

Study of stellar nucleosynthesis using indirect techniques Faïrouz Hammache (IPN-Orsay)

Nuclear Physics in Astrophysics VIII conference

LNS,Catania, 18-23 June 2017

Why indirect techniques ?

- Many important reactions involve radioactive isotopes
 - (n,γ) captures in s-process on waiting points:
 ⁶⁰Fe(n,γ)⁶¹Fe,...
 - $(n,p) \& (n,\alpha)$ reactions in massive stars:
 - ${}^{18}F(n,p), {}^{18}F(n,\alpha), {}^{26}Al(n,p), \dots$
 - ${}^{30}P(p,\gamma){}^{31}S$, ${}^{18}F(p,\alpha){}^{15}O$,... in Novae
 - (n,γ) captures in r-process
- → Long-lived isotopes can be made into targets but ~ few atoms/cm²
- → Short lived nuclei : beams but the available intensities ~10⁵ pps are too low for direct measurements
- Indirect techniques require much lower intensities or use stable beams

Ingredients needed to evaluate $\sigma \& N_A < \sigma v >$

Resonant reactions: $A+x \rightarrow C^* \rightarrow B+y$ or $A+x \rightarrow C^* \rightarrow C+\gamma$

Resonant capture only possible for energies: $E_{cm} = E_R = E_x - Q$

$$\langle \sigma v \rangle = \left(\frac{2\pi}{\mu kT}\right)^{\frac{3}{2}} \hbar(\omega \gamma)_R \exp\left(-\frac{E_R}{kT}\right)$$
$$\rightarrow (\omega \gamma)_R = \frac{2J_c + 1}{(2J_A + 1) \cdot (2J_x + 1)} \frac{\Gamma_x \Gamma_y}{\Gamma_{tot}}$$

• Resonant reaction rates can be calculated if the resonant parameters ($\mathbf{E}_{\mathbf{R}}, \mathbf{J}^{\pi}, \Gamma_{\mathbf{i}}, \Gamma_{\mathbf{i}}/\Gamma_{\text{tot}},...$) are known

Indirect techniques & reactions can be used to extract these spectroscopic information: **Transfer, ANC, THM, inelastic** scattering, ...

Ingredients needed to evaluate $\sigma \& N_A < \sigma v >$

Non resonant reactions: e.g Direct (n,γ) captures

$$\sigma_{(n,\gamma)} = \sum_{i} C_i^2 S_i \sigma_i^{DC} = \sum_{i} C_i^2 S_i \left| \int_{r=0}^{\infty} \phi_f \theta_{em} \phi_i d\vec{r} \right|^2$$

TEDCA code: H. Krauss

Spectroscopic information on the low energy bound states, E_x, 1, C²S, are accessible via (d,p) transfer reactions.

⁶⁰Fe observations in the galaxy & solar system

⁶⁰F γ-ray emission in the galaxy seen by RHESSI 04 & INTEGRAL 07 Smith et al. 04 & Wang et al. 07

⁶⁰Fe excess in deep ocean ferro-manganese crusts

➢ ⁶⁰Fe in galactic cosmic rays CRIS/ACE

& marine sediments

⁶⁰Fe in lunar sample

- For Evidence of recent (~2.2 Myr) nearby supernovae explosions
 @ a distance < 1 kpc</p>
- > Observed in solar grains as ⁶⁰Ni excess Mostefaoui et al.04, Tang et al. 12

Fimiani et al. 2016

Knie et al. 04, Wallner et al. 2016

Binns et al. 2016

⁶⁰Fe nucleosynthesis

➢ ⁶⁰Fe mainly produced in massive stars through weak s-process component & released in ISM by subsequent Core Collapse supernovae Limongi et al. ApJ 06

 22 Ne(α ,**n**) 25 Mg

- \rightarrow Convective He-shell burning (T $\ge 4 \cdot 10^8$ K, N_n ~10¹¹ cm⁻³)
- \rightarrow Convective C-shell burning (T $\ge 10^9$ K, N_n ~10¹² cm⁻³)
- \rightarrow Very small contribution from explosive phase

➢ Production of ⁶⁰Fe in core-collapse supernovae depends strongly on ⁵⁹Fe(n,γ)⁶⁰Fe & ⁶⁰Fe(n,γ)⁶¹Fe cross sections

