Nuclear Physics in Astrophysics VIII 18-23 June 2017, Catania, ITALY

The RIB in-flight facility EXOTIC

Concetta Parascandolo

INFN - NAPOLI, ITALY

Exotic @ INFN-LNL

Production of in-flight low-energy light radioactive ion beams (RIBs) through two-body inverse kinematics reactions induced by high intensity heavy-ion beams from the XTU Tandem accelerator impinging on light gas targets (**p**, **d**, ³**He**, ⁴**He**)

• **Commissioning** of the EXOTIC facility in 2004

V.Z. Maidikov et al., Nucl. Phys. A 746 (2004) 389c, D. Pierroutsakou et al., EPJ SP 150 (2007) 47, F. Farinon et al., NIM B 266 (2008) 4097, M. Mazzocco et al., NIM B 266 (2008) 4665

• First "beam for experiment" ¹⁷F in 2006

D. Pierroutsakou et al., EPJ SP150 (2007) 47, C. Signorini et al., EPJA44 (2010) 63

• A **substantial upgrade process** was subsequently held in 2012 *M. Mazzocco et al., NIM B 317, 223 (2013)*

Exotic @ INFN-LNL

PRIMARY BEAM

Solide angle $\Delta \omega$	~ 10 msr
Energy acceptance Δ E/E	±10%
Momentum acceptance Δp	o∕p ±5%
Horizontal acceptance $\Delta \theta$	± 50 mrac
Vertical acceptance $\Delta \phi$	± 65 mrad

Magnetic rigidity Bp 0.98 Tm

SECONDARY BEAM

Exotic @ INFN-LNL

Cryogenic production gas target: 5-cm long double-walled cylindric cell Entrance (exit) windows: 14 (16) mm made with 2.2 μ m havar Pressure: up to 1.2 bar

RIB Tracking performed with position-sensitive PPACs (Parallel Plate Avalanche Counter)

Light RIBs @ Exotic

 ${}^{17}F(S_p = 600 \text{ keV})$ p(¹⁷O,¹⁷F)n Q=-3.54 MeV E=3-5 MeV/uP:93-96% **I:10⁵ pps** ⁸**B** (S_p= 137.5 keV) ³He(⁶Li,⁸B)n Q=-1.97 MeV E=3-5 MeV/uP:30-43% 1:10³ pps ⁷**Be** (S_α= 1.586 MeV) p(⁷Li,⁷Be)n Q=-1.64 MeV E=2.5-6 MeV/u P:99% 1:10⁶ pps ¹⁵O (S_p= 7.297 MeV) *p(*¹⁵*N*, ¹⁵*O*)*n* Q=-3.54 MeV E=1.3 MeV/u P:98% I:4*10⁴ pps ⁸Li (S_n= 2.033 MeV) d(⁷Li,⁸Li)p Q=-0.19 MeV E=2-2.5 MeV/u P:99 % 1:10⁵ pps 10^{10} C (S_p= 4.007 MeV) $p(^{10}B, ^{10}C)n$ Q=-4.43 MeV E=4 MeV/u P:99 % 1:5*10³ pps ¹¹C (S_p= 8.689 MeV) **p(**¹¹**B**,¹¹C)**n** Q=-2.76 MeV E=4 MeV/u P:99 % 1:2*10⁵ pps

Exotic: Experimental Program

- Study of reaction dynamics with light RIBs
- Study of a clustering phenomena in light exotic nuclei
- Direct and indirect measurements of astrophysical interest
- The use of the facility EXOTIC as a separator for Heavy-Ion Fusion Evaporation Residues from stable beams for measurements at subbarrier energies is under investigation: recent tests performed with encouraging results

Exotic: the experimental set-up

PPAC A

Entirely developed by our collaboration

- 2 position-sensitive Parallel Plate Avalanche Counters (PPACs) for beam tracking and ToF measurements
- EXPADES: a high-granularity, compact, flexible, portable charged-particle detection array

