Measurements of the ⁷Be+n Big-Bang nucleosynthesis reactions at CRIB by the Trojan Horse method

<u>S. Hayakawa¹</u>, K. Abe¹, O. Beliuskina¹, S. M. Cha², K. Y. Chae², S. Cherubini^{3,4}, P. Figuera^{3,4}, Z. Ge⁵, M. Gulino^{3,6}, J. Hu⁷, A. Inoue⁸, N. Iwasa⁹, D. Kahl¹⁰, A. Kim¹¹, D. H. Kim¹¹, G. Kiss⁵, S. Kubono^{1,5,7},
M. La Cognata³, M. La Commara^{12,13}, L. Lamia⁴, M. Lattuada^{3,4}, E. J. Lee², J. Y. Moon¹⁴, S. Palmerini^{15,16}, C. Parascandolo¹³, S. Y. Park¹¹, D. Pierroutsakou¹³, R. G. Pizzone^{3,4}, G. G. Rapisarda³, S. Romano^{3,4}, H. Shimizu¹, C. Spitaleri^{3,4}, X. D. Tang⁷, O. Trippella^{15,16}, A. Tumino^{3,6}, P. Vi⁵, H. Yamaguchi¹, L. Yang¹, and N. T. Zhang⁷

 ¹Center for Nuclear Study (CNS), University of Tokyo, ²Sungkyunkwan University ³INFN - Laboratori Nazionali del Sud, ⁴University of Catania ⁵RIKEN Nishina Center, ⁶Kore University of Enna, Enna, Italy ⁷Institute of Modern Physics, Chinese Academy of Sciences ⁸Research Center for Nuclear Physics (RCNP), Osaka University ⁹Tohoku University, ¹⁰University of Edinburgh, ¹¹Ewha Womans University ¹²University of Naples Federico II, ¹³INFN - Naples ¹⁴High Energy Accelerator Research Organization (KEK) ¹⁵INFN - Perugia, ¹⁶University of Perugia

NUCLEAR STUDY

Cosmological ⁷Li problem

A. Coc et al. J. Cos. Astropart. Phys. 2014

$^{7}\text{Be}(n,p)^{7}\text{Li} (Q = 1.644 \text{ MeV})$

- → One 2- close to the threshold, two 3⁺ resonances, one non-resonant broad 2⁺
- Accuracy: 1σ confidence level ~ 1%

→

→

→

$^{7}\text{Be}(n,\alpha)^{4}\text{He}(Q = 18.990 \text{ MeV})$

- → Revised reaction rate from mirror reaction by Hou+ (2015)
- → Direct measurement up to 10 keV by Barbagallo+ at n_TOF (2016)
 - Measured only α decays after γ -ray emission from ⁸Be excited states
 - S-wave only $\rightarrow 1/v$ law
- → Time-reversal reaction measurement down to 200 keV by Kawabata+ at RCNP (2017)
 - → Measured p-wave neutrons → dominant at BBN energies

Trojan Horse Method for RI + n

Trojan Horse method: e.g. Spitaleri+ Phys. of Atom. Nucl. 74(2011)1725

 $^{7}Be(n,p)^{7}Li$, $^{7}Be(n,\alpha)^{4}He$ via $^{2}H(^{7}Be,^{7}Lip)^{1}H$, $^{2}H(^{7}Be,\alpha\alpha)^{1}H$

- E_{d-7Be} > Coulomb barrier
- Accessible to low energy releasing deuteron binding energy
- Deuteron: low $E_{\text{bind.}}$, $L_{p-n} = 0 \Rightarrow p_{p-n}$ has maximum at 0
- Useful also as virtual neutron target
- $|p_{s}| < 30 \text{ MeV/c} \Rightarrow E_{c.m.} = 0-2.5 \text{ MeV} @ E_{beam} = 22.1 \text{ MeV}$

Trojan Horse Method for RI + n

Assuming Quasi-free mechanism is dominant, one can use (PW)IA:

Collaboration with BELICOS project

- → BELICOS project: Beryllium and Lithium in the Cosmos
 - → ⁷Be+d THM experiment for ⁷Be(n,α)⁴He
 - (L. Lamia, C. Spitaleri, Catania M. Mazzocco, Padova)
 - → Done at EXOTIC, INFN-LNL
- → BELICOS: better statistics, only ⁷Be(n, α) \Leftrightarrow CRIB: better resolution, both ⁷Be(n,p) and ⁷Be(n, α)
- → See L. Lamia's talk (14:30, Thr., "Indirect methods 1")

⁷Be beam production at CRIB

CRIB: CNS Radioactive-Isotope Beam separator (in-flight technique), managed by Center for Nuclear Study, Univ. of Tokyo, located at RIBF, RIKEN.

Experimental setup

 $6 \Delta E$ -E position sensitive silicon telescopes

 $\begin{array}{l} \text{CD}_2\text{: } 64 \ \mu\text{g/cm}^2 \\ \rightarrow \Delta E_{\text{beam}} \thicksim 150 \ \text{keV} \end{array}$

Hamamatsu Chargedivision PSD: position resolution ~ 0.5 mm

ightarrow Total angular resolution $\sim 0.5^{\circ} \Rightarrow \Delta E_{\rm cm} \sim 60 \text{ keV}$

Particle identification

Q-value spectra of the 3-body channels

⁷Be(d,⁷Lip)p ⁷Be(d,2a)p 160 χ^2 / ndf χ^2 / ndf 109.3 / 21 15.36/5 500 140 Constant 443.3 ± 7.7 Constant 124 ± 6.5 Mean -0.5885 ± 0.0110 Mean 17.2 ± 0.0 120 Sigma Sigma 0.7308 ± 0.0571 0.7466 ± 0.0108 400 ¹⁰⁰ 80 Counts 00 C Counts Preliminary Preliminar, 60 200 40 Ist ex 100 20 0 0 -2 0 2 4 6 8 10 **ĭ**10 12 14 16 18 20 22 30 **–10** -8 24 26 28 4 Q value (MeV) Q value (MeV) Known value: Known value: Q(g.s.) = -0.589 MeVQ(g.s.) = 16.766 MeVQ(1st) = -1.058 Mev

Reaction	Q-value (MeV)
<i>p</i> +2α	16.766
⁷ Li+2p	-0.589
⁷ Be+ <i>n</i> +p	-2.225
⁵He+ <i>p</i> +³He	-4.547

 $Q_{3body} = E_1 + E_2 + E_3 - E_{beam}$ $\Delta Q_{3body} \sim \sqrt{(\Delta E_1^2 + \Delta E_2^2 + \Delta E_3^2 + \Delta E_{beam}^2)}$

~ 200 keV expected with 64 μ g/cm² CD₂

Kinematics check

Monte Carlo simulation and experimental data are in a good agreement. The simulation does not include uncertainties yet \rightarrow The data is broader.

Energy, angle vs. spectator's momentum

⁷Be(d,⁷Lip)p

Energy, angle vs. spectator's momentum

⁷Be(d,2a)p

HOES cross sections for $Ip_s I < 40 MeV/c$

Summary

- → Measured ⁷Be(n,p)⁷Li and ⁷Be(n, α)⁴He by THM
- → Evidence of quasi-free reaction mechanism: validity of THM
- → Excitation functions: roughly consistent with the previous data
- → Able to approach the BBN energies ~ 100 keV
- → $^{7}Be(n,p_{1})^{7}Li^{*}$ contribution is not clear: better Q-value resolution?
- → Upper limit of p_1 contribution from p_0 spectrum?