Nuclear Physics in Astrophysics VIII

Contribution ID: 66

Type: Oral

Measurement of key resonance states for the ${}^{30}\mathrm{P}(\mathrm{p},\gamma){}^{31}\mathrm{S}$ reaction rate

Tuesday, 20 June 2017 11:50 (20 minutes)

% % Nuclear Physics in Astrophysics 8 template for abstract % % Format: LaTeX2e. % % Rename this file to name.tex, where 'name' is the family name % of the first author, and edit it to produce your abstract. % \documentstyle[11pt]{article} % % PAGE LAYOUT: % \textheight=9.9in \textwidth=6.3in \voffset -0.85in \hoffset -0.35in \topmargin 0.305in \oddsidemargin +0.35in \evensidemargin -0.35in %\renewcommand{\rmdefault}{ptm} % to use Times font $\label{linear} \label{linear} \lab$ $\log\left(\frac{1 \#2}{1 \#2}\right)$ \begin{document} {\small \it Nuclear Physics in Astrophysics 8, NPA8: 18-23 June 2017, Catania, Italy} \vspace{12pt} \thispagestyle{empty} \begin{center} %%% %%% Title goes here. %%% \TITLE{Measurement of key resonance states for the ${}^{30}P(p, \gamma){}^{31}S$ reaction rate}\\[3mm] %%% %%% Authors and affiliations are next. The presenter should be %%% underlined as shown below. %%% \AUTHORS{A. Kankainen^{1,2}, P.J. Woods¹, H. Schatz^{3,4,5}, T. Poxon-Pearson^{3,4,5}, D.T. Doherty¹, V. Bader^{3,4}, T. Baugher³, D. Bazin³, B.A. Brown^{3,4,5}, J. Browne^{3,4,5}, A. Estrade¹, A. Gade^{3,4}, J. Jos\'{e}^{6,7}, A. Kontos³, C. Langer³, G. Lotay¹, Z. Meisel^{3,4,5}, F. Montes^{3,5}, S. Noji³, F. Nunes^{3,4,5}, G. Perdikakis^{5,8}, J. Pereira^{3,5}, F. R. Zegers^{3,4,5}}, R. Stroberg^{3,4}, M. Scott^{3,4}, D. Seweryniak⁹, J. Stevens^{3,5}, D. Weisshaar³, K. Wimmer⁸, R. Zegers^{3,4,5}} %%%

 $\left| \right|$

\AFFILIATION{1}{University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom}

\AFFILIATION{2}{University of Jyvaskyla, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland}

\AFFILIATION{3}{National Superconducting Cyclotron Laboratory, Michigan State University, \\East Lansing, Michigan 48824, USA}

\AFFILIATION{4}{Department of Physics and Astronomy, Michigan State University, \\East Lansing, Michigan 48824, USA}

\AFFILIATION{5}{JINA Center for the Evolution of the Elements, Michigan State University, \\East Lansing, Michigan 48824, USA}

\AFFILIATION{6}{Departament de F\'{i}sica, EEBE, Universitat Polit\'{e}cnica de Catalunya, E-08019 Barcelona, Spain}

\AFFILIATION{7}{Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain} \AFFILIATION{8}{Central Michigan University, Mount Pleasant, Michigan 48859, USA} \AFFILIATION{9}{Argonne National Laboratory, Argonne, Illinois 60439, USA}

} %%% \vspace{12pt} % Do not modify

% Enter contact e-mail address here.

\centerline{Contact email: {\it anu.kankainen@jyu.fi}}

\vspace{18pt} % Do not modify

\end{center}

%%% %%% Abstract proper starts here.

%%%

Lack of knowledge of the rate of proton capture on radioactive ³⁰P is the most prominent nuclear physics uncertainty in models of oxygen neon (ONe) nova explosions [1,2]. Recently, the ³⁰P(p, γ)³¹S reaction has been studied using the $d({}^{30}P, n)^{31}S$ reaction as a surrogate [3]. A primary beam of ³⁶Ar (150 MeV/A) impinging on a Be target was used to produce the ≈ 30 -MeV/u ³⁰P beam, which was separated with the A1900 fragment separator [4] at the National Superconducting Cyclotron Laboratory. The radioactive ³⁰P beam bombarded a 10.7(8)-mg/cm²-thick CD₂ target surrounded by the Gamma-Ray Energy-Tracking In-beam Nuclear Array GRETINA [5]. The ³¹S ions were analyzed by the S800 spectrograph [6] and identified by energy-loss and time-of-flight measurements. The γ -rays from the decays of excited states above the proton threshold in ³¹S were detected in coincidence with the recoiling ³¹S ions. Angle-integrated cross sections for the key resonances were determined and compared with theoretical (d, n) cross sections.

In this contribution, I will discuss the first experimental constraints on spectroscopic factors and strengths of key resonances in the ${}^{30}P(p,\gamma){}^{31}S$ reaction. In general, negative-parity states have been found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicate the dominance of a single $3/2^-$ resonance state at 196 keV in the region of nova burning $T \approx 0.10 - 0.17$ -GK, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.

\bigskip {\small

\noindent [1] C.~Iliadis, R.~Longland, A.~Champagne, A.~Coc, and R.~Fitzgerald, Nucl. Phys. A 841, 31 (2010);

\noindent [2] J.~Jos\'{e}, A.~Coc, and M.~Hernanz, Astrophys. J. 560, 897 (2001);

\noindent [3] A. Kankainen, P.J. Woods et al., Phys. Lett. B (2017);

\noindent [4] D.J. Morrissey et al., Nucl. Instrum. Meth. Phys. Res. B 204, 90 (2003);

\noindent [5] S. Paschalis et al., Nucl. Instrum. Meth. Phys. Res. A 709, 44 (2013);

\noindent [6] D. Bazin et al., Nucl. Instrum. Meth. Phys. Res. B 204, 629 (2003).}

%%% %%% End of abstract.

%%%

\end{document}

Primary author: Dr KANKAINEN, Anu (University of Jyväskylä)Presenter: Dr KANKAINEN, Anu (University of Jyväskylä)Session Classification: RIBs in nuclear astrophysics 1

Track Classification: Explosive scenarios in astrophysics: observations, theory, and experiments