

Canada's national laboratory for particle and nuclear physics and accelerator-based science

²²Ne(p, γ)²³Na and the origin of ²³Na

Annika Lennarz Postdoc | Division of Physical Sciences | TRIUMF

NPA, Catania June 19th, 2017

²²Ne(p, γ)²³Na reaction affects ²³Na abundance in various stellar sites:

- Hot-bottom burning (HBB) in AGB stars (M>4 M_{\odot})
- Convective carbon-shell burning in **massive stars** (competes with ${}^{22}\text{Ne}(\alpha,n){}^{25}\text{Mg}$)
- **Nova** nucleosynthesis (0.15 < T < 0.45 GK)

Increased interest in abundance prediction since discovery of **Na-O anticorrelation** in red giant stars of globular clusters

→ Anomalies in O, Na, Mg, Al abundances in GC stars as a result of "pollution" from AGB stars undergoing HBB?

 \rightarrow Abundance patterns \rightarrow study nucleosynthesis pathes in all cycles!

T [GK]

²⁰Ne(p, γ)²¹Na($e + \nu$)²¹Ne(p, γ)²²Na($e + \nu$)²²Ne(p, γ)²³Na(p, α)²⁰Ne

- NeNa cycle of H-burning (T>0.07 GK)
- Low contribution to energy budget
- <u>BUT:</u> Importance for stellar nucleosynthesis
- Affects abundance of elements between ²⁰Ne & ²⁷AI
- Rate of NeNa cycle determined by ²⁰Ne(p, γ)²¹Na
- **<u>BUT</u>**: Highest uncertainty in ${}^{22}Ne(p, \gamma){}^{23}Na$

NeNa cycle

- Uncertainties in $\omega\gamma$ for (until recently unobserved) **low-energy resonances**
- → **Discrepancies** between compilations by up to a factor of 1000 (T~0.08GK)
- → Abundance variations for nuclides between ²⁰Ne & ²⁷Al by up to 2 orders of magnitude!

First data on several low-energy resonances published by LUNA group

 $ω\gamma(E_{cm}=149 \text{ keV}) = (1.48(10) \times 10^{-7}) \text{ eV}$ $ω\gamma(E_{cm}=181 \text{ keV}) = (1.87(6) \times 10^{-6}) \text{ eV}$ $ω\gamma(E_{cm}=249 \text{ keV}) = (6.89(16) \times 10^{-6}) \text{ eV}$ (Cavanna et. al. PRL 115, 252501 (2015)) [2]

 \rightarrow Confirmation with different method!

Recent measurement of low-energy resonances by Kelly et. al. (PRC **95**, 015806 (2017)) at Laboratory for Experimental Nuclear Astrophysics (LENA)

Recent measurement of low-energy resonances by Kelly et. al. (PRC **95**, 015806 (2017)) at Laboratory for Experimental Nuclear Astrophysics (LENA)

DRAGON Objectives:

- Study energy range relevant to AGB stars and novae for temperatures between 0.1 GK and 0.4 GK
- Direct measurement of E_{cm}= 149, keV, 181 keV, 249 keV resonances
- Re-measure "well-known" reference resonances (E_{cm}=458, 611, 632, 1222 keV)
- Provide more stringent limits on cross sections between 280 and 400 keV (direct capture contribution)

REPORT OF A CONT AND A CONTRACT OF RECOILS AND GAMMA-RAYS OF NUCLEAR REACTIONS

DRAGON – Detector of Recoils And Gamma-rays Of Nuclear reactions

Recoil Detectors

Windowless gas target

- BGO γ-detection array
- 3 **MEME** mass separator

#reactions per

incident ion

4

Recoil detection system

$$N_A \left\langle \sigma \upsilon \right\rangle = 1.54 \times 10^{11} \left(\mu T\right)^{-3/2} \omega \gamma \cdot \exp\left(-11.605 \frac{E_R}{T_9}\right)$$

Dipole

RTRIUMF

Particle detection – end detectors

²²Ne(p, γ)²³Na at DRAGON

First direct measurement in inverse kinematics

• High beam intensities (MCIS, 2x10¹² pps at DRAGON)

On-resonance:

→ E_{cm} = 149, 181, 249, 458, 611, 632, 1222 keV (E_{cm} =149 keV **lowest energy** received at DRAGON)

Off-resonance:

 \rightarrow Direct capture measurements E_{cm}=280 keV to 400 keV

OTRIUMF

E_{cm}= 458 keV – DRAGON measurement

Relevance:

- Significant contribution to ²²Ne(p, γ)²³Na reaction rate
- Standard <u>reference resonance</u>
- ²²Ne-Ta target stoichiometries
 (²²Ne(α,n)²⁵Mg & ²²Ne(α,γ)²⁶Mg)

Measurement:

- ~7 hrs of data → High statistics
- High beam suppression with $q_{max}=6^+$ ($q_{beam}=4^+$)
- Measured charge-state distribution and stopping power
- Singles & coincidence analysis give consistent results!