8 (Tri)Telescopes

```
∆E1 – IC, 10 cm x 10cm x 6.8 cm
```

 $\Delta E2 (40/60 \ \mu m) + E_{res} (300 \ \mu m) - DSSSDs$ 64 x 64 mm² active area 32 x 32 strips (2 mm pitch size - 40 \ \mu m interstrip separation) 2 x 2 mm² pixel

 $\Lambda \theta = 1^{\circ}$ at d=10.5 cm

Z and A identification through ΔE -E TOF information Good energy, time and angular resolution High granularity Distance from target varies from 10.5 to 22.5 cm Coverage: 22% of 4π sr at 10.5 cm

D. Pierroutsakou et al, NIM A 834 (2016) 46

Exotic: the experimental set-up

Parallel Plate Avalanche Counter

1.5 μ m-thick mylar windows Active area: 62x62 mm² Central cathode and two anodes (60 gold-plated tungsten wires in the x and y directions) (d_{AC} = 2.4 mm)

Gas: C₄H₁₀ at 10-20 mbar

1 mm position resolution High tracking efficiency Counting up to 10⁶ Hz **△E1:** Transverse Field Ionization Chamber

1.5 μ m-thick mylar windows

Frisch grid Gas: CF_4 at 50-100 mbar

FWHM 73 keV for $\Delta E=1$ MeV

DSSSD, **ΔE2: 40/60** μm and E_r: 300 μm

Readout: home-made highly integrated low-noise electronics And/Or ASIC chip (IDEAS-GM) Δ E2 FWHM Δ E=38 (34 intrinsic) keV for E=5.805 MeV FWHM Δ t = 1 ns

 $${\bf E_r}$$ FWHM ${\it \Delta} E{=}66~(33~intrinsic)~keV$ for $E{=}5.805~MeV$

Expades Configurations

6 two-stage DSSSD telescopes

4 three-stage IC-DSSSD telescopes

EXPADES was installed at the focal plane of the EXOTIC facility in June 2013 and has been used in various experimental configuration, due to its high flexibility.

Upgrade : 1.5 mm-thick DSSSD for the detection of more energetic particles in addition or in alternative to the 300 μ m-thick E_{res} DSSSDs.

Exotic nuclei reaction dynamics at near and sub-barrier energies

Characteristics of exotic nuclei: Excess of neutrons or protons, short half-life, low binding energy, halo structure, neutron or proton dominated surface

Coupling to strong reaction channels (breakup, transfer) due to the low binding energy and the halo structure \rightarrow Influence on elastic scattering and fusion \rightarrow New phenomena at the Coulomb barrier.

Elastic scattering → probe the tail of the wave function, and then surface properties, such as size of nuclei and surface diffuseness -> peculiar nuclear structure

- 1) Large reaction cross section with respect to stable encounters
- 2) Disappearance of the conventional "threshold anomaly"

3) Elastic scattering AD shapes that markedly differ from the expected classical Fresnel scattering pattern

Complete fusion cross section → probe the potential from the inner side of the nucleus - insight into a number of static and dynamic effects -> **channel coupling effects**

Enhancement if the breakup is considered as a normal coupling channel, the halo structure causes strong force to begin acting at large distances -> appearance of dipole strength at low E*

Decrease if it prevents complete capture of the projectile by the target

⁷Be case

$S_{\alpha} = 1.586 \text{ MeV}, T_{1/2} = 53.22 \text{ d}, \text{ g.s. } J^{p} = 3/2^{-1}$

Nucleus	Breakup Threshold (MeV)
⁷ Be	1.60
⁶ Li	1.48
⁷ Li	2.45

⁷Be is the mirror weakly bound radioactive nucleus of ⁷Li with a well-pronounced ³He+⁴He cluster structure and it is the core of ⁸B.

⁷Be breakup threshold in ³He+⁴He is similar to that of the weakly bound ⁶Li.

Interesting to study:

- Elastic scattering of ⁷Be: does it behave like the ⁷Li or ⁶Li one?
- Reaction mechanisms: ideal case (among all light ions) where the interplay between different reaction mechanisms at Coulomb barrier energies can be easily addressed quite in detail.

