When Stars Attack!

Confirmation, Identification, and Localization of a Recent Near-Earth Supernova

Brian Fields
Astronomy & Physics, U Illinois

Team Nearby Supernova

John Ellis

Kathrin Scott Hochmuth Johnson

Brian Fry

Themis
Athanassiadou

Ada Ertel

Jesse Miller

Brian Fields | NPA8@Catania

Conclusions

Supernovae are Radioactivity Factories particularly core collapse

Nearby Supernovae are Inevitable a unique laboratory...and a unique threat

The Smoking Gun supernova radioactivities on Earth

Widespread Evidence! Live ⁶⁰Fe sea sediments and lunar cores as telescopes

Supernovae are Radioactivity Factories

Cas A: ~300 yr Chandra & NuSTAR

Brian Fields | NPA8@Catania

Supernova Radionucleosynthesis

Limongi, Hirschi, Martinez-Pinedo talks

long-ish lived radioactivities:

⁶⁰Fe, ²⁶Al, ⁴¹Ca, ⁵³Mn, Tc, ¹⁴⁶Sm, .

Fe made by neutron captures

"weak s-process" $^{59}{
m Fe}(n,\gamma)^{60}{
m Fe}$

large theoretical uncertainties in yield sensitive to stellar evolution, nuke rates accuracy ~order of magnitude

r-process? 182Hf, 244Pu

Nearby SNe are Inevitable

Shklovskii 1968; BDF 2004

Rate of supernovae inside r

→ multiple events < few pc in the last 4.5 Gyr!</p>

Nachbarsternsupernovaexplosionsgefahr or Attack of the Death Star!

Brian Fields | NPA8@Catania

Nachbarsternsupernovaexplosionsgefahr

or

Attack of the Death Star!

Ill efects if a supernova too close possible source of mass extinction

Shklovskii; Russell & Tucker 71; Ruderman 74; Melott group

lonizing radiation

initial gamma, X, UV rays destroy stratospheric ozone
 Ruderman 74: Ellis & Schramm 94

solar UV kills bottom of food chain

Crutzen & Bruhl 96; Gehrels etal 03; Melott & Thomas groups; Smith, Sclao, & Wheeler 04

cosmic rays arrive with blast, double whammy

ionization damage, muon radiation

Neutrinos

neutrino-nucleon elastic scatteris
"linear energy transfer"

DNA c

DNA damage

Nearby Supernovae Rain Ejecta on Earth

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

SN eject plows thru interstellar matter

Earth shielded by solar wind

If blast close enough:

- plasma pushes to inner Solar System
- dust decouples, rains on Earth
- SN dust accumulates in deep ocean

Chandra

Supernova Blast Impact on the Solar System

BDF, Athanassiadou, & Johnson 2006

Simulation:

BDF, Athanassiadou, & Johnson 2008

The Smoking Gun: Radioactivity

Ellis, BDF, & Schramm 1996; BDF, Athanassiadou, & Johnson 2008; Fry, BDF, Ellis 2015

Q: How would we know?

Need observable SN "fingerprint" Nuclear Signature

- Stable nuclides: don't know came from SN
- **Live radioactive isotopes:** none left on Earth If found, must come from SN!

$$t_{1/2}=2.6~\mathrm{Myr}$$

$$t_{1/2}=2.6~\mathrm{Myr}$$

Radioactivity Detection: 60 Fe Knie et al (2004)

Ferromanganese crust **Pacific Ocean**

√ slow growth ~ 1

accelerator mas spectrometry: live ⁶⁰Fe!

 $t = 2.8 \pm 0.4 \, \text{Myr}$

time before present [Myr]

Note AMS sensi

Brian Fields | NPA8@Catania

abundance

Whodunit?

Fry, BDF, & Ellis 2015

Turn the problem around:

$$N_{
m 60,obs} \sim rac{M_{
m 60,eject}}{D^2}$$

$$D^2 = D^2 = D \sim \sqrt{M_{60,
m eject}/N_{60,
m obs}}$$

"radioactivity distance" from 60Fe yield

What makes ⁶⁰Fe?