60 Fe(n, γ) 61 Fe status

Reaction rate: HF calculations (resonant capture) + shell-model (direct capture)

> 60 Fe(n, γ) 61 Fe activation measurement: Uberseder et al. 09

Are the **shell model** calculations reliable in this mass region? **Does the direct** component plays an **important role** as in ⁴⁸Ca(n, γ)⁴⁹Ca case **? Krausmann et al. 96** \rightarrow Direct $\sigma_{60Fe(n,\gamma)61Fe}$: E_x, 1 & C²S of ⁶¹Fe \rightarrow (d,p) transfer reaction

Study of the direct component ⁶⁰Fe(n,γ)⁶¹Fe via ²H(⁶⁰Fe,pγ)⁶¹Fe transfer reaction @ LISE/GANIL

Experimental Results: ⁶¹Fe excitation energy spectrum

- FWHM(peak) > 800 keV (expected energy resolution) \rightarrow population of 2-3 states
- Population of the 861 keV ($J^{\pi}=9/2+$) isomeric state ($\tau=239$ ns)

Experimental Results: ⁶¹Fe excitation energy spectrum

- FWHM(peak) > 800 keV (expected energy resolution) \rightarrow population of 2-3 states
- Population of the 861 keV ($J^{\pi}=9/2+$) isomeric state ($\tau=239$ ns)

Experimental Results : γ-ray spectra (1st peak)

- Population of 207 & 391 keV states in the 1st peak
- No clear identification of the γ-ray partners of the 207 & 391 keV transitions in the range 1 MeV <Ex<2 MeV → large background, low statistics (low cross sections, efficiency ⊥)

Experimental Results: Spectroscopic factors

Comparison with shell model calculations

Direct $\sigma_{60Fe(n,\gamma)61Fe}$

Very **good agreement** between SM predictions (S.M.Lenzi et al. 2010) & experimental results → SM calculations are reliable in this mass region

$$\sigma_{(n,\gamma)} = \sum_{i} C_{i}^{2} \mathbf{S}_{i} \sigma_{i}^{DC} = \sum_{i} C_{i}^{2} \mathbf{S}_{i} \left| \int_{r=0}^{\infty} \phi_{f} \theta_{em} \phi_{i} d\vec{r} \right|^{2}$$

TEDCA code: H.Krauss

S. Giron, F. Hammache, N. de Séréville et al. 2017

<u>@ 25 keV:</u> σ_{total} =10 mbarn Uberseder et al. 09 This work: σ_{direct} =0.2 mbarn → 2% (total) → Resonant capture dominates

¹⁵N Nucleosynthesis in massive stars

- Massive stars (M > 8 M_{\odot}) play a key role in the chemical & dynamical evolution of our galaxy
- Material from these stars is brought to earth in presolar grains embedded in meteorites

- Low-Density graphite grains carry isotopic anomalies typical from massive stars
 → Which layer is at the origin of these anomalies?
- Recent measurements show spatially well correlated hot spots of excesses in ¹⁵N and ¹⁸O
- \rightarrow This points toward the He layer Groopman et al. 12
- Rauscher et al. \rightarrow Stellar explosion affects slightly ¹⁸O mass fraction in the inner part of He layer but strongly ¹⁵N

 \rightarrow The observation of ¹⁵N is an important probe to explain the origin of supernova graphite grains & constrain their formation scenario

¹⁵N Nucleosynthesis in massive stars

Sensitivity study for ¹⁵N production in case of explosion of a 15 M_{\odot} star J. Bojazi & B. Meyer 2014

→ Mainly due to uncertainty of 5 in the ${}^{18}F(n,p){}^{18}O \& {}^{18}F(n,\alpha){}^{15}N$ reaction rates (Hauser-Feschbach calc.)