⁷Be + ⁵⁸Ni

Performed with Dinex Array, see G. Marquinez-Duran et al., NIM A 755, 69 (2014)

Elastic Scattering: agreement with an earlier measurement by *E.F. Aguilera et al., Phys. Rev. C. 79, 021601(R) (2009)*

⁷Be + ²⁰⁸Pb Never Measured Before!

Direct Processes: larger production of ⁴He than ³He. **No coincidences detected**

M. Mazzocco et al., Phys. Rev. C. 92, 024615 (2015)

Goal: to Detect Coincidences

⁷Be + ²⁰⁸Pb

Spokespersons: M. La Commara, L. Stroe, M. Mazzocco

EXPADES

⁷Be RIB (2.5 * 10⁵ pps)

A preliminary **optical model best-fit analysis** of the quasi-elastic scattering angular distributions suggests for ⁷Be ($S_{\alpha} = 1.586 \text{ MeV}$) a **behaviour** more similar to ⁷Li ($S_{\alpha} = 2.468 \text{ MeV}$) than to ⁶Li ($S_{\alpha} = 1.475 \text{ MeV}$).

⁷Be + ²⁰⁸Pb

^{3,4}He Production

³He and ⁴He have significantly different yields, thus the breakup process does not dominate the reaction dynamics.

The ⁴He production yield is much larger than the ³He one, qualitatively confirming our previous result for the system ⁷Be + ⁵⁸Ni, PRC 92, 024615 (2015)

We detected a few !!!

What About Coincidences?

A detailed kinematical analysis is on going to investigate the nature of the detected coincidences $\rightarrow Q_{value}$ and E_{rel}

Clustering in nuclei

 α clustering manifests itself in α -conjugate nuclei through the existence of twin quasirotational bands of states of alternating parities and large α -particle width.

And what is expected out of the stability valley?

Light exotic nuclei may show cluster configurations where at least one of the clusters is unbound or weakly bound \rightarrow Exotic clustering regime \rightarrow More favoured for nuclei approaching the drip-lines

Search for ¹⁵O- α configurations associated to ¹⁹Ne states

Spokespersons: D. Torresi, C. Wheldon

Elastic scattering of the system ¹⁵O+⁴He, never measured before, performed with the Thick Target Inverse Kinematics method (TTIK). *K. P. Artemov et al., Sov. J. Nucl. Phys.* 52, 408(1990) *G. Rogachev PhD thesis*

- Measurements of the elastic scattering excitation function in a wide range of energies using a single beam energy with the TTIK method
- ✓ R-matrix analysis for the extraction of
 - Energy and width of the resonances
 - Reduced α -width

Why ¹⁹Ne?

- A number of Ne isotopes manifest evidences of clustering phenomena. This makes the ¹⁹Ne a good candidate to manifest cluster structures.
- 2. Improvement of our knowledge on the ¹⁵O(α,γ) ¹⁹Ne and ¹⁸F(p, α)¹⁵O reaction rate of astrophysical interest.

¹⁵O + α experiment

- The chamber is filled with gas at such a pressure to stop the beam
- ✓ The beam slows down into the gas
- Elastic scattering occurs at different positions in the chamber
- ✓ Detectors placed at 0° and around detect the recoiling a particles
- \checkmark Energy and position where the reaction occurs can be reconstructed from the energy and position of the detected α
- ✓ Stopping power of the beam and α particle should be known

Exotic upgrade for experiments with reaction gas targets

Modifications of the EXOTIC beam line were performed in early 2015, to allow the realization of experiments by employing **RIBs** impinging on reaction **gas targets** (thick targets).

A new small chamber was built hosting the PPAC B that separates, through a havar window, the scattering chamber (filled with ⁴He gas) from the beam line (at high vacuum).

