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Neutrinos and Supernovae

The core of a massive star collapses
after the nuclear burning phases that
leads to an explosion

Supernova shock triggers explosive
nucleosynthesis

Core emits neutrinos

Neutrinos can influence the
nucleosynthesis in outer layers of SNe

Looking for the fingerprint of
neutrinos in the chemical
composition of the universe Schematic structure of a massive star
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Neutrino nucleosynthesis

Emission of 1058 neutrinos
from the collapsing core

〈Eν〉 ≈ 8− 20 MeV

〈Eνe 〉 < 〈Eν̄e 〉 ≤ 〈Eνµ,τ 〉

Inverse β-decay

Particle evaporation

Capture of spallation
products
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First detailed calculations

Nucleosynthesis including
neutrino nucleus reactions

〈Eνe 〉=13 MeV,〈Eνx 〉=25-30
MeV

based on detailed stellar models

parametrized thermodynamic
trajectories
7Li and 11B via 4He(νx ,ν′x p/n) and 12C(νx ,ν′x p)

19F via 20Ne(νx ,ν′x p/n)

138La and 180Ta via 138Ba(νe ,e−) and 180Hf(νe ,e−)
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Progress since the first studies

Woosley et al. (1994), based on models by Wilson et al.

(1988)
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Structure of the neutrino signal
Detailed neutrino transport has reduced expected energies
〈Eνe 〉 = 9 MeV, 〈Eν̄e 〉 = 〈Eν,ν̄µ,τ 〉 = 12 MeV
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Increased relevance of charged current reactions

relative importance of inverse β-decay: σγCC/(σtotal
CC + σtotal

NC ) (in %)

For high ν energies, neutral current spallation clearly dominates for the most
abundant nuclei
reducing the energy shifts the balance more towards charged current
reactions
Increased sensitivity to individual low energy transitions
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Cross-sections based on experimental data
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without neutrinos
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∼10 % constribution to the 26Al production

B(GT ) from 26Mg(3He,t) measurements

Forbidden transitions are added from the theoretical calculations

Branchings are calculated based on a statistical model
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Supernova model

1D piston driven explosions with the KEPLER code (Woosley et al. 2007)

kinetic explosion energy Eexpl = 1.2× 1051erg
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Neutrino flux
Exponentially decreasing
neutrino luminosity

Fermi-Dirac spectrum

Constant neutrino energies

Updated Physics

Reduced neutrino energies

〈Eν〉=8-13 MeV

Improved and extended set of
neutrino-nucleus cross-sections

← Explosion trajectories for a 25 M� model
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Production factors and IMF average

The solar abundances provide observational information for
nucleosynthesis results to compare with

Production factor

PA,normalized =
(

XA

X�A

)
/

(
X16O

X�16O

)

Assuming that CCSNe are the main source of solar 16O

PA,normalized ∼ 1 indicates CCSNe as possible production site

PA,normalized � 1 hints another production site or mechanism

Initial Mass Function (IMF)

Distribution of progenitor masses: dN∗/dm∗ ∝ m−1.35
∗
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Production factors normalized to 16O

IMF averaged production factor for 13-30 M� stars (solar metallicity)

Nucleus no ν Low energies1 High energies2

7Li 0.001 0.07 0.91
11B 0.005 0.45 1.81
15N 0.06 0.09 0.15
19F 0.12 0.25 0.40
138La 0.12 0.86 1.70
180Ta∗ 0.24 0.49 0.88

1) 〈Eνe 〉 = 9 MeV, 〈Eν̄e ,νx 〉 = 13 MeV

2) 〈Eνe 〉 = 13MeV ,〈Eν̄e 〉 = 16 MeV, 〈Eνx 〉 = 19 MeV

*) Only about 40% of 180Ta survive in the long-lived isomeric state
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Production of 11B
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The ν process in 2D

Possibly stronger exposure due to convective motion

2D axisymmetric simulation with CHIMERA (ORNL group, Bruenn et al.
2016, Harris et al. 2017)

Nucleosynthesis calculations with lagrangian tracer particles

based on a non-rotating 12 M� progenitor of solar metallicity (Woosley et
al. 2007)

Neutrino fluxes and energies from the simulation calculated with a
multi-group flux-limited diffusion method
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2D effects on 11B production (preliminary)
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Detailed neutrino signal

Neutrino luminosity including
burst and accretion,
time-dependent energies

Explosion delayed accordingly
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Conclusions

Study of neutrino induced nucleosynthesis for piston driven explosions
in 1D with improved neutrino-nucleus cross-sections and modern
estimates for neutrino energies

Multi-D effects do not change the light element production in the ν
process significantly

Correlations between the yields 138La and 92Nb and the strength of
the neutrino bursts and accretion time

Outlook

I Quantify uncertainties accociated with the ν process and nuclear
reaction rates for nucleosynthesis sensitivity
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