Lack of spectroscopic information in ¹⁹F nucleus above neutron threshold

¹⁹F experimental status

- **Region of interest:** $S_n < E_x < S_n + 150 \text{ keV} (T_9=0.7\text{GK})$
 - s-wave neutron capture: $J^{\pi} = 1/2+$, 3/2+
 - p-wave neutron capture: $J^{\pi} = 1/2$ -, 3/2-, 5/2-
- 8 known states with measured Γ_{tot} (Tilley et al. 95)

Ex (MeV± keV)	Jπ	Γ _{c.m} keV	Γ _p keV	Γ _α keV
10.469±4		11.0±1.2		
10.488±4		4.8±0.8		
10.496±1.3	3/2+	5.7±0.6	2.4	(1.0)
10.521±4		14±2		
10.542±11		2.5±0.2		
10.555±3.0	3/2+	4.0±1.2		
10.564±2.0		4.6±0.7		
10.581±4	(5/2+)	22±3		

Reaction rate : $\omega \gamma = \omega \Gamma_n \Gamma_{p,\alpha} / \Gamma_{tot}$ and $\Gamma_{tot} = \Gamma_n + \Gamma_p + \Gamma_\alpha$

Experimental Method & Set-up

 \rightarrow Populate ¹⁹F above the neutron threshold via inelastic proton scattering => less selectivity

• Decay branching ratio: $\Gamma_p / \Gamma_{tot} \& \Gamma_{\alpha} / \Gamma_{tot}$ • Angular correlations: J

6 W1 detectors (300 µm) 5 x 5 cm², 16+16 strips, $\Delta E = 18$ keV d ~ 10 cm, ε ~ 10% of 4π θ lab= 110° - 165° \rightarrow θ cm= 60° - 170°

Experimental results: ¹⁹F excitation energy spectrum & deconvolution

10 MeV <Ex <10.8 MeV

P. Adsley, F. Hammache, N. de Séréville et al

Energy resolution : 16 keV

 \blacktriangleright Good agreement with the known states except with Ex=10.564 & 10.581 MeV (off by 10 keV)

 \geq 2 new states in the region of interest at Ex= 10.432 MeV & Ex= 10.458 MeV

Preliminary results:

Coincidence spectra

α

D6

Split-Pole position vs Silicon energy spectrum:

 $\rightarrow \alpha_0$ locus is very clear

 \rightarrow p₀ locus is very clear but has an overlap with ¹²C α -decay locus. They are distinguished with ToF information for D5&6 only

3000

2500

Preliminary results: α coincidence spectrum & relative branching ratios

In the region of interest

➢ For most of the states Γ_{α0} is larger than Γ_{p0} by ~ one order of magnitude
 ➢ Γ_{p0}/Γ_{α0} (this work) do not agree with Γ_{p0}/Γ_{α0} (Talys predictions) by a factor ~2 – 4
 ➢ ¹⁸F(n,α)¹⁵N dominates over ¹⁸F(n,p)¹⁸O

Next (Analysis in progress)

Extract the angular correlations ; Deduce the absolute values of Γ_{p0} , $\Gamma_{\alpha 0}$ & Γ_n \rightarrow Calculate ¹⁸F(n,p)¹⁸O and ¹⁸F(n,\alpha)¹⁵N reactions rates

Summary

- Various indirect techniques (transfer & inelastic scattering reactions,...), beams (stable and unstable) in small & large facilities can be used to investigate key reactions of astrophysical interests.
- The direct component of ${}^{60}Fe(n,\gamma){}^{61}Fe$ reaction was investigated via ${}^{60}Fe(d,p){}^{61}Fe$ reaction in inverse kinematics. It was found to be negligible.
- The measured spectroscopy of ⁶¹Fe confirms the reliability of the LNSP shell model calculations in the N=34 region mass.
- > ¹⁸F(n,p)¹⁸O & ¹⁸F(n,α)¹⁵N reactions, which play a role in the ¹⁵N nucleosynthesis in CC supernova, were investigated through the ¹⁹F(p,p²)¹⁹F* inelastic scattering reaction with the aim of determining the proton and alpha decay branching ratios.
 - ${}^{18}F(n,\alpha_0){}^{15}N$ dominates over ${}^{18}F(n,p_0){}^{18}O$
 - Experimental analysis is still ongoing : angular correlations, proton & alpha decay branching ratios, reactions rates

Collaborations

FRANCE IPN (Orsay), CSNSM (Orsay), GANIL (Caen), CEA-IRFU (Saclay), LPC (Caen), IPHC (Strasbourg), ISMO (Orsay)

<u>**UK</u>** University of York</u>

SPAIN University of Huelva, University of Santiago de Compostel, UPC of Barcelona

<u>CZECH REPUBLIC</u> ASCR, Rez

GERMANY GSI, Darmstadt

<u>PORTUGAL</u> CFNU, Lisboa

JAPAN RIKEN, Wako

ALGERIA University A. Mira, Béjaïa