Exotic nuclei reactions of astrophysical interest

Stable beams and targets \rightarrow data on Big Bang nucleosynthesis and quiescent burning scenarios (10⁹ years)

Need: High beam intensities, thick targets that can tolerate the beams, low backgrounds, long runs

Stellar nucleosynthesis paths involve **UNSTABLE** species. In astrophysical sites such as novae, x-ray busters and type Ia supernovae, energy source \rightarrow Explosive Hydrogen and Helium burning.

RIBs provide data for these fast (few seconds to hours) explosive burning scenarios

What we can study?

(p, γ) (novae, rp-process) (α,p) (rp-process) Need: beams of unstable nuclei (low intensities, contaminants), thick targets (to compensate for the intensity), long runs

Needs for β -decay rates, masses, (p, γ) and (α ,p) reaction rates \rightarrow **p-rich RIBs** of first and second generation facilities

Unknown site (supernovae ?) and properties of nuclei in the r-process path (half-lives, masses, n-capture cross sections,....) \rightarrow **n-rich RIBs** produced by second generation ISOL facilities: SPES, SPIRAL2,...

(n, γ) (r-process)

⁷Be(n, α)⁴He: THM @EXOTIC

Spokespersons: L. Lamia, M. Mazzocco

- ⁷Be(n,α)α (Q-value=18.99 MeV) was studied by applying the THM to the reaction ²H(⁷Be, α ⁴He)p (Q-value=16.765 MeV) by properly selecting the corresponding quasi-free contribution (QF) to the total reaction yield;
- 2) Deuteron "d" is used as TH-nucleus
- 3) Use of large area 6x6 cm² IC & DSSSD

Investigating the energy region of interest for BBN E_{cm} = 0-1.5 MeV, where the reaction rate is still assumed with an order of magnitude of uncertainty.

Large discrepancy (about a factor 3) between predicted and observed primordial ⁷Li abundance, essentially determined by the production and destruction of ⁷Be nucleus.

¹⁸Ne(α ,p)²¹Na @ EXOTIC: future experiment

X-ray Burst

From Hot CNO cycle → *rp* process to synthesize heavier masses

Key parameter: Rate of ¹⁸Ne(α ,p)²¹Na reaction

¹⁸Ne(α ,p)²¹Na @ EXOTIC: future experiment

Direct Measurements:

Only two performed at Louvain-la-Neuve at E_{cm} = 1.7-3.01 MeV. Still **too high** energies to be relevant for astrophysics

Indirect Measurements:

Different techniques (time-reversal, resonant scattering, ...) performed at ISAC II (Triumf, Canada), ANL (Argonne, USA), CRIB (Riken, Japan),...

¹⁸Ne(α ,p)²¹Na @ EXOTIC: future experiment

- Discrepancies between measurements
- Need to lower the energies for astrophysics

Perform a new direct measurement at Exotic

¹⁸Ne (1.7 s) production via the reaction ³He(¹⁶O, ¹⁸Ne)n at

E(¹⁶O) = 86 MeV (50-100 pnA) and P=1 bar

 $I(^{18}Ne)=2.5*10^{5}pps @ EXOTIC, with Wien Filter transmission \approx 50\%$

³⁰P(p,γ)³¹S @ EXOTIC: future experiment

(Astro)physical motivation

- This reaction influences the production of elements between Si and Ca in the explosion of O-Ne novae

- The isotopic ratio ³⁰Si/²⁸Si depends on this reaction (destroys the ³⁰P before decaying to a ³⁰Si)

- Anomalously high isotopic ratios ³⁰Si/²⁸Si measured in pre-solar grains of possible O-Ne novae origin

Existing measurements:

-Yale -> somes resonances were measured through the indirect measurement -(³¹P(³He, t)³¹S) but the derived cross section has a large uncertainty

-There is also a large uncertainty in the calculation of the reaction rate

 \Rightarrow direct measurements with a RIB are necessary

²⁷Al (⁴He, n)³⁰P or ²⁹Si (d, n)³⁰P at 50 pnA of primary beam I(³⁰P) ~10⁴-10⁵ pps @ EXOTIC Experimental set up: IC+DSSSD 300 μ m + γ scintillators

EXOTIC facility as velocity filter

We performed a test of the facility EXOTIC used as a **beam separator** for detecting **Fusion Evaporation Residues** by studying the ³²S+⁴⁸Ca,⁶⁴Ni reactions.

