The ν process

in supernova explosions of massive stars

A. Sieverding¹, G. Martínez-Pinedo¹, K. Langanke^{1,2}, A. Heger³, J.A. Harris^{4,5}, W.R. Hix ^{5,6} ¹Technische Universität Darmstadt ²GSI Helmholtzzentrum, Darmstadt

³Monash Centre for Astrophysics, Melbourne ⁴Lawrence Berkelev National Laboratory, Berkelev CA ⁵University of Tennessee, Knoxville TN ⁶Oak Ridge National Laboratory, Oak Ridge TN

Nuclear Physics in Astrophysics VIII Catania, June 19th 2017

Outline

- Introduction
 - Neutrino nucleosynthesis
- 2 Results
 - Experimental constraints on neutrino-nucleus cross-sections
 - ullet The u process with updated physics in spherical symmetry
 - Multi-D effects on the ν process
- 3 Conclusions

Neutrinos and Supernovae

- The core of a massive star collapses after the nuclear burning phases that leads to an explosion
- Supernova shock triggers explosive nucleosynthesis
- Core emits neutrinos
- Neutrinos can influence the nucleosynthesis in outer layers of SNe
- Looking for the fingerprint of neutrinos in the chemical composition of the universe

Schematic structure of a massive star

Neutrino nucleosynthesis

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8-20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$

Charged-current (CC)

Neutral-current (NC)

Neutrino nucleosynthesis

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu} \rangle \approx 8-20 \text{ MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay
- Particle evaporation
- Capture of spallation products

Charged-current (CC)

Neutral-current (NC)

First detailed calculations

THE v-PROCESS1

S. E. WOOSLEY, 2,3 D. H. HARTMANN, 2,3 R. D. HOFFMAN, 4 AND W. C. HAXTON 5
Received 1989 August 17; accepted 1989 December 11

- Nucleosynthesis including neutrino nucleus reactions
- $\langle E_{
 u_e}
 angle = 13$ MeV, $\langle E_{
 u_x}
 angle = 25-30$ MeV
- based on detailed stellar models
- parametrized thermodynamic trajectories

⁷Li and ¹¹B via ⁴He(
$$\nu_x$$
, ν_x' p/n) and ¹²C(ν_x , ν_x' p)
¹⁹F via ²⁰Ne(ν_x , ν_x' p/n)

138
La and 180 Ta via 138 Ba (ν_e, e^-) and 180 Hf (ν_e, e^-)

SUMMARY TABLE: SPECIES DUE TO NEUTRINO NUCLEOSYNTHESIS^a

Species	Н	He	С	Ne	0	NSE
⁷ Li	В	A	С			(A)
¹⁰ B		C	В			
¹¹ B		B	A			A
¹⁵ N			C	C	С	
¹⁹ F				A		
²² Na				E		
²⁶ Al				E		
²⁷ Al					C	
³¹ P					E	
35Cl				Е	Е	
³⁹ K					E	
⁴⁰ K				E	В	
⁴¹ K					E	
⁴³ Ca				C	C	
*Sc					C	В
7/11				C	C	C
⁴⁹ Ti						В
50V				E	В	В
51wr				Č	E	E
553.0	• • • •			C	E	
Mn				• • • •		E
⁵⁹ Co						E
63Cu						В
¹³⁸ La				Α		
¹⁸⁰ Ta				Α		

 $[^]a$ A = species produced in full abundance; B = important production; C = minor production; E = enhanced significant production.

Progress since the first studies

Woosley et al. (1994), based on models by Wilson et al. (1988)

Wu et al. (2015)

- Structure of the neutrino signal
- Detailed neutrino transport has reduced expected energies
- ullet $\langle E_{
 u_e}
 angle=9$ MeV, $\langle E_{ar
 u_e}
 angle=\langle E_{
 u,ar
 u_{\mu, au}}
 angle=12$ MeV

Outline

- Introduction
 - Neutrino nucleosynthesis
- 2 Results
 - Experimental constraints on neutrino-nucleus cross-sections
 - ullet The u process with updated physics in spherical symmetry
 - Multi-D effects on the ν process
- Conclusions

Increased relevance of charged current reactions

relative importance of inverse β -decay: $\sigma_{CC}^{\gamma}/(\sigma_{CC}^{\rm total}+\sigma_{NC}^{\rm total})$ (in %)

- \bullet For high ν energies, neutral current spallation clearly dominates for the most abundant nuclei
- reducing the energy shifts the balance more towards charged current reactions
- Increased sensitivity to individual low energy transitions

Cross-sections based on experimental data

- $\bullet~\sim\!10~\%$ constribution to the ^{26}Al production
- B(GT) from $^{26}Mg(^{3}He,t)$ measurements
- Forbidden transitions are added from the theoretical calculations
- Branchings are calculated based on a statistical model