- core-collapse supernovae
- Type la supernovae
- AGB stars
- kilonovae

SN distance:

$$r_{
m SN} \sim 20-150~{
m pc}$$

Encouraging:

- *astronomical distances not built in!
- ★nontrivial consistency vs rates, SN dust reach! TNSN•KN R_{mag}
- **★**also: not impactor(s).

New Data, New Probes, New Sites

- ★ New crust data Wallner+ 2016
 - consistency check
- ★ Ocean sediment data Ludwig+ 2016; Wallner+ 2016]
 - faster growth rate ~ 1 mm/kyr
 - much improved time resolution
 - magnetic microfossils!
- **★ Lunar cores!**
 - ⁶⁰Fe excess over cosmic-ray production

Brian Fields | NPA8@Catania

BEFORE

Current 60Fe Data, Decay Corrected

Brian Fields | NPA8@Catania

AFTER
Current ⁶⁰Fe Data, Decay Corrected

★confirmation of ⁶⁰Fe crust signal at 2-3 Myr

★hint of another signal at ~8 Myr

★⁶⁰Fe flux duration ~1 Myr

*far exceeds Sedov prediction!?! Fry+ 2015

★probes dust evolution & dynamics? Fry, Ertel + 2017

Plutonium-244

Waller talk; r-process sessions

- \star half-life $t_{1/2}(^{244}\mathrm{Pu})=80~\mathrm{Myr}$
 - gateway to mass extinctions
- made in r-process Kajino, Goriely, Surman talks
 - core-collapse SN?
 - binary NS mergers?
- * detection would confirm:
 - (some) SNe are r-process factories!
- **★ Results:**
 - see Wallner talk!

Whodunit? The Moon as a Telescope

Fry, BDF, & Ellis (2016)

★ ⁶⁰Fe dust grains nearly undeflected in Solar Systen

- **★** Earth:
 - stratosphere scrambles
- **★ Moon is airless:**
 - encodes direction!
 - ⁶⁰Fe pattern points to source!

Aftermath: The Local Bubble

- ★ The Sun lives in region of hot, rarefied gas
 - The Local Bubble
 - hot cavity ~50 pc → huge
- Nearby SN needed
 - we live inside SN remains
 - bubble requires >> 1 SN over 10 Myr
 Smith & Cox 01
 - ⁶⁰Fe event from nearby star clusters? Benitez et al 02; Mamajek 2015
 - Sco-Cen vs Tuc-Hor
 - Bubble wall as source of ~1 Myr ⁶⁰Fe
 pulse width? Feige talk; Breitschwerdt+ 2016; 2017

CONCLUSION

THIS IS ATHING

Nearby Supernova = New Tool for Nuclear Astrophysics

Outlook

Live ⁶⁰Fe seen globally and on the Moon

- 🔀 signal in deep ocean crusts, nodules, sediments find
- confirmed pulse ~2-3 Myr ago
- evidence for pulse at ~8 Myr
- ★ ⁶⁰Fe pulse duration ~1 Myr ?!? see Fry talk
- evidence for lunar signal—directionality?
- Source of Local Bubble?

Implications across disciplines:

nucleosynthesis, cosmic dust, stellar evolution, bio evolution, astrobiology

Future Research

- Supernova(e) origin and direction
 - ★ lunar distribution
 - ★ cosmic-ray anisotropies, ⁶⁰Fe excess
 - neutron star/pulsar correlation
 - ★ dust production, evolution, dynamics
- more, different samples:
 - √ other isotopes (reactions and nucleosynthesis!)
 - e.g., ²⁶Al, ⁴¹Ca, ⁵³Mn, ^{97,98}Tc, ²⁴⁴Pu
 - √ other media (fossil bacteria)
 - √ other sites: back to the Moon!
- other epochs? Mass extinction correlations?
- stay tuned...NPA9!

Sabbatical in Europe AY 2017-18!