The fusion excitation function of ³²S+⁴⁸Ca,⁶⁴Ni has been recently studied at LNL (by the PRISMA-FIDES collaboration) in a wide energy range, from above the Coulomb barrier down to cross sections in the sub-barrier region with the PISOLO set up.

Re-measuring this fusion excitation function with EXOTIC at selected energies can provide a useful comparison of the performance of the two set-ups (PISOLO and EXOTIC) to determine whether the larger acceptance of EXOTIC allows us to measure cross sections at the level of a few tens of nanobarn.

Higher Rejection factor at 0°

The **ER detection rate** was found to be 3 times larger and this can be improved in the next future by using a lower voltage Wien filter and a larger solid angle silicon detector

Possible use of the EXOTIC facility with the SPES RIBs for sub-barrier fusion measurements

EXOTIC: future and perspectives

EXOTIC is a facility for the in-flight production of low-energy light RIBs, fully operational at INFN-LNL. The **experimental set-up** installed at EXOTIC consists of: two PPACs for the RIB tracking and for ToF measurements and the compact, high-granularity, flexible, portable charged-particle detection array EXPADES.

Stimulating nuclear physics and nuclear astrophysics measurements can be performed employing the produced RIBs, in the framework of international collaborations.

Possibility to use the facility as a velocity filter to perform **fusion-evaporation** experiments at **sub-barrier energies** with **stable** beams and also with the **RIBs** of the next generation ISOL-type facility **SPES**, that is being constructed at INFN-LNL.

EXOTIC Collaboration

A. Boiano, C. Boiano, M. La Commara, G. La Rana, M. Mazzocco C. Parascandolo, D. Pierroutsakou, C. Signorini, F. Soramel, E. Strano

In collaboration with ...

Milano (Italy): A.Guglielmetti

Ioannina (Greece): A.Pakou, O.Sgouros, V.Soukeras, X.Aslanouglou

Athens (Greece): E.Stiliaris

Warsaw (Poland): N.Keeley, C.Mazzocchi, K.Rusek, I.Strojek, A.Trzcinska

Birmingham (UK): T.Kokalova, C.Wheldon

NIPNE (Romania): D.Filipescu, T.Glodariu, A.I.Gheorghe, T.Sava, L.Stroe

Huelva (Spain): I.Martel, L.Acosta, G.Marquinez-Duran, A.M.Sanchez-Benitez, H.Silva

CNS + RIKEN (Japan): H.Yamaguchi, S. Hayakawa, D.Kahl, Y.Sakaguchi, S.Kubono (RIKEN), N.Iwasa (Sendai), T.Teranishi (Kyushu), Y.Wakabayashi (RIKEN)

KEK (Japan): H.Miyatake, S.Jeong, Y.Watanabe, H.Ishiyama, N.Imai (CNS), Y.Hirayama, Y.H.Kim, S.Kimura, I.Mukai, I.Sugai

CIAE (China): H.Q.Zhang, C.J.Lin, H.Jia, Y.Yang, L.Yang, G.L.Zhang

LNL-Padova (Italy): C.Broggini, A.Caciolli, L.Corradi, R.Depalo, E. Fioretto, F.Galtarossa, J.A. Lay, R.Menegazzo, D. Mengoni, G. Montagnoli, D.Piatti, F. Scarlassara, A.M. Stefanini

LNS-Catania (Italy): D.Carbone, M.Cavallaro, S.Cherubini, A.Di Pietro, J.P.Fernandez-Garcia, P.Figuera, M.Fisichella, M.Gulino, M.La Cognata, L.Lamia, M.Lattuada, R.G.Pizzone, S.Puglia, G.G.Rapisarda, S.Romano, C.Spitaleri, D.Torresi, O.Trippella (PG), A.Tumino