6 previous measurements (2 in 2015)

Challenging measurement...

- Low resonance strength between 1.8*10⁻⁶ eV and 2.3*10⁻⁶ eV
- Second lowest energy ever received at DRAGON
- Increased beam emittance → Higher background level
- Recoil cone angle at **limit of geometric acceptance**

Challenging measurement...

- Low resonance strength between 1.8*10⁻⁶ eV and 2.3*10⁻⁶ eV
- Second lowest energy ever received at DRAGON
- Increased beam emittance → Higher background level
- Recoil cone angle at limit of geometric accepta

Results overview - $\omega\gamma$

E _{cm} [keV]	DRAGON ωγ [eV]	LUNA ωγ [eV]	LENA ωγ [eV]	Longland ωγ [eV]	Meyer ωγ [eV]	Keinonen ωγ [eV]
149	N/A	1.48(10)x10 ⁻⁷	2.03(40)x10 ⁻⁷	N/A	N/A	N/A
181 _	• 1.24(11)×10 ⁻⁶	1.87(6)x10 ⁻⁶	2.32(32)x10 ⁻⁶	N/A	N/A	N/A
249	8.58(48)x10 ⁻⁶	6.89(16)x10 ⁻⁶	N/A	N/A	N/A	N/A
458	0.472(10)	0.594(38)	0.583(43)*	0.524(51)	0.45(10)*	N/A
611	3.17(22)	2.45(18)	N/A	N/A	N/A	2.8(3)
632	0.547(18)	0.032 + 0.024 - 0.009	N/A	N/A	0.35(10)	N/A
1222	11.94 +/- 1.19	10.8(7)*	N/A	N/A	N/A	10.5 +/- 1.0

Meyer/Endt: $\omega\gamma(458)/\omega\gamma(612) = 0.144 \& \omega\gamma(612)/\omega\gamma(1222) = 0.042$ DRAGON: ωγ(458)/ωγ(612) = **0.146** & ωγ(612)/ωγ(1222) = **0.040**₁₈

Consistency in ratios

TRIUMF

Results

- Görres: S = 62 keV b; Observed DC \rightarrow 0 energy dependence [5]
- Rolfs: S = 67 +/- 19 keV b
- LENA measurement at E_{cm} = 407 keV Normalization to 458 keV results in good agreement
- DRAGON measurement at low energies verifies direct capture model extrapolations
- <u>Reduced uncertainty</u> at low energies! 40% → 3.8%

Results

Figure courtesy of R. Longland

- *First direct* study of ${}^{22}Ne(p,\gamma){}^{23}Na$ capture rate with DRAGON in *inverse kinematics*
- DRAGON collected data for 7 on-resonance measurements + DC measurements
 - ω_{γ} (458 keV) ~20% lower than 2015 results (LUNA (HZDR) & LENA)
 - \rightarrow Low uncertainty allows for reliable use as reference resonance
 - $\omega\gamma$ (181 keV) ~34% weaker than LUNA $\omega\gamma$ & ~53% weaker than LENA $\omega\gamma$
 - \rightarrow Re-normalization \rightarrow Good agreement for low-energy resonances (LUNA, LENA)
 - $\omega\gamma(458)/\omega\gamma(612) \& \omega\gamma(612)/\omega\gamma(1222)$ ratios consistent with Meyer/Endt results
 - Reduced uncertainty on DC contribution $40\% \rightarrow 3.8\%$
 - DRAGON rate maps closely with recent LENA rate

Next steps:

- Abundance calculations with revised rate impact in other astrophysical sites?
- 181 keV verification with reduced uncertainty & 149 keV in inverse kinematics

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Many thanks to the DRAGON collaboration!

TRIUMF, BC, CA University of York, UK University of Surrey, UK Collorado School of Mines, CO, US McMaster University, ON, CA Ohio University, OH, US Michigan State University, MI, US Notre Dame, IN, US

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Western | Winnipeg | York

Thank you! Merci!

Follow us at TRIUMFLab

f 🖸 🏏

[1] Marie Luise Menzel – PhD thesis
 [2] Cavanna et. al. PRL 115, 252501 (2015)
 [3] Slemer et. al. arXiv:1611.07742v1 (2016)
 [4] R. Longland et al., Phys. Rev. C, 81:055804 (2010)
 [5] Görres et al. Nucl. Phys. A 408, 372 (1983)
 [6] Rolfs et al. Nucl. Phys. A, 241(3):460-486 (1975)
 [7] Kelly et al. Phys. Rev. C, 95:015806 (2017)
 [8] R. Depalo et al. Phys. Rev. C, 92:045807, 2015
 [9] M. A. Meyer and J.J.A. Smit, Nucl. Phys. A, 205:177 (1973)

