Constraining the $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ Reaction Rate Using Direct Measurements at DRAGON

R. S. Wilkinson

PhD Student, University of Surrey

Nuclear Physics in Astrophysics VIII
20th June 2017
Outline

1. Role of $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ in Explosive Stellar Phenomena
2. Previous Experimental Measurements
3. S1560 Experiment at TRIUMF
4. Preliminary Results and Ongoing Analysis
Explosive Stellar Phenomena
Novae and X-ray Bursts

- Environments with large $T \& \rho$ → explosive nuclear burning.

- Novae and X-ray bursts → thermonuclear runaway.

- Important contributors to galactic chemical evolution.
$^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ in ONe Novae

Constraining the Synthesis of ^{19}F

- ^{19}F is usually produced in novae via:
 \[^{17}\text{O}(p,\gamma)^{18}\text{F}(p,\gamma)^{19}\text{Ne}(\beta^+)^{19}\text{F}\]

- However, ^{19}F synthesis can be bypassed via:
 \[^{17}\text{O}(p,\gamma)^{18}\text{F}(p,\gamma)^{19}\text{Ne}(p,\gamma)^{20}\text{Na}\]
Between outbursts, Type I X-ray bursts generate energy through the \(\beta \)-limited hot CNO cycles.

During an outburst, it becomes possible to "breakout" from the hot CNO cycles into the rp-process, where the main reaction pathway linking these processes is:

\[^{15}\text{O}(\alpha, \gamma) ^{19}\text{Ne}(p, \gamma) ^{20}\text{Na} \]
Previous Studies I
1990-1995

- 1990 - 1993 - Indirect studies, using $^{20}\text{Ne}(^{3}\text{He},t)^{20}\text{Na}$ reactions. Single resonance at $E_R \sim 450$ keV dominates reaction rate. $J^{\pi} = 1^+$ or 3^+.

- 1994 - First direct study at Louvain-la-Neuve. $J^{\pi} = 1^+$, but 3^+ could not be ruled out. Resonance strength upper limit of 18 meV.

- 1995 - β-decay study of ^{20}Mg at GANIL. $J^{\pi} = 3^+$, but 1^+ could not be ruled out, due to high experimental background.

• 1998 - In-depth 19Ne(d,n) study in which the work by Page et al. was re-examined. The resonance strength upper limit was changed slightly to 21 meV, still assuming $J^\pi = 1^+$.

• 2000 - Shell model study of 20Na. $J^\pi = 3^+$ for the resonant state, 1^+ ruled out. Resonance strength lower limit of 16 meV.

• 2004 - Another direct study using the ARES recoil separator. Updated resonance strength upper limit of 15 meV. $J^\pi = 1^+$ or 3^+.

Previous Studies III
2010-2016

- 2010 - A new \(^{3}\text{He},t\) measurement obtained a more precise Q value for the \(^{19}\text{Ne}(p,\gamma)^{20}\text{Na}\) reaction, implying previous measurements were 10 keV too low in energy.

- 2012 - \(\beta\)-delayed proton study at Texas A&M University, optimised to detect low energy protons. Non-detection of resonant state implies \(J\pi = 3^+\).

- 2016 - \(^{19}\text{Ne}(d,n)^{20}\text{Na}\) study at FSU, detecting protons from the decay of \(^{20}\text{Na}\). Finds \(J\pi = 3^+\) for the resonant state, but some inconsistencies with previous work.

Main motivation:

Direct measurement assuming new resonant energy of ~ 457 keV.

Main aims:

Definitively measure the strength of the resonance.

Bring all previous studies into agreement.

Solve a 20+ year old debate in nuclear astrophysics!
The DRAGON Recoil Separator
Detector of Recoils And Gammas Of Nuclear Reactions

• 19Ne beam from the ISAC facility.
• Windowless gas target filled with H_2 gas.
• 20Na recoil ions stopped in an ionisation chamber.
• Radiative capture γ-rays measured in BGO array.

$$\langle \sigma \nu \rangle = \left(\frac{2\pi}{\mu kT} \right)^{\frac{3}{2}} \hbar^2 (\omega \gamma) \exp \left(- \frac{E_r}{kT} \right)$$
Preliminary Results
The "Golden" Cut