Outline

- Introduction
 - Neutrino nucleosynthesis
- 2 Results
 - Experimental constraints on neutrino-nucleus cross-sections
 - ullet The u process with updated physics in spherical symmetry
 - Multi-D effects on the ν process
- 3 Conclusions

Supernova model

- 1D piston driven explosions with the KEPLER code (Woosley et al. 2007)
- kinetic explosion energy $E_{\rm expl} = 1.2 \times 10^{51} {\rm erg}$

Neutrino flux

- Exponentially decreasing neutrino luminosity
- Fermi-Dirac spectrum
- Constant neutrino energies

Updated Physics

- Reduced neutrino energies
- $\langle E_{\nu} \rangle = 8-13 \text{ MeV}$
- Improved and extended set of neutrino-nucleus cross-sections

← Explosion trajectories for a 25 M_☉ model

Production factors and IMF average

 The solar abundances provide observational information for nucleosynthesis results to compare with

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_O}}{X_{16_O}^{\odot}}\right)$$

Assuming that CCSNe are the main source of solar ¹⁶O

- ullet $P_{A, ext{normalized}} \sim 1$ indicates CCSNe as possible production site
- ullet $P_{A, \text{normalized}} \ll 1$ hints another production site or mechanism

Production factors and IMF average

 The solar abundances provide observational information for nucleosynthesis results to compare with

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_O}}{X_{16_O}^{\odot}}\right)$$

Assuming that CCSNe are the main source of solar ¹⁶O

- ullet $P_{A, ext{normalized}} \sim 1$ indicates CCSNe as possible production site
- ullet $P_{A, ext{normalized}} \ll 1$ hints another production site or mechanism

Initial Mass Function (IMF)

Distribution of progenitor masses: $dN_*/dm_* \propto m_*^{-1.35}$

Production factors normalized to ¹⁶O

 \bullet IMF averaged production factor for 13-30 M_{\odot} stars (solar metallicity)

Nucleus	no $ u$	Low energies ¹	High energies ²	
⁷ Li	0.001	0.07	0.91	
¹¹ B	0.005	0.45	1.81	
¹⁵ N	0.06	0.09	0.15	
¹⁹ F	0.12	0.25	0.40	
¹³⁸ La	0.12	0.86	1.70	
¹⁸⁰ Ta*	0.24	0.49	0.88	

^{• 1)} $\langle E_{\nu_e} \rangle = 9 \text{ MeV}, \langle E_{\bar{\nu}_e, \nu_x} \rangle = 13 \text{ MeV}$

lacktriangle 2) $\langle E_{
u_e}
angle = 13 \text{MeV}$, $\langle E_{ar{
u}_e}
angle = 16$ MeV, $\langle E_{
u_X}
angle = 19$ MeV

lacktriangle *) Only about 40% of $^{180}\mathrm{Ta}$ survive in the long-lived isomeric state

Production of ¹¹B

- Si shell (NSE)
 - α-rich freeze-out
 - ► Spallation of ⁴He
- O/Ne shell
 - Production from ¹²C and ¹⁶O
- O Shell
 - Production from ¹²C
- 4 He shell
 - Spallation of ⁴He

15 M_☉ progenitor model, parametrized trajectories

Outline

- Introduction
 - Neutrino nucleosynthesis
- 2 Results
 - Experimental constraints on neutrino-nucleus cross-sections
 - ullet The u process with updated physics in spherical symmetry
 - Multi-D effects on the ν process
- 3 Conclusions

The ν process in 2D

- Possibly stronger exposure due to convective motion
- 2D axisymmetric simulation with CHIMERA (ORNL group, Bruenn et al. 2016, Harris et al. 2017)
- Nucleosynthesis calculations with lagrangian tracer particles
- \bullet based on a non-rotating 12 M_{\odot} progenitor of solar metallicity (Woosley et al. 2007)
- Neutrino fluxes and energies from the simulation calculated with a multi-group flux-limited diffusion method

2D effects on ¹¹B production (preliminary)

Detailed neutrino signal

- Neutrino luminosity including burst and accretion, time-dependent energies
- Explosion delayed accordingly

 Correlation between ¹³⁸La and accretion time

2017

Conclusions

- Study of neutrino induced nucleosynthesis for piston driven explosions in 1D with improved neutrino-nucleus cross-sections and modern estimates for neutrino energies
- ullet Multi-D effects do not change the light element production in the u process significantly
- Correlations between the yields ¹³⁸La and ⁹²Nb and the strength of the neutrino bursts and accretion time

Conclusions

- Study of neutrino induced nucleosynthesis for piston driven explosions in 1D with improved neutrino-nucleus cross-sections and modern estimates for neutrino energies
- \bullet Multi-D effects do not change the light element production in the ν process significantly
- Correlations between the yields ¹³⁸La and ⁹²Nb and the strength of the neutrino bursts and accretion time
- Outlook
 - ightharpoonup Quantify uncertainties accociated with the u process and nuclear reaction rates for nucleosynthesis sensitivity