are no available datas for \mathbf{C} and \mathbf{O});

GRAZIE

SPARES

Prompt Raw Energy Spectra

HE 102 60deg

Prompt Raw Energy Spectra

C 120

C 180

C 220

Prompt Raw Energy Spectra