- We seem to have seen ^{20}Na recoils!
Of the 15 events in the dual TOF spectrum, 9 are clustered together.
Preliminary Results
Resonance strength formula and Beam Normalisation

\[\omega \gamma = \frac{2\epsilon}{\lambda^{2}_{cm}} \frac{N_{r}}{\eta_{r} N_{b}} \frac{m}{M + m} \]

S1560 - Beta Scaler Rate

<table>
<thead>
<tr>
<th>Proj</th>
<th>Entries</th>
<th>Mean</th>
<th>Mean y</th>
<th>RMS</th>
<th>RMS y</th>
</tr>
</thead>
<tbody>
<tr>
<td>proj</td>
<td>386037</td>
<td>1.93e+05</td>
<td>684.1</td>
<td>1.114e+05</td>
<td>231.2</td>
</tr>
</tbody>
</table>

Run Time (s)
Preliminary Results

Table of Important Values

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (amu)</td>
<td>19.0018802</td>
<td>3 \times 10^{-7}</td>
</tr>
<tr>
<td>m (amu)</td>
<td>1.007276466879</td>
<td>9.1 \times 10^{-11}</td>
</tr>
<tr>
<td>ϵ (eV cm2 / 1015 atoms)</td>
<td>84.275</td>
<td>5.521</td>
</tr>
<tr>
<td>N_b (particles)</td>
<td>2.8449 \times 1012</td>
<td>6.2994 \times 1011</td>
</tr>
<tr>
<td>CSF$_{Na}$</td>
<td>0.4386</td>
<td>0.0003</td>
</tr>
<tr>
<td>η_{sep}</td>
<td>0.9926</td>
<td>0.0210</td>
</tr>
<tr>
<td>η_{live}</td>
<td>0.884638</td>
<td>4.4 \times 10^{-5}</td>
</tr>
<tr>
<td>$\eta_{MCP,t}$</td>
<td>0.769</td>
<td>0.006</td>
</tr>
<tr>
<td>η_{end}</td>
<td>0.589222</td>
<td>0.084294</td>
</tr>
<tr>
<td>η_{γ}</td>
<td>0.462</td>
<td>0.026</td>
</tr>
</tbody>
</table>
Preliminary Results
BGO z-coordinate distribution

- Obviously not the ideal case, due to low statistics.
Despite issues with low statistics, a preliminary value for both the resonance strength and resonance energy could be determined.

\[E_R \sim 458 \text{ keV} \quad \omega \gamma \sim 18 \text{ meV} \]
A log-likelihood analysis is being carried out to extract values of E_R and $\omega\gamma$, by combining the low statistics data with suite of Geant simulations of DRAGON where E_R is varied.
The $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ reaction rate plays an significant role in both nova and X-ray burst nucleosynthesis.

The reaction rate is dominated by a single narrow resonance at $E_R \sim 450$ keV, and has been a subject of debate for almost 25 years.

A direct measurement was made using the DRAGON recoil separator, at an energy ~ 10 keV higher than previous studies.

Experimental analysis is currently ongoing, but preliminary estimates show the resonance energy to be ~ 458 keV and the resonance strength to be ~ 18 meV.
This result seems to help reconcile previous experimental results:

- Previous direct measurements (Page et al. and Couder et al.) were optimised for the wrong resonance energy.

- Our strength is in line with the previous upper limits from (d,n) reactions of $\omega \gamma < 29$ meV (Vancraeynest et al.).

- Our strength is entirely consistent with a 3^+ spin-parity assignment, in good agreement with beta-delayed proton studies at GANIL and TAMU (Piechaczek et al. and Wallace et al.).
Collaborators:

G. Lotay, University of Surrey and NPL
C. Ruiz, TRIUMF National Laboratory
G. Christian, Texas A&M University
C. Akers, University of York
W. N. Catford, University of Surrey
A. A. Chen, McMaster University
D. S. Connolly, TRIUMF National Laboratory
B. Davids, TRIUMF National Laboratory
D. A. Hutcheon, TRIUMF National Laboratory
D. Jedrejcic, Colorado School of Mines
A. M. Laird, University of York
A. Lennarz, TRIUMF National Laboratory
E. McNeice, TRIUMF National Laboratory
J. Riley, University of York
M. Williams, University of York
Thank you for your attention

Grazie per l’attenzione