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Neutrinos and Supernovae ﬁ

VaCitth

@ The core of a massive star collapses
after the nuclear burning phases that
leads to an explosion

@ Supernova shock triggers explosive
nucleosynthesis

@ Core emits neutrinos

@ Neutrinos can influence the
nucleosynthesis in outer layers of SNe

o Looking for the fingerprint of
neutrinos in the chemical
Composition Of the universe Schematic structure of a massive star
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Neutrino nucleosynthesis

@ Emission of 10°® neutrinos
from the collapsing core

o (E,) ~8—20 MeV
° (Ev) <(Es) < (Evr)
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Neutrino nucleosynthesis )
S\ sreads

Charged-current (CC)
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Emission of 108 neutrinos g€
from the collapsing core Ve Ve

(E,)) =~ 8—20 MeV . . .
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Inverse (-decay

Particle evaporation

Capture of spallation
products
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First detailed calculations ﬁ,\j
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SUMMARY TABLE: SPECIES DUE TO NEUTRINO NUCLEOSYNTHESIS"

THE y-PROCESS!
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Species H He C Ne O NSE
B ®W c . . ®
- C)

@ Nucleosynthesis including
neutrino nucleus reactions

e (E, )=13 MeV,(E, )=25-30
MeV

@ based on detailed stellar models

LL CSHE

Pmwl a0Omwmmma:

@ parametrized thermodynamic
trajectories

Poml Al 0l mom

“Liand ''B  via 4He(ux,u)'( p/n) and 12C(VX,V>’< p)

Pwmmmwwow: Dl

A
A

YF  via ZONe(ux,u; p/n)
* A = species produced in full abundance; B = important pro-
duction; C = minor production; E = enhanced significant pro-
1381 and '®0Ta via 138Ba(ve,e ™) and BOHf(ve,e ™) duction.
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Progress since the first studies %/\j
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@ Structure of the neutrino signal
@ Detailed neutrino transport has reduced expected energies
o (E,)=9MeV, (E,)=(E,5, ) =12 MeV

2017 Neutrino Nucleosynthesis A. Sieverding



Outline ,ﬁ”\j

/N sreaia

o Introduction

© Results

@ Experimental constraints on neutrino-nucleus cross-sections

© Conclusions

2017 Neutrino Nucleosynthesis A. Sieverding



Increased relevance of charged current reactions

relative importance of inverse S-decay: ol /(0 %8 + oi08!) (in %)
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@ For high v energies, neutral current spallation clearly dominates for the most
abundant nuclei

@ reducing the energy shifts the balance more towards charged current
reactions

@ Increased sensitivity to individual low energy transitions
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Cross-sections based on experimental data /{:\j

= = partial cross section based on experimental data 16|
—  partial cross section including forbidden transitions — *Mg(v, ")
— RPA based calculation s 14
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Neutrino energy (MeV) @ ~10 % constribution to the Al production

e B(GT) from 2°Mg(3He,t) measurements
@ Forbidden transitions are added from the theoretical calculations

@ Branchings are calculated based on a statistical model

2017 Neutrino Nucleosynthesis A. Sieverding



‘/'

/ "\/J

Outline

o Introduction

© Results

@ The v process with updated physics in spherical symmetry

© Conclusions

2017 Neutrino Nucleosynthesis A. Sieverding



Supernova model
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@ 1D piston driven explosions with the KEPLER code (weostey et al. 2007)
@ kinetic explosion energy Eep = 1.2 x 10%erg

Radius (1000 km)

Q
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Neutrino Nucleosynthesis

Neutrino flux

@ Exponentially decreasing
neutrino luminosity

@ Fermi-Dirac spectrum

@ Constant neutrino energies

Updated Physics
@ Reduced neutrino energies
o (F,)=8-13 MeV

@ Improved and extended set of
neutrino-nucleus cross-sections )

<— Explosion trajectories for a 25 M@ model
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Production factors and IMF average ﬁ
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@ The solar abundances provide observational information for
nucleosynthesis results to compare with

Production factor

Xa X160
° ized = 24
PA,normaIlzed (XE\D) / <X166)o

Assuming that CCSNe are the main source of solar 1°0
® PA normalized ~ 1 indicates CCSNe as possible production site

@ PA normalized < 1 hints another production site or mechanism
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Production factors and IMF average ﬁ
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@ The solar abundances provide observational information for
nucleosynthesis results to compare with

Production factor

Xa X160
° ized = 24
PA,normaIlzed (XE\D) / <X166)o

Assuming that CCSNe are the main source of solar 1°0
® PA normalized ~ 1 indicates CCSNe as possible production site

@ PA normalized < 1 hints another production site or mechanism

Initial Mass Function (IMF)

Distribution of progenitor masses: dN,/dm, oc m;1-3°
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Production factors normalized to O ﬁ
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@ IMF averaged production factor for 13-30 Mg, stars (solar metallicity)

Nucleus | no v | Low energies! | High energies®
Li 0.001 0.07 0.91
B 0.005 0.45 1.81
15N 0.06 0.09 0.15
19F 0.12 0.25 0.40
138 4 0.12 0.86 1.70
180T3* | 0.24 0.49 0.88

@ 1) (Ey,) =9 MeV, (Ep,,u,) = 13 MeV
2) (Ey,) = 13MeV (Ep,) = 16 MeV, (E,, ) = 19 MeV

@ *) Only about 40% of *80Ta survive in the long-lived isomeric state
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Production of 1B &)
S\ sreades
@ Si shell (NSE)

» «-rich freeze-out
» Spallation of *He

@ O/Ne shell
» Production from 2C and 10
© C/O shell

» Production from 12C

@ He shell
» Spallation of *He

— (B, ) =13MeV — (B,)=19MeV
5 10° L Si O/Ne ' " He ]
: -
® 100 | \
& E—
@ 107 | mass \
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108 L= .
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15 M, progenitor model, parametrized trajectories Enclosed maSS/AIf:\
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The v process in 2D ﬁ
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@ Possibly stronger exposure due to convective motion

@ 2D axisymmetric simulation with CHIMERA (ORNL group, Bruenn et al.
2016, Harris et al. 2017)

@ Nucleosynthesis calculations with lagrangian tracer particles

@ based on a non-rotating 12 M, progenitor of solar metallicity (Woosley et
al. 2007)

@ Neutrino fluxes and energies from the simulation calculated with a
multi-group flux-limited diffusion method
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2D effects on 1B production (preliminary)

mass fraction
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Detailed neutrino signal

Luminosity (10! erg/s)

@ Neutrino luminosity including
burst and accretion,
time-dependent energies

@ Explosion delayed accordingly

10°

burst luminosity

2 .
10 accretion
< >

cooling

(E,) (MeV)
>

time(s)
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@ Correlation between 38La and
accretion time
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Conclusions ﬁ
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@ Study of neutrino induced nucleosynthesis for piston driven explosions
in 1D with improved neutrino-nucleus cross-sections and modern
estimates for neutrino energies

@ Multi-D effects do not change the light element production in the v
process significantly

o Correlations between the yields 3La and °°Nb and the strength of
the neutrino bursts and accretion time
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Conclusions ﬁ
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@ Study of neutrino induced nucleosynthesis for piston driven explosions
in 1D with improved neutrino-nucleus cross-sections and modern
estimates for neutrino energies

@ Multi-D effects do not change the light element production in the v
process significantly

o Correlations between the yields 3La and °°Nb and the strength of
the neutrino bursts and accretion time

@ Outlook

» Quantify uncertainties accociated with the v process and nuclear
reaction rates for nucleosynthesis sensitivity
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